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On adaptive definition of the plane wave basis for wave2

boundary elements in acoustic scattering: the 2D case3

J. Trevelyan1 and G. Coates1
4

Abstract: The terminology “wave boundary elements" relates to boundary ele-5

ments enriched in the Partition of Unity sense by a multiple plane wave basis for the6

analysis of the propagation of short wavelength waves. This paper presents a vari-7

ant of this approach in which the plane wave basis is selected adaptively according8

to an error indicator. The error indicator is residual based, and exhibits useful lo-9

cal and global properties. Model improvement in each adaptive iteration is carried10

out by the addition of new plane waves with no h-refinement. The convergence11

properties of the scheme are demonstrated.12

Keywords: wave scattering, plane wave basis, boundary integral equation, bound-13

ary elements, adaptivity.14

1 Introduction15

This paper deals with the efficient solution of frequency domain boundary value16

problems in wave propagation. Finite element and boundary element schemes have,17

of course, become well established as tools to carry out such simulations. However,18

users of conventional schemes, i.e. those schemes using a polynomial shape func-19

tion basis, are well known to be constrained by a heuristic rule that prescribes a20

maximum nodal spacing of approximately λ/10, where λ is the wavelength un-21

der consideration. Similar restrictions are found in meshless methods, e.g. Soares22

(2009). This places a de facto upper bound on the frequency that may be considered23

for any given problem given a finite computational resource. For many problems of24

practical scientific and engineering interest, e.g. radar scattering by an aircraft, this25

limitation presents an obstacle to the effective usage of element-based methods.26

Attempts to increase the upper bound on frequency have been the subject of ac-27

tive research over the last decade. Fast multipole methods (FMM) (Chew, Jin,28

Michielssen, and Song (1997); Darve (2000), for example) present a promising29

avenue of research. For a problem containing N nodes, the N2 nodal interactions30
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through the Green’s function are expanded in a multipole expansion so that the to-31

tal number of computations is greatly reduced, and giving rise to acceleration in32

the matrix vector products that are central to the iterative solution of large systems.33

Adaptive Cross Approximation (ACA) (Bebendorf (2000)) is an alternative tech-34

nique for accelerating boundary element matrices for general applications; this has35

been applied to wave problems by Brancati, Aliabadi, and Benedetti (2009). The36

matrix is partitioned hierarchically in such a way that each partition may be accu-37

rately expressed as a low rank approximation implemented as a convergent series38

of vector operations.39

Without prejudice against FMM and ACA, both of which are likely to be orthogo-40

nal to the methods presented herein, the current paper focuses on a class of meth-41

ods in which the wave potential is sought in some wave basis. Abboud, Nédélec,42

and Zhou (1995) showed that, for convex scatterers impinged by an incident wave43

of sufficiently high frequency, the scattered potential may be efficiently approx-44

imated as the product of a slowly varying function and the incident wave itself.45

The slowly varying function may then be approximated using a piecewise polyno-46

mial finite element or boundary element space. This has been shown to provide47

“wavenumber independent" complexity, e.g. Bruno, Geuzaine, Munro, and Reitich48

(2004) present results for scatterers of dimension 106λ . Langdon and Chandler-49

Wilde (2006) show that the approach is suitable for polygonal scatterers. Anand,50

Boubendir, Ecevit, and Reitich (2006) extended the approach to scattering by two51

or more objects. Dominguez, Graham, and Smyshlyaev (2007) showed that, for52

asymptotically high wave numbers, the number of degrees of freedom needs to53

grow only with O(k1/9) to maintain a fixed error bound (the reader is reminded54

that wave number k = 2π/λ ). It should be recalled that these methods are limited55

to convex scatterers and may not perform well if λ is not very small in comparison56

with the scatterer, i.e. for low or medium frequency problems.57

The extension of these ideas to consider a basis comprising multiple plane waves58

was proposed, without confirming examples, by de la Bourdonnaye (1994) for in-59

tegral equation methods in wave simulation. The Partition of Unity Method (PUM)60

of Melenk and Babuška (1996) generalised the use of approximation spaces com-61

prising sets of functions known to populate the solution space for any differential62

equation under consideration. Sets of plane waves were proposed for wave prob-63

lems. When applied to finite element and boundary element approximations for64

waves, the PUM results in a reformulation of the problem so that we no longer65

seek the solution in terms of the nodal values of potential, but instead solve for66

the amplitudes of a set of approximating plane waves at each node that may be67

linearly combined to recover the potential field. Papers describing the Partition of68

