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ABSTRACT 

Linear consolidation analyses are usually treated either by means of Terzaghi-Rendulic 

uncoupled theory or Biot’s consolidation theory. In this note, the problem of consolidation 

displacements around an axially loaded sphere was considered. It is demonstrated that both 

the uncoupled analysis and the coupled analysis give the same governing equation for pore 

fluid pressure dissipation with time. A simplified procedure for deriving transient strain 

components is illustrated. A general solution for time-dependent displacements is obtained 

using uncoupled consolidation analysis. Close agreement is evident between the new 

approximate uncoupled analysis solution and the existing coupled analysis solution with a 

maximum error of less than 0.5%. 
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INTRODUCTION 

Consolidation is the process by which the pore fluid pressure is dissipated through a porous 

skeleton, following a change in the state of stress. Theories of consolidation fall into two 

main categories: 

i. Uncoupled theory where it is assumed that the total stress remains constant 

everywhere throughout the consolidation process and the strains are caused only by 

the change of pore fluid pressure. This theory is attributed to Terzaghi (1923) and 

Rendulic (1936). 

ii. Coupled Biot theory: in which the continuing interaction between skeleton and pore-

fluid is included in the formulation. This leads, in general, to more complex 

equations for the solution (Biot, 1941). The partial differential equations governing 

the displacements u and pore fluid pressure p, for both a mechanically and 

hydraulically isotropic porous skeleton and an incompressible pore fluid, take the 

forms: 

 

                                                        p).(G)(λG 2  uu                                                (1)         

                                            ).(
t

p
γ

k 2

f

u



                                                          (2) 

where  is the gradient operator; 2  is Laplace’s operator; λ  and G are Lamé’s constants for 

the porous elastic skeleton; k is the hydraulic conductivity; and f  is the unit weight of the 

fluid. 
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Sills (1975) considered the conditions under which the coupled consolidation analysis and the 

uncoupled analysis gives similar variation of pore fluid pressure with time. By introducing a 

scalar function , the displacements can be expressed as u . Substituting in equation (1) 

and integrating gives: 

                                              K(t)p).(
21

-1
2 










u

v

v
G                                         (3) 

where v is Poisson’s ratio and K(t) is some function of time. 

 

Substituting (3) in (2) gives: 

                                                          

                                                          p
)21(γ

)-1(k2

t

K(t)

t

p 2

f














v

vG
                                        (4) 

 

Sills (1975) concluded that for the cases where the flow occurs in one-direction when K(t) is 

constant, the variation of pore pressure with time calculated from Biot’s coupled analysis 

becomes identical to that calculated using Terzaghi’s uncoupled analysis. 

 

Using uncoupled analysis could lead to a relatively simpler calculation procedure compared 

with coupled analysis. However, any complete consolidation analysis requires not only 

establishing the relation between the pore fluid pressure and the consolidation time, but also 

the variation of displacements and stresses with time. The stresses, strains, and displacements 

can be divided into transient and long-term components. The long-term components do not 

vary with time and can be calculated from the elastic solution. The transient components are 

time dependent and vary with the change in pore fluid pressure.  In uncoupled analysis of 

one-dimensional consolidation problems, it is a relatively straightforward procedure to derive 
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the transient components of displacements and strains from the change in pore fluid pressure. 

In two and three-dimensional consolidation problems, calculating displacements using 

uncoupled analysis becomes more complicated since information is needed regarding the 

changes of each transient component with the change in pore fluid pressure.  

 

In this technical note we will present a simplified procedure for calculating time-dependent 

displacement using uncoupled consolidation analysis in a three-dimensional problem. This 

represents an improvement in the current practical approach of using uncoupled analysis only 

with the assumption that displacements occur in one-direction (as is the case in shallow 

foundation problems (Skempton and Bjerrum, 1957)).  

 

We will consider the problem of consolidation around an axially-loaded rigid sphere in the 

interior of porous elastic space (Figure 1). This problem has practical implication in civil 

engineering especially with the increasing use of ball penetrometers in in-situ testing of soil 

(Randolph et al. 2005). It is also relevant to consolidation around base of under-reamed piles.  

