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Abstract 12 

Research has demonstrated that landscape or watershed scale processes can influence instream 13 

aquatic ecosystems, in terms of the impacts of delivery of fine sediment, solutes and organic 14 

matter. Testing such impacts upon populations of organisms (i.e. at the catchment scale) has not 15 

proven straightforward and differences have emerged in the conclusions reached. This is: (1) 16 

partly because different studies have focused upon different scales of enquiry; but also (2) 17 

because the emphasis upon upstream land cover has rarely addressed the extent to which such 18 

land covers are hydrologically-connected, and hence able to deliver diffuse pollution, to the 19 

drainage network. However, there is a third issue. In order to develop suitable hydrological 20 

models, we need to conceptualise the process cascade. To do this, we need to know what 21 

matters to the organism being impacted by the hydrological system, such that we can identify 22 

which processes need to be modelled. Acquiring such knowledge is not easy, especially for 23 

organisms like fish that might occupy very different locations in the river over relatively short 24 

periods of time. However, and inevitably, hydrological modellers have started by building up 25 

piecemeal the aspects of the problem that we think matter to fish. Herein, we report two 26 

developments: (a) for the case of sediment associated diffuse pollution from agriculture, a risk-27 

based modelling framework, SCIMAP, has been developed, which is distinct because it has an 28 

explicit focus upon hydrological connectivity; and (b) we use spatially-distributed ecological data 29 
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to infer the processes and the associated process parameters that matter to salmonid fry. We 30 

apply the model to spatially-distributed salmon and fry data from the River Eden, Cumbria. The 31 

analysis shows, quite surprisingly, that arable land covers are relatively unimportant as drivers of 32 

fry abundance. What matters most is intensive pasture, a land cover that could be associated 33 

with a number of stressors on salmonid fry (e.g. pesticides, fine sediment) and which allows us to 34 

identify a series of risky field locations, where this land cover is readily connected to the river 35 

system by overland flow. 36 

Key words: diffuse pollution, hydrological connectivity, land cover, salmonids, fine sediment, risk 37 

 38 

Introduction 39 

 40 

There is growing realisation that the localised restoration of individual reaches of river can be 41 

undermined due to larger scales of influence, such as the delivery of fine sediment from eroding 42 

agricultural land.  This approach is enshrined in the EU Water Framework Directive, which 43 

advocates holistic analysis (e.g. Newson, 1997), and it applies to land management activities like 44 

agriculture that drive diffuse responses but which collectively create particular point problems 45 

(e.g. increased flood risk, nutrient loading, fine sediment accumulation in river gravels). It has 46 

proved exceptionally difficult to demonstrate the extent to which diffuse activities are responsible 47 

for these point problems, not least because statutory monitoring agencies rarely design data 48 

collection strategies that reveal the characteristics of diffuse pollution (Harris and Heathwaite, 49 

2005). For this reason, the use of mathematical modelling to identify the sources of diffuse 50 

pollution has been dominant, commonly in a risk based framework. In this framework, sources of 51 

risk are imagined to be distributed across a river catchment. Human activities (e.g. fertiliser 52 

additions) may combine combined with landscape attributes (e.g. soil type, local slope) to make 53 

certain sites more important sources of risk than others. Thus, reducing the risk to rivers is 54 

concerned with identifying the locations of the important sources of risk and embarking upon 55 

appropriate management interventions. This paper is concerned with two developments to this 56 

risk-based approach. First, it recognises that the sources of risk need to be connected 57 

hydrologically to the river network if they are to deliver their ‘risk’.  This may be within a storm 58 
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event, or through a series of storm events by repeated erosion and transport along a hydrological 59 

flow path. Existing analyses of diffuse pollution contain only a very rudimentary representation of 60 

this process. Second, some previous attention has been given to the spatial patterns of the 61 

sources of risks in landscapes, surprisingly little attention has been given to the collection of in-62 

river data, distributed spatially across an entire catchment to test such predictions. Using 63 

conventional water quality samples to do this is difficult because of temporal variability, which 64 

necessitates many sampling points, measuring through time in order to obtain unbiased 65 

estimates of water quality parameters. The aim of this paper is to develop a reformulated 66 

approach to model the impacts of diffuse pollution (notably material such as fine sediment eroded 67 

from the landscape). We inform this approach by using ecological data (salmonid fry) collected 68 

from across the study catchment. 69 

 70 

Modelling fish populations at the landscape scale 71 

The potential role of landscape scale factors in river management is based upon the premise that 72 

they influence aquatic communities, in terms of chemistry, hydrology and the production and 73 

transfer of organic matter (Allan and Johnson, 1997). Reflecting the observation of Hynes (1975), 74 

that the valley rules the stream, landscape factors (e.g. soil type, land use) have been shown to 75 

influence instream water quality (Hunsaker and Levine, 1995; Johnson et al., 1997). This 76 

influence has been extended to impacts upon instream organisms whether explored directly (e.g. 77 