Unity Finite Element Method (PU-FEM) for wave problems have appeared in the69
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literature, including Laghrouche, Bettess, and Astley (2002); Laghrouche, Bettess,70

Perrey-Debain, and Trevelyan (2003); Ortiz and Sanchez (2000), and the approach71

is also seen in the discontinuous enrichment method (see, for example, Farhat,72

Harari, and Franca (2001); Massimi, Tezaur, and Farhat (2008)), the generalized73

finite element method of Strouboulis, Babuška, and Hidajat (2006), the ultraweak74

variational formulation of Cessenat and Després (1998) and the Variational Theory75

of Complex Rays (VTCR) of Riou, Ladevèze, and Sourcis (2008). Following the76

initial proposition by de la Bourdonnaye (1994) of a multiple plane wave basis in77

a boundary integral equation, the approach was further developed in a series of pa-78

pers by Perrey-Debain, Trevelyan, and Bettess (2002, 2003a,b) and Perrey-Debain,79

Laghrouche, Bettess, and Trevelyan (2004), considering Helmholtz problems and80

elastic waves. These authors showed that the plane wave expansion reduced the81

required number of degrees of freedom to approximately 2.5 per wavelength, a82

marked reduction over the 10 per wavelength required with the polynomial basis83

while retaining ‘engineering accuracy’, as defined by 1% L2(Γ) norm of the rel-84

ative error in comparison with an analytical solution. The inclusion of the PUM85

in a boundary element context may be termed PU-BEM, and the elements that are86

enriched in this way may be termed wave boundary elements.87

Although recent advances have been made in the numerical integration of oscil-88

latory functions (Huybrechs and Vandewalle (2006); Trevelyan (2007); Honnor,89

Trevelyan, and Huybrechs (2009); Trevelyan and Honnor (2009); Kim, Dominguez,90

Graham, and Smyshlyaev (2009)), the run time in the PU-BEM is dominated by the91

evaluation of boundary integrals. It becomes important, therefore, to optimise care-92

fully the number of plane waves used in the basis at each node to minimise the total93

number of boundary integrals required to be considered. For general problems, in94

which an analytical solution is not available and the optimal local enrichment varies95

over the scatterer boundary, an adaptive scheme appears attractive for definition of96

the basis. Some initial experiments were reported at conferences by Trevelyan,97

Bettess, and Perrey-Debain (2004) for the PU-BEM and by Ladevèze, Sourcis,98

Riou, and Faverjon (2008) for the Variational Theory of Complex Rays (VTCR).99

Chandrasekhar and Rao (2008) have presented adaptive edge basis functions for a100

Method of Moments solution for acoustic scattering. This paper presents a fuller101

exposition of adaptivity in PU-BEM with appropriate error indicators.102

Section 2 of this paper presents the PU-BEM for Helmholtz problems, and Sec-103

tion 3 presents the adaptive scheme that is the main novel component of the work.104

Section 4 contains some more detailed notes on implementation of the algorithms.105

Section 5 describes some results for two test cases, and some concluding remarks106

are made in Section 6.107
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2 Partition of Unity Boundary Element Method for wave propagation108

We consider a domain Ω ∈ R2, unbounded in the exterior and bounded internally109

by a scatterer of boundary ∂Ω = Γ. Assuming e−iωt time dependence, the wave110

equation reduces to the familiar Helmholtz equation form111

(∇2 + k2)φ(x) = 0, x ∈ Ω (1)

where ∇2 is the Laplacian operator, k is the wavenumber, given by 2π/λ , and we112

seek the complex potential field φ(x). This paper is aimed specifically at problems113

characterised by medium to large k, such that the frequency is sufficiently high114

that conventional FEM and BEM formulations become impractical, but not so high115

that asymptotic methods apply. Let the scatterer be impinged by an incident wave116

φ I(x) = AIeikψ I ·x, i.e. a plane wave of amplitude AI ∈ C travelling in the direction117

described by unit vector ψ I . Transformation of the governing differential equation118

into an equivalent boundary integral equation (BIE) form is standard (e.g. Brebbia119

and Ciskowski (1991)), arriving at120

c(x0)φ(x0)+
∫

Γ

∂G(x,x0)
∂n

φ(x)dΓ(x) =
∫

Γ

G(x,x0)
∂φ(x)