The potential applications of the solution presented in this note are not restricted to 

geomechanics; it has the potential to be applied to other fluid-saturated porous media. For 

example, it could be applied to the embedded rigid inclusion problems in biomechanical 

materials.  

 

We will start by deriving a linear elastic solution for a rigid sphere embedded in an elastic 

infinite space. Next, we will present an uncoupled consolidation solution for the 



6 

 

displacements. Finally, we will compare this uncoupled solution with the existing coupled 

consolidation solution of de Josselin de Jong (1955). 

 

In this note, the reference stresses and the pore fluid pressure before loading the sphere is 

taken to be zero. The tensile stresses and strains are taken to be positive and the total stress  

is taken to be given by: 

                                  σεσ  IIuI pG2).λ(p                                                (5)        

where  is the strain, σ is the effective stress and I is the unity matrix. 

 

LINEAR ELASTIC SOLUTION FOR STRESSES AND DISPLACEMENTS 

In linear elasticity, the solutions of stresses and displacements of axisymmetric problems can 

be derived from Lamé’s strain potential  or from Love’s strain function Φ (equations 1-6, 

Selvadurai 2001).  

 

Lamé’s strain potential satisfies: 

                                                            02                                                                       (6)                            

For axisymmetric problems in spherical coordinates )Θ,(R,  , the Laplace operator 2 is 

given by: 

                                                
2

2

222

2
2

ΘR

1

ΘR

cotΘ

RR

2

R 

















                                      (7) 
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The displacements are given by: 

                                                                   

ΘR

Ψ
2Gu

R

Ψ
2Gu

Θ

R











                                                             (8)                                        

and the stresses are given by: 
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Ψ
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Ψ
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1
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Ψ
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2
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

                                                   (9)             

Love’s strain function satisfies: 

                                                       022                                                               (10) 

The displacements are given by:  

               

Φ
R

1

RΘR

cosΘ
Φ

ΘR

1

rR

1
ν)2(1sinΘ2Gu

Φ
RR

1
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sinΘ
Φν)2(1
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2
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Θ
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              (11) 

The stresses are given by: 
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(12) 

The solution of a rough rigid sphere embedded in a homogenous elastic medium can be 

obtained by superimposing stresses and displacements derived from Lamé’s strain potential 

and Love’s strain function. The stresses and displacements should be finite and reduce to zero 

as R .  If the sphere is taken to be fully-bonded to the surrounding elastic medium, then 

the relation between the radial and the circumferential components of the displacements at 

the interface between the sphere and the elastic medium (i.e. at R=R0), is governed by: 

 

                                                          

cosΘusinΘu ΘR                                (13) 

The axial component (in the direction of the applied load P) of tractions acting on any 

spherical surface which encloses the rigid sphere and centred about its origin is governed by: 

 

                                        0PsinΘinRsinΘσcosΘσπ2 2

π

0

RΘR                                 (14) 

A solution for Lamé’s strain potential takes the form of: 

                                                                    cosΘ
R

A
Ψ

2
                                                     (15) 



9 

 

and for Love’s strain function: 

                                                                         BRΦ                                                          (16) 

 

The coefficients A and B are obtained by satisfying equations (13) and (14) simultaneously. 

Therefore: 

                                                                     

)1(8π

P
B

)1(24π

PR
A

2

0











                                                (17)                               

Thus, the displacements are given by: 
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and the stresses are given by: 
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UNCOUPLED CONSOLIDATION ANALYSIS 

The relationship between the time-dependent volumetric strain v and the pore fluid pressure 

can be expressed by: 

  p2

f

v

γ

k

t

ε





  (20) 

The volumetric strain is related to the mean effective stress '

mσ   by: 

                                                 '

v
ν)G(12

ν)23(1
ε m




                                                 (21) 

where 
3

σσσ
σ

''

Θ

'

R'

m


  

Immediately after the application of the load P and before the pore fluid pressure starts to 

dissipate, the volumetric strain is zero and so the initial change in mean effective stress, '

m , 

is also zero. Hence, the initial excess pore pressure, p0, is equal to the mean total stress 

change. From equation (19), taking  = 0.5: 

