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Partitioned postseismic deformation associated with the 2009
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using a terrestrial laser scanner
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[1] Using 3D terrestrial laser scan (TLS) technology, we
have recorded postseismic deformation on and adjacent to
the surface rupture formed during the 6th April 2009
L’Aquila normal faulting earthquake (Mw 6.3). Using
surface modeling techniques and repeated surveys 8–
124 days after the earthquake, we have produced a 4D
dataset of postseismic deformation across a 3 × 65 m area at
high horizontal spatial resolution. We detected millimetre‐
scale movements partitioned between discrete surface
rupture slip and development of a hangingwall syncline
over 10’s of meters. We interpret the results as the signal
of shallow afterslip in the fault zone. We find 52% of the
total postseismic hangingwall vertical motion occurs as
deformation within 30 m of the surface rupture. The total
postseismic vertical motions are approximately 50% that of
the coseismic. We highlight the importance of quantifying
partitioned postseismic contributions when applying
empirical slip‐magnitude datasets to infer palaeoearthquake
magnitudes. Citation: Wilkinson, M., et al. (2010), Partitioned
postseismic deformation associated with the 2009 Mw 6.3 L’Aquila
earthquake surface rupture measured using a terrestrial laser scanner,
Geophys. Res. Lett., 37, L10309, doi:10.1029/2010GL043099.

1. Introduction

[2] Earthquakes produce coseismic motions that may
amplify during the weeks after the mainshock. We report the
novel use of a Terrestrial Laser Scanner (TLS) to monitor
postseismic ground surface deformation following the 6th
April 2009, Mw 6.3 earthquake, which struck L’Aquila in the
Abruzzo region, Italy. Field observations [Falcucci et al.,
2009] in the days after the earthquake identified a discon-
tinuous surface rupture ∼12 km in length, with discontinuous

ruptures over a distance of 2 km along the Paganica fault,
situated northeast of Paganica (Figure 1). InSAR and body‐
wave seismology studies identified the earthquake slip plane
as a SW‐dipping normal fault with ∼0.6–0.8 m coseismic slip
at depth, propagating to the surface on the Paganica fault
[Atzori et al., 2009;Walters et al., 2009]. ThePaganica rupture,
as observed in the field has normal sense displacement with
a consistent downthrow along its length towards 218° ± 5°
constrained by opening directions across ground cracks.
Observed coseismic throw across localised cracks and rup-
tures ranged from 0.7–15.0 cm [Galli et al., 2009; Falcucci et
al., 2009; Emergeo Working Group, 2010]. Observations
with InSAR on Envisat tracks predicted “surface ruptures of
∼10 cm” [Walters et al., 2009]. Postseismic afterslip for the
L’Aquila event has been inferred using a laser strain meter
system located 20 km NE of the epicentre [Amoruso and
Crescentini, 2009]. Also field observations documented
the widening of ground cracks and increased surface offsets
along the surface rupture observed over two months after the
earthquake [Galli et al., 2009; Boncio et al., 2010]. Our study
monitored the postseismic ground surface deformation of a
concrete road (Site ID. PAG, 13.471450°E 42.362631°N).
The road is perpendicular to the strike of the Paganica fault,
across which a sharp surface rupture had formed. This
section of the surface rupture is close to the centre of the
overall trace with measured vertical offset of ∼7.5 cm when
we first visited the site on the 14th April, 8 days after the
earthquake (Figure 1).