∂n
dΓ(x)+φ

I(x0), x0 ∈ Γ

(2)

where c is a scalar dependent on the boundary geometry at point x0, n is the unit
outward-pointing normal at boundary point x, and G is the Green’s function, which
for the Helmholtz equation is given by

G(x,x0) =
i
4

H0(kr). (3)

Here r := |x− x0| is the usual radial coordinate in boundary element methods, and121

H0(·) is a Hankel function of the first kind and of order 0. Considering a general122

form of boundary condition to be applied, given by123

∂φ(x)
∂n

= α(x)φ(x)+β (x), x ∈ Γ (4)

the BIE may be reformulated as

c(x0)φ(x0)+
∫

Γ

(
∂G(x,x0)

∂n
−G(x,x0)α(x)

)
φ(x)dΓ(x)=

∫
Γ

G(x,x0)β (x)dΓ(x)+φ
I(x0)
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(5)

Here, for compact presentation we take the case of a perfectly reflecting (“sound-
hard") scatterer, so α(x) = β (x) = 0,x ∈ Γ, leading to a BIE in only the double
layer potential,

c(x0)φ(x0)+
∫

Γ

∂G(x,x0)
∂n

φ(x)dΓ(x) = φ
I(x0). (6)

However, the approach extends in an identical fashion to sound-soft or impedance
boundary conditions. In the direct collocation BEM, the boundary Γ is discre-
tised and each element of boundary Γe considered in an intrinsic coordinate system
through the usual parameterisation of a finite/boundary element, i.e.

Γe = {γe(ξ ) : ξ ∈ [−1,1]} (7)

where γe : R → R2. For any element, the mapping between x ∈ Γ and ξ is unique
and bidirectional, and it shall be henceforth assumed that any function f (x) is
equivalent to f (ξ ) as suggested by this mapping. Expressing the potential in a
piecewise polynomial basis over element e,

φ(x) =
J

∑
j=1

N j(x)φ e
j (8)

where J is the number of nodes per element, N j is the Lagrangian shape function
for node j and φ e

j is the unknown nodal potential at node j on element e, we write

c(x0)φ(x0)+
E

∑
e=1

J

∑
j=1

∫ +1

−1

∂G(x,x0)
∂n

N j(ξ )Jn(ξ )dξ φ
e
j = φ

I(x0) (9)

where E is the total number of elements, and Jn is the Jacobian of the mapping (7).
Collocating this discretised statement of the BIE at a sufficient number of points
x0 ∈ Γ yields a system of linear equations that may be solved for the nodal poten-
tials in the conventional fashion. Some method needs to be employed to overcome
the problem posed by the non-uniqueness of the solution to (6) at the eigenfre-
quencies of the associated interior Dirichlet problem (Schenck (1968); Burton and
Miller (1971)); the current authors use the method of Schenck (1968) for reasons
of computational efficiency but modified in a similar fashion to Mohsen and Hes-
ham (2006) to retain a square system. To move from the classical direct collocation
BEM to the PU-BEM, we introduce the plane wave expansion of the potential on
an element e,

φ(x) =
J

∑
j=1

N j(x)
M

∑
m=1

Ae
jmeikψe

jm·x, |ψe
jm|= 1 (10)
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where Ae
jm ∈ C and ψ jm ∈ R2 are, respectively, the amplitudes and directions of

the plane waves in the basis. For nodes that are shared between adjacent elements,
the same plane wave basis is considered for each element, and the amplitudes of
the individual waves are taken to be identical, providing for C0 continuity in po-
tential across element interfaces. M may be chosen such that, for any given mesh,
requirements on the number of degrees of freedom per wavelength, τ , are observed
both globally and locally. We recall that τ ≥ 10 is generally observed for FEM and
BEM approximations; Perrey-Debain, Trevelyan, and Bettess (2003a) have shown
that a considerably coarser discretisation of τ ' 2.5 is sufficient for PU-BEM. In
general, τ may be allowed to reduce further towards 2.0 as the frequency increases.
Substitution of (10), instead of (8), into (6) results in the BIE being reformulated
such that the unknowns become the amplitudes Ae

jm.