                                               cosΘ
πR4

P
p

20                                                      (22) 

During the consolidation process, the change in volumetric strain is linked to the change in 

mean effective stress by equation (21), and the latter can be related to the change of the pore 

fluid pressure. At the end of consolidation, the pore fluid pressure will be zero and the change 

mean effective stress, from equation (19), is: 

                                                               



 cos

v)(1

v)(1

πR12

P
2

'

m                                            (23) 

Comparing equations (22) and (23), gives: 
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 
 

Δp
ν13

ν1
Δσ '

m



                                                  (24) 

 

Combining this result with equations (21) leads to:  

                                           
t

p

Gν)2(1

ν)2(1

t

ε v













                                                       (25) 

Substituting in equation (20) gives: 

                                                             pc
t

p 2



                                                            (26) 

where c is the consolidation constant given by: 

                                                       
wγν)2(1

ν)kG(12




c                                                  (27) 

This expression does indeed turn out to be identical to Terzaghi’s one-dimensional 

consolidation coefficient. It is also similar to that derived from the one-dimensional Biot’s 

coupled analysis provided K(t) is  taken to be constant (equation 4).  

 

The boundary conditions for consolidation around a rigid sphere are: 

                                                          
 Rat  0p                                                 (28) 

                                          RRat0
R

p
0




(for an impervious sphere)          (29a) 

                                                      
 RRat0p 0 (for a pervious sphere)          (29b) 
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                                                   0at  tpp 0 
                             

             (30) 

Equation (26) can be solved if the pore fluid pressure p is expressed as a multiplication of 

two functions: 

                                                               Θ)ψ(R,ξ(t).p                                                        (31) 

Equation (26) can then be re-written as two separate equations: 

                                                   2η
t

ξ

cξ

1





                                                            (32) 

and 

                                  0ψη
μ

ψ
)μ(1

μR

1

R

ψ

R

2

R

ψ 22

22

2




























                               (33) 

where  is constant and  cosμ . 

The solution to equation (32) is: 

                                                    tcη2

eξ(t)                                                            (34) 

and to equation (33) is: 

                           )μ(P)ηR(αYR)(ηJ
ηR

C
Θ)ψ(R, n1/2n1/2n                                             (35) 

where Jv and Yv are Bessel functions of the first and of the second kinds, respectively, of 

order v. 
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Satisfying the boundary condition given by equation (30) implies that the pore pressure 

distribution in the Θ -direction can be expressed by a cosine function. From the properties of 

the Legendre polynomial: 

                                                              μ)(μP1                                                                 (36) 

Therefore, the full expression for the pore fluid pressure is: 

  







1k

tcη

k2/3kk2/3

k

k cosΘeR)(ηYαR)(ηJ
Rη

C
p

2
k                 (37) 

 Now let us assume that at some radial distance R
*
>>R0, the pore fluid pressure is never more 

than negligibly small (i.e. p=0 at R= R
*
). Satisfying the boundary condition given by equation 

(28) implies that: 

                                                     0)R(ηYα)R(ηJ k2/3kk2/3          (38) 

so that the coefficient k is given by: 

 
)R(ηY

)R(ηJ
α

k2/3

k2/3

k 



  (39) 

The boundary condition given by equation 29 can be re-written as: 
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                                                                                       (for an impervious sphere)            (40a) 

0))R(Rcos(η)R(Rη))R(Rsin(η)1RR(η 0k0k0k0

2

k    
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                                                                                     (for a pervious sphere)                    (40b) 

where k represents the non-zero roots. 

Satisfying the boundary condition at t = 0 (equation (30)) implies that: 

        
2

1k

k2/3kk2/3

k

k

πR4

P
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Multiplying both sides of this equation by  R)(ηYαR)(ηJR k2/3kk2/3

2/3  , integrating 

between R0 and R
*
 and using the orthogonal properties of Bessel functions (McLachlan 

1957), gives: 
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The values of Ck can then be found by integrating both sides of equation (42): 
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  (43) 

The radial displacement can be divided into transient and long-term components. The 

transient components are time dependent and vary with the change in pore fluid pressure.  