2. Method

[3] Terrestrial laser scanning is a relatively new form of
ground based remote sensing. The time of flight of an emitted
laser and its reflected returning counterpart are used to cal-
culate the range between a tripod‐mounted laser scanner and
the ground surface. By incrementally adjusting the direction
in vertical and horizontal steps, the scanner is able to sample
reflections from regularly spaced areas of the ground surface
within the line of sight of the scanner. For each ground
reflection a unique point in 3D space is calculated, with many
ground reflections populating a point cloud dataset. At
study site PAG, using a Riegl LMS‐z420i laser scanner
with single point precision of 8 mm at 50 m range (Riegl
LMS‐420i datasheet, available at http://riegl.com/uploads/
tx_pxpriegldownloads/10_DataSheet_Z420i_18‐03‐2010.
pdf), point clouds of ∼2.5 million individual points spaced
between 4–10 mm apart were acquired, defining 195 m2 of
the road surface. A network of five reflector positions was
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Figure 1. (a) Interpreted active normal faults of the Abruzzo region with the L’Aquila earthquake surface ruptures along
the Paganica fault shown in red (adapted from Roberts [2008], Falcucci et al. [2009], Michetti et al. [2000], and ISPRA
(Geological effects induced by the L’Aquila earthquake (6 April 2009, MI = 5.8) on the natural environment: Preliminary
report, 2009, available at http://www.apat.gov.it/site/en‐GB/Projects/INQUA_Scale/Documents/). The star south west of
L’Aquila marks the hypocentre of the 2009 main shock with Quick gCMT focal mechanism attached (Strike 127°, Dip 50°,
Rake −109°). (b) Site map of PAG showing the modeled dataset boundary inside the green dashed line and the location of
the scan position and five reflectors. The discontinuous nature of the surface rupture outside the dataset boundary is shown
by red dashed lines.
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created, including sites 20 m into the footwall and 40 m into
the hangingwall (Figure 1). Repeat datasets were obtained on
seven occasions between 8 and 124 days after the main
earthquake (Table 1). The reflectors were used as control
points to position the point cloud datasets into a footwall‐
static reference frame relative to the day 8 dataset. A point
cloud acquired for any scanned surface shows a Gaussian
distribution of errors about the mean, which represents a close
approximation to the real surface. A representative road sur-
face for each of the seven TLS datasets for PAG was created
using the discrete smooth interpolation (DSI) method [Mallet,
1992]. The DSI operates by creating a preliminary meshed
surface with triangle vertices spaced 10 × 10 cm. Each of
the triangle vertices are then translated to a location which
represents the mean of the local surrounding points within the
point cloud dataset (see Figure S1 for a workflow of the
method).1 The high density of our point clouds allowed us to
detect minimum vertical differences between modeled sur-
faces of 1.5–5.7 mm, dependent on the part of the surface
being compared, with 95% confidence (based on the 2s
variation in the moving point average for triangle vertices,
window size 250 points, used to create the cross sectional
plots in Figure 2b). Comparison of the vertical difference
between the initial hangingwall surface and each subsequent
surface allowed quantification of the near field postseismic
hangingwall deformation relative to day 8 (Figure 2). The
5‐point reflector network also enabled us to measure hori-
zontal extension by comparing the average change in hori-
zontal distance between reflectors paired across the fault
relative to their horizontal distance at day 8.

3. Data and Comparison With Existing Afterslip
Models

[4] Our datasets allowed us to precisely measure the rel-
ative vertical movement for points on the 65 × 3 m road
surface (Figure 2). Two discrete styles of surface motion
were observed. Firstly, throw on the rupture increased by
13.4 mm ± 2.6 mm between day 8 and day 124. Secondly,
in addition to throw on the rupture, a further 14.3 mm ±
2.3 mm of vertical offset was measured, associated with
growth of a warp or hangingwall syncline between day 8 and
124, originating from 7 m into the hangingwall. The syncline
increased in width from 20 metres between days 8 and 15, to
>30 m by day 124. The maximum vertical offset which
developed between 8 and 124 days after the earthquake for

the combined rupture and syncline was 27.7 mm ± 2.3 mm.
We note that 14.3 mm of this value (52%) would have been
missed if the syncline had not been recognised and measured.
Horizontal extension measured by averaging the change in
distance between reflectors paired across the rupture totalled
21.8 mm ± 5.0 mm. Measurements of extension over inter-
mediate time periods are similar to the equivalent combined
rupture and syncline vertical motions (Figure 3). The post‐
seismic displacements recorded at GPS stations close to our
PAG survey site [Cheloni et al., 2010] are in broad agreement
with the vertical motions we observe.
[5] We compare our measured datasets with previously

published theoretical and empirical models that describe
measured afterslip from rupture studies following previous
earthquakes [Bucknam et al., 1978;Williams andMagistrale,
1989; Marone et al., 1991] (Figures 3 and 4). These models
have not been optimised to fit our data; they have been plotted
relative to day 8, our first observation, using published para-
meters defined from measured afterslip following previous
earthquakes [Bucknam et al., 1978; Sharp et al., 1989;
Williams and Magistrale, 1989].

4. Discussion

[6] The data for rupture throw, not including syncline sub-
sidence, are indicative of afterslip, showing broad agreement
with previously published afterslip models with correlation
coefficients ranging from 0.9149–0.9318 (Figure 3). To esti-
mate how much afterslip occurred on the rupture before our
measurements began, we utilise field observations 500 m–
1500 m SE from our site, PAG by Boncio et al. [2010]. They
document the widening of a ground fracture by 30–50 mm
between the 6th and 25th April and the vertical development
of a hangingwall flexure by 25 mm between the 6th April and
19th May; we estimate 15 mm of this vertical motion devel-
oped between 6th–14th April. We measured 75 mm of offset
across the rupture on the 14th April. If the observations of
Boncio et al. [2010] apply to our site, we suggest that ∼15mm
of this measurement was produced by postseismic deforma-
tion on the rupture prior to 14th April. By adding 15 mm to
our observation of 13.4mmof rupture throw observed between
14th April and 8th August, we estimate the total measured
afterslip on the rupture since 6th April to be ∼30 mm, in broad
agreement with the previously published models. This esti-
mate suggests afterslip at PAG is around 50% of the mostly
coseismic offset totalling 75 mm observed across the rupture
on the 14th April. However, if the postseismic deformation
associated with syncline growth are added to those of rupture
throw, the models describe such combinedmotions with lower

Table 1. Survey dates and measurements of rupture throw, syncline subsidence, combined rupture throw and syncline subsidence and
line of sight extension between reflectors for each of the TLS datasets (PAG2‐PAG7), relative to the first PAG1 datum