c(x0)φ(x0)+
E

∑
e=1

J

∑
j=1

M

∑
m=1

∫ +1

−1

∂G(x,x0)
∂n

N j(ξ )eikψe
jm·xJn(ξ )dξ Ae

jm = φ
I(x0) (11)

There become M degrees of freedom associated with each node, and so collocation
only at the nodes will provide an insufficient number of equations; an auxiliary set
of equations is provided by collocating at a sufficient number of non-nodal points
distributed over the boundary. To accomplish this, the potential at the collocation
point, φ(x0), in (11) needs to be written in the expansion (10),

φ(x0) =
J

∑
j=1

N j(x0)
M

∑
m=1

Aē
jmeikψ ē

jm·x0 (12)

where ē is the element on which x0 lies. This yields a square system of linear
equations

[W +K]{a}= {b} (13)

where the sparse square matrix W results from interpolation of the plane waves
through (12) and square matrix K is fully populated with the boundary integrals
contained in (11). Right hand side vector b contains the incident wave potentials at
the collocation points, and the unknown vector a contains the amplitudes Ae

jm. The
amplitudes may be determined through solution of the system (13), being careful
to use a solver appropriate to the conditioning of [W + K], and the potential field
may quickly be recovered through (10). If required, solutions in the domain Ω (e.g.
for the far-field pattern) may be found by making further use of (11) in the usual
way. In most PU-BEM works in the literature, and cited in this article, the wave
directions ψe

jm have been simply defined to be equally spaced around the unit circle,
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i.e.

ψ
e
jm = (cosθ

e
jm,sinθ

e
jm), θ

e
jm =

2π(m−1)
M

+δθ (14)

In order to represent the physical optics solution for large k, we take the offset124

δθ to be the direction of the incident wave. We note that, while the number of125

waves, M, is generally much more important than the direction vectors ψe
jm, the126

results do exhibit some sensitivity to the basis directions chosen. Selection of a127

wave basis that is in some sense optimal for the problem in question is an open128

research question (see Bériot, Perrey-Debain, Ben Tahar, and Vayssade (2010)).129

In the following section we show how this set of wave directions is augmented130

iteratively to enhance the solution.131

3 Adaptive scheme132

The core elements of most adaptive schemes found in the FE and BE literature
are an error indicator and some strategy, generally h or p, for model improvement.
The current work is no exception. This section presents such a scheme, of the p-
adaptive character, for 2D PU-BEM approximations. In this scheme, the number
of plane waves in the basis at node j of element e, now denoted Me j, varies with j.
Thus the BIE (11) may be presented in the slightly modified form,

c(x0)φ(x0)+
E

∑
e=1

J

∑
j=1

Me j

∑
m=1

∫ +1

−1

∂G(x,x0)
∂n

N j(ξ )eikψe
jm·xJn(ξ )dξ Ae

jm = φ
I(x0) (15)

In successive iterations of the adaptive scheme, the approximation space is progres-133

sively enriched by the addition of plane waves by incrementing the value Me j at any134

node(s) selected by a local error indicator.135

A residual based error indicator R may be defined as,

R(x1) :=
1
|AI|

∣∣∣∣c(x1)φ(x1)+
∫

Γ

∂G(x,x1)
∂n

φ(x)dΓ(x)−φ
I(x1)

∣∣∣∣ , x1 ∈ Γ (16)

where the integral term may be evaluated in the same discrete form as in (15)

∫
Γ

∂G(x,x1)
∂n

φ(x)dΓ(x)≡
E

∑
e=1

J

∑
j=1

Me j

∑
m=1

∫ +1

−1

∂G(x,x1)
∂n

N j(ξ )eikψe
jm·xJn(ξ )dξ Ae

jm

(17)

We note that when Dirichlet and/or impedance boundary conditions are used the
single layer potential term must also be included in the computation of the error
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indicator. Having solved the system for the amplitudes Ae
jm, the potentials φ(x) and

φ(x1) are available by recombination from (10), and the entire right hand side of
(16) may be readily evaluated to give the error indicator at an arbitrary boundary
point x1. R may be expected to be close to zero-valued when evaluated at x1 = x0,
one of the original set of collocation points used in the solution of the problem.
Typical behaviour is illustrated in Figure 1, in which the variation in R is plotted
over one line element containing 13 uniformly distributed collocation points; R can
be seen to be considerably lower at the original set of collocation points than at
other locations on the element. The error indicator reaches a maximum approx-
imately midway between each pair of collocation points x0. It is further noticed
consistently that the peaks in R increase towards the extremities of the element, a
feature we attribute to the fact that the shape functions exhibit only C0 continuity at
the element boundaries. Therefore we consider the behaviour of R over an element
e to be reasonably described by its value at just two points, xe

L and xe
R. These points

are defined by their locations in parametric space, i.e.