The long-term components do not vary with time and can be calculated from the elastic 

solution. Thus, the radial displacement can be written as: 

 t

RRR uuu    (44) 
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where the superscript  donates the long-term component while t indicates the transient 

component, which is a negative quantity that reduces in magnitude to zero after a long time. 

The radial displacements are calculated from the integral of the radial strain R: 

 




R

RR dRεu                    (45) 

The radial strain can be expressed as: 

                                             )σσν(σ
Gν)2(1

1
ε '

Θ

'

RR 


                             (46) 

In order to evaluate this, information is needed regarding the changes in '

Rσ , Θσ and 'σ , in 

addition to the change in '

mσ  (now known from equations (24) and (37)). Let us assume that: 
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'
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'
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
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


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




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













   (47) 

where  is a proportionality factor (0 1).   

 

It should be noted that if the total radial stress were to remain constant, the rate of change of 

the radial effective stress would equal the rate of change of the excess pore water pressure, 

implying an upper limit for  of (1 - )/(1 + ). However, here, we do not have conditions of 

constant total radial stress everywhere (although the radial stress at r0 is essentially 

independent of Poisson’s ratio (equation 19)). For the purpose of obtaining a closed-form 

solution for displacements, a constant value for  can be used as a first approximation of the 
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relation between the change in stresses and the change in pore water pressure. As it will be 

demonstrated later in the note, the error resulting from this simplification is insignificant.  

 

By substituting equation (47) into equation (46), the transient component of the radial strain 

can be written as: 
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from which the transient component of the radial displacement may be derived as:  
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Combining equation (49) with equation (18), the general expression for the total radial 

displacement is therefore:  
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The sphere displacement at t=0 can be estimated from the elastic solution by putting =0.5 in 

equation (18). Therefore,  can be shown to be given by: 
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Therefore, the displacement of the sphere in the direction of the load (R=R0, 0 ) is given 

by: 
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COMPARISON WITH COUPLED CONSOLIDATION ANALYSIS 

de Josselin de Jong (1957) derived a solution for the displacement of a rigid sphere in an 

infinite porous medium using coupled consolidation analysis. The solution is obtained by 

introducing four types of stress functions E1, E2, 1  and 2 such that: 
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Stresses, displacements and pore fluid pressure are derived from these functions. Functions 

E2 and 2  are identical so that three stress functions are needed to satisfy the boundary 

conditions. The Laplace transformation of the displacement of the sphere in the direction of 

the load was found to be given by: 
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where  
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For a pervious sphere, the inverse Laplace transformation of equation (54) was shown to be 

given by: 

                            






























































2

0

2

00

0R
R

ct
erfc

R

ct
exp1

ν)4(1

ν)2(1
1

πR3

P
t),,0,(RGu2            (55) 

where 

  



x

2 dyyexp
π

2
erfc(x)  

It should be noted from the properties of the Laplace transformation that in equation (54) 

when t=0, N and when t , 1N  . Therefore, both the de Josselin de Jong’s 

coupled consolidation analysis and the author’s uncoupled analysis (equation (52)) give 

identical expressions for the initial and final displacement of the sphere.  

 

Figures 2 compares the sphere displacement calculated from the coupled analysis of de 

Josselin de Jong (equation 52) with that calculated from the uncoupled analysis (equation 54).  
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The sphere displacement is normalised by its initial value and plotted against the non-

dimensional time factor ( 2

0Rct ). The results are shown for different Poisson’s ratios. The 

calculations are carried out for the two different drainage conditions at the interface between 

the sphere and the surrounding porous medium. Figure 2a shows the results for an impervious 

sphere and the results for a previous sphere are shown in Figure 2b. In the uncoupled 

analysis, pore fluid pressure and displacements are taken to be vanish at an outer radius 