Date Dataset ID
Days since
earthquake

Rupture throw
since 14/04/09 (mm)

Syncline subsidence
since 14/04/09 (mm)

Combined rupture throw
and syncline subsidence
since 14/04/09 (mm)

Line of sight extension
between reflectors

since 14/04/09 (mm)

14/04/09 PAG 1 8 ‐ ‐ ‐ ‐
17/04/09 PAG 2 11 2.2 11.6 13.8 11.4
11/05/09 PAG 3 35 3.9 19.5 23.4 15.9
15/05/09 PAG 4 39 4.1 19.4 23.5 9.3
19/05/09 PAG 5 43 5.2 17.3 22.5 16.4
24/05/09 PAG 6 48 8.3 16.2 24.5 17.2
08/08/09 PAG 7 124 13.4 14.3 27.7 21.8

1Auxiliary materials are available in the HTML. doi:10.1029/
2010GL043099.
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Figure 2. (a) Color map plots showing vertical motion values (mm) in a footwall static reference frame in 3D space for
TLS datasets PAG2–PAG7, relative to the first scanned dataset PAG1 (8 days after the earthquake). A time lapse animation
of the vertical motions is available in Movie S1. (b) Cross sectional plot taken perpendicular to the main strike of the rupture
between A′ and B′. Each plot was calculated using a moving point average with window size 250 points (representing 3 m
width × 0.7 m distance along the road), using the vertical motion values from each of the colour map plots in Figure 2a.
The boxed zone highlights an area of damage (breaking off of the footwall) the surface rupture received between days 11
and 35 attributed to a digger being driven over it. The similarity of the deformation observed along the rest of the road before
and after the digger damage shows that the immediate 2–3m of footwall was the only part of the roadwhichwas vulnerable and
subsequently damaged. ±2s bounds represent the range of certainty in vertical motion for each cross sectional plot which
changes along section due to variations in the smoothness of the road.
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correlation coefficients 0.8863–0.9073, largely because of
the relatively rapid syncline subsidence between days 8–11.
Between days 8–124, the rate and magnitude of syncline
subsidence were comparable to and at times exceeded that of
the rupture afterslip, with the combined rupture afterslip and
syncline subsidence being approximately twice that of the
rupture afterslip at day 124. The similarity inmagnitude of the
combined rupture throw and syncline subsidence in relation
to the data for horizontal extension suggests that hangingwall
deformation responsible for syncline growth formed a major
component of the postseismic extension at PAG.
[7] Numerous studies suggest the growth of hangingwall

synclines are common during normal faulting earthquakes.
Hangingwall synclines are observed at many palaeoseismic
sites within the Italian Apennines [D’Addezio et al., 1996;
Pantosti et al., 1996; Galli et al., 2002; Galli et al., 2008].
Also, surface motions described as ‘uplift of the footwall and
a warp‐like hangingwall subsidence (folding)’were recorded
during a study of afterslip on the surface rupture of the 1995
Egion earthquake [Koukouvelas and Doutsos, 1996]. Indeed,
we have observed progressive development of hangingwall

synclines, with similar subsidence in preliminary processing
of TLS datasets spanning equivalent time periods at two other
sites along the Paganica surface rupture (Figures S2 and S3).
[8] The localised nature of surface motions at PAG pro-

duced several centimetres of slip across the rupture that was
visible with the naked eye. However, we note that the vertical
motions associated with syncline growth would have been
missed without the use of TLS, as they were too subtle to
observe with the naked eye alone, and no pre‐earthquake
datum existed in the form of a precise topographic map.
This is important because such subtle subsidence associated
with hangingwall folding accounts for 52% of the total
vertical postseismic deformation. Such deformation may be
un‐accounted for within empirical slip‐magnitude relation-
ships, especially for smaller earthquakes [e.g., Wells and
Coppersmith, 1994]. If this is the case, we note that in our
study, the inclusion of hangingwall deformation would have
doubled the surface offset for the given earthquake magni-
tude, if the total subsidence had not been attributed to a
combination of postseismic and coseismic deformation. In
palaeoseismic studies such slip‐magnitude datasets are used to

Figure 3. (a) Surface motions for the six TLS datasets (PAG2–PAG7), relative to the initial TLS dataset PAG1, 8 days
following the earthquake (Table 1) plotted against time since the earthquake. Error bars represent 2s (95%) certainty.
(b) Graphical comparison of published theoretical and empirical models for afterslip (Equations 1, 2 and 3 in Figure 4) to
our datasets, together with their correlation coefficients.
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estimate palaeoearthquakemagnitudes frommeasured offsets
[Bakun et al., 2005; Vigny et al., 2005; Ryder et al., 2007].
Uncertainty in the surface offset for a given magnitude within
the slip‐magnitude datasets will lead to uncertainty in the
palaeoearthquake magnitude for a given offset. Routine TLS
surveying permits hangingwall synclines and other off‐fault
deformation to be quantified and distinguished from rupture
slip.
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