ξ (xe
L) =

1
2
(ξ (x0L)+ξ (xL)) (18)

ξ (xe
R) =

1
2
(ξ (x0R)+ξ (xR)) (19)

where xL and xR are the two end node locations, and x0L,x0R are the non-nodal136

collocation points on the element that are closest to xL and xR respectively.

Figure 1: Behaviour of error indicator over an element containing 13 collocation
points

137
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Figure 2: Showing the algorithm for approximating ||R||1

A suitable global error indicator might be based on a norm of R. Since R(x1) ≥
0,∀x1 ∈ Γ, a 1-norm is sufficient, so that we define a global error norm

||R||1 :=
1
P

∮
R(x)dΓ(x) (20)

where P is the perimeter of the boundary Γ. However, since it involves the evalua-
tion of many highly oscillatory boundary integrals, this norm is costly to compute
numerically. Fortunately, for the purpose of using it as a stopping criterion, the
norm (20) is sufficiently well approximated by

||R||1 '
1

6P

E

∑
e=1

Le[R(xe
L)+R(xe

R)] (21)

where Le is the length of element e. This corresponds to the combined area of
the triangles of base equal to one third of the element length and height equal to
R(xe

L) and R(xe
R), as illustrated in Figure 2. Numerical tests suggest that, using the

definition (21), a stopping criterion ||R||1 < 0.004 is generally suitable to obtain
engineering accuracy of 0.01 in ε , the L2(Γ) relative error norm of the approxi-
mation for φ for a perfectly reflecting cylinder, for which the exact solution, φ ex,
is available in Morse and Feshbach (1981). Reducing the threshold value for the
stopping criterion provides for improved accuracy of the converged solution. For
completeness we define ε as

ε =
||φ −φ ex||L2(Γ)

||φ ex||L2(Γ)
(22)
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In evaluating ||R||1 using (21) it is important to store the local values of the error138

indicator R(xe
L),R(xe

R),e = 1, ...,E found at any of these sampling points, since they139

will be used as the local error indicator.140

Although it includes a non-local integral operator, the error indicator (16) may
also be viewed as having local properties since it is effectively the use of the BIE
to compute the potential φ(x1), and evaluation of the discrepancy between this
computation and the recovery of φ(x1) from the PU-BEM solution through (10).
We can illustrate the effectiveness of local variation in R as a local error indicator
using the perfectly reflecting cylinder. For a case in which 24 elements are used to
model the cylinder, we computed for each element the values

ε
e =

||φ −φ ex||L2(Γe)

||φ ex||L2(Γe)
(23)

||R||e1 =
Le

6P
[R(xe

L)+R(xe
R)] (24)

These values, normalised by the maxima max(εe,e = 1, ...,24) and max(||R||e1,e =141

1, ...,24) are plotted in Figure 3. There is a clear correlation, which we interpret as142

a justification to use R as a local error indicator.

Figure 3: Variation of εe and ||R||e1 over a 24 element model

143

In each adaptive iteration, new waves are added to the approximation space at nodes144

suggested by the local variation in the error indicator. New rows and columns are145

appended to the system matrix and a new solution is obtained. In the current work,146

since the evaluation of the boundary integrals incurs a large majority of the compu-147

tational cost of the PU-BEM for typical problems, the complete set of equations is148

solved at each adaptive iteration. Further work is justified in incremental solution149
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schemes that might be iterative or involve an updated decomposition of the grow-150

ing system matrix. Such schemes are likely to require preconditioning. The major151

benefit of the scheme is to end up with an approximation space that is optimised for152

the problem at hand such that confidence is gained in the solution accuracy while153

the number of oscillatory integral evaluations is effectively minimised.154

4 Implementation155

Different strategies have been tested for the p-adaptive enrichment in response to156

the local behaviour of R. It has been noted by Trevelyan, Bettess, and Perrey-157