R
*
=60R0. A summation of 11268 terms of equation (52) was used to plot uncoupled analysis 

results shown in Figure 2a.  This number of terms corresponds to the number of non-zero 

roots k of equations (40a) for values of R0 between 0 and 600. Also, this number of terms 

gives an insignificant error of 0.1619% for the value of the initial pore fluid pressure (at t = 0 

and R = R0) calculated using equation (22). For the results shown in Figure 2b, 11267 non-

zero roots of equation (40b) for values of R0 between 0 and 600 were used to ensure that the 

pore fluid pressure is almost zero at R=R0. For the coupled analysis, the inversion of the 

Laplace transform is carried out by numerical integration using the efficient scheme devised 

by de Hoog et al. (1982). The efficiency of the numerical integration algorithm is checked 

against the existing analytical solution for a pervious sphere (equation 55).  

 

The uncoupled consolidation calculations in Figures 2a and 2b show excellent agreement 

with the coupled analysis. In the extreme case of the compressibility of a material (v=0), the 

maximum difference between the two analyses was found to be 0.4558% in the case of an 

impervious sphere and 0.4555% for a pervious sphere. This also demonstrates the efficiency 

of the proposed simplified procedure for deriving radial displacements in the uncoupled 

consolidation analysis (equations 47-51).  
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CONCLUSIONS 

A linear elastic solution for an axially loaded sphere in infinite space was derived by 

formulating the problem in spherical coordinates and utilizing the properties of Lamé’s strain 

potential and Love’s strain potential. An expression for the initial excess pore water pressure 

generated immediately after the application of the load and before the start of consolidation 

was then derived from this elastic solution assuming incompressible conditions.  

A closed-form solution for time-dependent displacement was derived using uncoupled 

consolidation analysis. The stresses, strains, and displacements are divided into transient and 

long-term components. The long-term components are calculated from the elastic solution. A 

simplified procedure for relating the transient components to the change in pore fluid 

pressure was outlined.   

 

A comparison was made with the existing coupled consolidation analysis for a variety of 

drainage conditions and material properties. The uncoupled consolidation calculations were 

found to be in excellent agreement with the coupled analysis. 

 

REFERENCES 

 

de Josselin de Jong, G. (1957). Application of stress functions to consolidation problems. 

Proceedings of the 4th International Conference on Soil Mechanics and Foundation 

Engineering, London, 1957, Vol. 1, pp. 320–323. 

 

de Hoog, F. R., Knight, J. H., and Stokes, A. N. (1982). An improved method for numerical 

inversion of Laplace transforms. S.I.A.M. J. Sci. and Stat. Comput., 3(3): 357-366. 

 



21 

 

McLachlan N. W. (1955), Bessel Functions for Engineers. Oxford, Clarendon Press.2nd 

edition.  

 

Randolph, M.F. Cassidy, M.J., Gourvenec, S. and Erbrich, C.T. (2005) The Challenges of 

Offshore Geotechnical Engineering (Keynote) Proc. 16th Int. Symp. Soil Mech. and 

Geotech. Engng (ISSMGE), Osaka, Japan, Balkema. 1, 123-176. 

 

Rendulic, L. (1936). Porenziffer und Porenwasserdruck in Tonen. Der Bauingenieur 17, No. 

51/53, 559-564. 

 

Selvadurai, A.P.S. (2001) On Boussinesq’s problem, International Journal of Engineering 

Science, 39(3): 317-322. 

 

Sills, G. C. (1975). Some conditions under which Biot’s equation of consolidation reduced to 

Terzaghi’s equation, Geotechnique (25) 1:129-132. 

 

Skempton, A.W, Bjerrum, L (1957). Contribution to the settlement analysis of foundations on 

clay. Geotechnique, 7(4): 168-178. 

 

Terzaghi, K. (1923). Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf 

der hydrodynamischen Spannungserscheinungen. Sitzungsber. Akad. Wiss. Wien. Math-

Naturwiss. Kl., Part Iia, 32, 125–138. 

 

 

 

 

 

 

 

 

 



22 

 

 

 

 

Figure 1 Nomenclature for a sphere under axial load 
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(a) 

 
(b) 

Figure 2 Variation of sphere displacement with time (a) impervious sphere (b) previous sphere 