Debain (2004) that the residual error indicator lacks the characteristic smoothness158

of Figure 1 when the plane wave basis is non-uniform. We suppose this to be an159

artefact of some interference between the waves in the basis at different nodes.160

The somewhat enhanced quality of the solution for a uniform basis is exploited in161

the final algorithm, in which the following steps are carried out in each adaptive162

iteration:163

1. determine R(xe
L),R(xe

R),e = 1, ...,E from (16) and, in the same process, as-164

semble the global error norm ||R||1 from (21).165

2. if ||R||1 < 0.004 the stopping criterion has been satisfied. Recover the poten-166

tial solution from (10) and stop.167

3. determine the total number of waves, nu, that would be required to be added
in order to reach a uniform basis at all nodes. If the model is already at a
uniform basis, nu takes the value of the total number of nodes, otherwise

nu =
E

∑
e=1

J−1

∑
j=1

Mmax−Me j (25)

where Mmax = max(Me j,e = 1, ...,E, j = 1, ...,J).168

4. make a list of all nodes adjacent to sampling points x1 ∈ {xe
L,x

e
R,e = 1, ...,E}169

at which R(x1) > Rmax. Here, Rmax is a threshold to be determined by numer-170

ical tests. Let there be na such nodes in the list.171

5. if na > 0.75nu replace the list of nodes generated in step 4 by a list of172

length nu, generated in step 3, that would bring about a uniform basis Me j =173

Mmax,e = 1, ...,E, j = 1, ...,J.174

6. work down the list of nodes. At each, add a new wave in between two existing175

plane waves such that the basis becomes
{

eikψe
jm·x,m = 1, ...,Me j +1

}
, and176

increment by 1 the value of Me j.177
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7. define new collocation points in the same number as the added degrees of178

freedom.179

8. evaluate the boundary integrals required to populate the new rows and columns180

in K.181

9. update required entries in the sparse matrix W to include the contributions of182

the newly added waves.183

10. solve the enlarged PU-BEM system (13) for all plane wave amplitudes.184

11. return to step 1.185

The initial plane wave basis at all nodes j on all elements e comprises M1
e j wave

directions uniformly spaced around the unit circle, i.e.

ψ
e
jm = (cosθ

e
jm,sinθ

e
jm), θ

e
jm =

2π(m−1)
M1

e j
+δθ , m = 1, ...,M1

e j (26)

The value of M1
e j is determined to give an appropriate meshing efficiency τ ' 2.1,186

where τ is the number of degrees of freedom used to model a portion of boundary Γ187

spanning one wavelength. We recall that τ = 10 is the usual heuristic rule for FEM188

and BEM approximations to wave problems using a piecewise polynomial basis.189

At the start of the analysis, we initialise counting parameters pe j = 1, qe j = 1 for all190

nodes. The following algorithm is used in step 6 of subsequent adaptive iterations to191

define the direction of a single plane wave direction in between existing directions192

at a node.193

1. introduce a new plane wave in a direction

θ jm =
pe jπ

qe jM1
e j

+δθ (27)

where m is taken as Me j +1. The associated unit vector ψe
jm is defined as in194

(26), and Me j is incremented by 1.195

2. modify values of pe j and qe j according to:196

(a) if pe j +2 < 2qe jM1
e j, then let pe j = pe j +2 and qe j = qe j197

(b) if pe j +2 ≥ 2qe jM1
e j, then let pe j = 1 and qe j = 2qe j198
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Figure 4: Progressive addition of waves (case M1
e j = 3 shown)

This algorithm sequentially adds waves to bisect adjacent pairs of waves and will199

continue to find the next bisector at each new addition. This is illustrated in Figure200

4 for the first eight iterations for the case M1
e j = 3. Numerical tests have shown that201

a moderate asymmetry of the plane wave basis is not detrimental to the solution202

obtained.203

At each iteration, in step 7 a set of additional collocation points is defined so that204

the total number of collocation points is equal to the number of unknowns. We205

locate the new points on the elements on which new plane waves are added, but206

confine the new points to the interval ξ ∈ (ξ (x0L),ξ (x0R)) in the present study in207

order to maintain a consistent definition of the global error norm (21).208

4.1 Mesh considerations209

It is clear from the presentation of the PU-BEM in Section 2, that the degrees of
freedom in the analysis are represented by the amplitudes of a set of plane wave
directions forming a basis for the approximation space at each node. Simple con-
sideration of the perimeter, P, and of the required number of degrees of freedom per
wavelength, τ , will suggest that a total number of degrees of freedom, Nd , where

Nd =
Pτ

λ
, (28)

should be provided. Let us assume, for simplicity, that every node is provided210

with a uniform basis comprising M wave directions, and that there is a total of N211

nodes. Nd is then given by MN. Thus we have flexibility to accumulate the re-212

quired number of degrees of freedom by various combinations of M and N. Early213

developments in the PU-BEM for Helmholtz problems (Perrey-Debain, Trevelyan,214

and Bettess (2003a)) showed that the accuracy of the method is influenced by this215
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choice, and concluded that convergence is optimised if N is minimised and M max-216

imised. Best results were shown for N = 1, i.e. using a single element to model the217

entire closed boundary.218

With the introduction of adaptivity, we have a conflicting demand, since the algo-219

rithm progresses by improving the model in a localised way. For this reason, we220

proceed into Section 5 to present examples having a larger N and smaller M than221

would be suggested by the 2003 study.222

5 Results223

The adaptive PU-BEM algorithm is illustrated in this section using two example224

problems: scattering of a plane wave by a circular cylinder and by a system of225

three cylinders of different diameters. The cylinders are perfectly reflecting as is226

assumed for simplicity in the theoretical development earlier in this paper; for more227

general cases the algorithm would simply be extended by including the single layer228

potential in the residual error indicator (16).229

5.1 Scattering by a circular cylinder230

Consider a cylindrical scatterer of radius a = 10 impinged by an incident wave of231

unit amplitude and wavelength λ = 0.5 (consistent units are assumed) propagating232

in direction (1,0). This example provides ka = 125. The cylinder is modelled by233

24, 3-noded boundary elements, and the initial model is provided with M1
e j = 6234

for all nodes, giving 288 degrees of freedom (τ = 2.29 degrees of freedom per235

wavelength). This initial analysis has error norm ||R||1 = 0.00548. The adaptive236

algorithm converges in a single further iteration to finish at ||R||1 = 0.00125, which237

corresponds to a 0.33% error in the L2(Γ) relative error norm on the potential solu-238

tion in comparison with the analytical solution in Morse and Feshbach (1981). In239

the converged solution the model has 313 degrees of freedom at τ = 2.49. The total240

run time is comparable to the non-adaptive solution using a uniform basis M = 7;241

in fact it shows a small reduction of 4% in run time.242

The geometry-normalised wavenumber ka = 125 in this example is sufficiently243

high that the initial model, exhibiting τ = 2.29, is itself able to produce a reason-244

ably accurate solution. The adaptive procedure has fine-tuned the solution with a245

more efficient use of resources than simply running again with a larger M applied246

uniformly. If we retain the 24-element mesh but double the wavelength to give247

a reduced ka = 62.8, the initial model exhibits M1
e j = 3 for all nodes, giving 144248

degrees of freedom (τ = 2.29 degrees of freedom per wavelength). Three adaptive249

iterations are required in order to achieve convergence. In these three iterations250

the global error norm is found to be 0.0124, 0.00401 (just missing the stopping251
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criterion) and 0.00210. Again, the run-time shows a small saving of 12.3% over252

the most efficient non-adaptive solution that achieves the same accuracy using a253

uniform basis. It is to be expected that the run times for adaptive and non-adaptive254

solutions are comparable, since the gains that are made by reducing the number of255

oscillatory integral evaluations are offset by the requirement to solve the system of256

equations multiple times.257

Figure 5 shows plots of R over the boundary Γ for the solutions of the three adaptive258

iterations. In these graphs the horizontal axis is defined by angle θ taken clockwise259

around the scatterer, having θ = 0 at the first point of contact with the incident260

wave. The asymmetry of the error indicator about θ = π may be attributed to the261

random definition of the Chief points inside the scatterer.262

Figure 5: Evolution of error indicator for cylinder problem taking ka = 62.8. (a)
first iteration, (b) second iteration, (c) third and final iteration

It should be noted that the calculation of R over the boundary, enabling the plotting263

of Figure 5, is made for illustrative purposes only, and the reader is reminded that in264

this scheme the error indicator is required only at two points per element, as shown265

in equation (21).266

For scattering by a single cylinder the behaviour of the PU-BEM is well understood267

so that, using a non-adaptive solution using a uniform basis of M plane waves at268

each node, it is possible to select a suitable value of M a priori that experience269

suggests will give any desired accuracy. The principal advantage of the adaptive270
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scheme is found in more general problems, where the choice of an appropriate271

M is not so clear and cannot be deduced from experience as for a single cylinder272

problem. We proceed now to present such a case.273

5.2 Scattering by three cylinders274

Consider a set of cylindrical scatterers in an infinite acoustic medium, being im-275

pinged by an incident plane wave of unit amplitude and wavelength λ = 0.25,276

propagating in direction (1,0). The geometry and meshing for the scatterers are277

defined in Table 1. All elements have three nodes, and the entire boundary to the278

problem, Γ, is defined as Γ = Γ1∪Γ2∪Γ3.279

Table 1: Geometric definition of the three cylinders

Scatterer Centre Radius No. of elements Boundary
1 (0, 0) 1 8 Γ1
2 (2, 3) 2 16 Γ2
3 (4, -2) 3 24 Γ3

The convergence of the global error norm ||R||1, from ||R||1 = 0.1485 for the
initial analysis (M = 4,τ = 2.54) to achieve convergence in the 4th iteration at
||R||1 = 0.00264, is shown in Figure 6. Convergence is achieved using Nd = 631
at τ = 4.18. Contours of the converged solution Re(φ) are shown in Figure 7, and
show reflection from the illuminated surfaces, a clear shadow region to the right,
diffraction around the sides of the scatterers and a complicated region of multiple
reflections between the three cylinders. This complication is emphasised by plot-
ting |φ | on Γ2, as shown in Figure 8. In Figure 9, we plot over Γ2 a measure, ε2,
of the difference between the converged adaptive solution (plotted in Figure 8) and
the solution φ̄ obtained using a direct collocation BEM approximation using 1520
degrees of freedom at τ = 10.1. This measure is defined by

ε2 =
||φ |− |φ̄ ||
|φ̄ |max

(29)

We can measure the improvement in accuracy as the adaptive scheme progresses
using a relative error, ε3, defined as

ε3 =
||φ − φ̄ ||L2(Γ)

||φ̄ ||L2(Γ)
(30)

The evolution in ε3 with iteration number is shown in Figure 10. The most efficient280

non-adaptive solution to achieve this accuracy uses M = 7 and exhibits τ = 4.46. In281
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Figure 6: Evolution of global error norm for three cylinder problem

Figure 7: Real part of the potential (converged solution)
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Figure 8: Magnitude of potential on boundary of scatterer 2

Figure 9: Difference measure ε2 on boundary of scatterer 2
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this case the run-time for the adaptive solution is somewhat greater (by 19%) than282

this non-adaptive solution, but it must be remembered that the required value of M283

for non-adaptive solutions is not known in advance and that multiple runs may be284

required to confirm convergence.285

Figure 10: Evolution of ε3 for three cylinder problem

6 Conclusions286

An adaptive form of the Partition of Unity Boundary Element Method (PU-BEM)287

has been presented for the solution of wave scattering problems. The approach288

involves a residual based error indicator that has both global and local properties,289

allowing it to be used as a stopping criterion and also as an indicator of areas of a290

model in which further enrichment is required. The residual is normalised by the291

amplitude of the incident wave in scattering problems, allowing a single threshold292

to be used for general scattering problems. An efficient approximation to the global293

error norm is presented, requiring evaluation at only two points on each element.294

The adaptive scheme is of the p-adaptive character; the mesh remains unaltered but295

the approximation space is enriched in each iteration, in regions suggested by the296

local variation in the error indicator, by the addition of an extra plane wave to the297

basis. An algorithm is presented for the iterative addition of new waves in between298

existing wave directions.299

Illustrative examples demonstrate the convergence of the algorithm to solutions300

that exhibit at least engineering accuracy. More accuracy may be obtained simply301

by modifying the threshold value for the global error norm that is used as a stop-302

ping criterion. Run times for the adaptive solution are comparable to those of the303
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most efficient non-adaptive solution that achieves the same accuracy using a uni-304

form basis. The adaptive scheme is beneficial in that it removes the requirement to305

estimate in advance the required number of plane waves with which to enrich the306

approximation space; such an estimate is not always straightforward.307

Further work is required to extend the algorithm to scattering problems in 3D,308

where greater benefits are expected.309
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