Roth et al., 1996) or indirectly, through the effects of landscape scale factors upon relevant reach-78 

scale parameters (e.g. Richards et al., 1997) such as food availability (e.g. Townsend et al., 79 

1997). The recognition that landscape scale factors matter has been part of a move towards the 80 

hierarchical interpretation of aquatic communities, in which factors that range in scale from 81 

microhabitat to the entire river basin interact to impact upon both where habitat is suitable and the 82 

degree to which an organism can move between suitable habitat sites (Poff, 1997; Armstrong et 83 

al., 1998, 2003; Wang et al., 2003; Durance et al., 2006). Such work recognises the fundamental 84 

structuring effect of river basin drainage networks (e.g. Benda et al., 2004), necessitating an 85 

upscaling of the focus of river restoration efforts (Harding et al., 1998; Durance et al., 2006) which 86 
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have traditionally emphasised the riparian environment alone (Johnson and Gage, 1997; Folt et 87 

al., 1998). 88 

 89 

Incorporating the landscape-scale has not proved to be straightforward (Durance et al., 2006). 90 

For instance, in relation to fish, a trade off has to be made between: improving reliability of 91 

ecological data at-a-point in time through more time-consuming repeat pass electrofishing; and 92 

capturing population variability in space, requiring less time at individual locations. Sacrificing 93 

time leads to better spatial resolution but enhanced spatial variance (Wiley et al., 1997), or 94 

sampling-enhanced noise. However, assessment of a watershed or catchment factor has to have 95 

a spatial component, especially river basins with a range of land use activities and practices, 96 

where the mosaic of land uses found will create substantial spatial variability in instream water 97 

quality. These issues are compounded by: (1) possibly many limiting habitat influences; (2) 98 

spatial variability in the extent of habitat limitation as compared with other population controlling 99 

factors; (3) spatial variability in exactly what aspect of habitat is limiting (Pess et al., 2002) and 100 

(4), in particular, inter-annual variation in recruitment that means there will be substantial 101 

temporal variability in any of the spatial data that are acquired. If reliable spatial datasets can be 102 

generated, even a partial explanation of their spatial structure by any one watershed factor is a 103 

significant challenge (Pess et al., 2002, Johnson and Gage, 1997). When larger-scale factors 104 

have been considered, results have been attributed to the scale implicit in the design of the study 105 

(Wang et al., 1997; Stauffer et al., 2000; Lammert and Allan, 1999; Durance et al., 2006). Thus, 106 

the reach/riparian focus of much conservation work is not surprising, notably in the presence of 107 

results that can at times be contradictory (Rich et al., 2003), and the difficulty of getting ecological 108 

data at a scale that matches the landscape emphasis. 109 

 110 

This situation aside, landscape-scale factors still provide  meaningful hypotheses for explaining 111 

both historical and current patterns of instream organism populations. The landscape hypotheses 112 

are founded upon the assumption that upstream factors influence the delivery of water, sediment, 113 

solutes and organic matter to locations that are suitable for a particular organism and so impact 114 

upon the local habitat suitability of that site in both positive (e.g. delivery of the organic matter 115 
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required to support benthic macroinvertebrate populations) and negative (e.g. siltation of 116 

spawning redds) ways. Larger scale processes are assumed to be creating the template within 117 

which the small scale operates (Armstrong et al., 1998; Stauffer et al., 2000). Thus, one 118 

explanation for differing findings in relation to the importance of landscape factors is not 119 

methodological but due to substantive differences in the sources of risk in catchments and their 120 

propensity to be delivered to the river network. Indeed, emphasis upon landscape scale attributes 121 

has focused almost entirely on either abiotic metrics such as geology or relief and/or land use and 122 

management practices. It has not recognised the extent to which there is delivery of material from 123 

those land uses to the river system (Meador and Goldstein, 2003). Recent work in both hydrology 124 

(Kirchner et al., 2000) and biology (Poff, 1997) has emphasised how landscapes can operate as 125 

large-scale filters (Burt and Pinay, 2005) in which the scales of variability of inputs to the system 126 

(e.g. rainfall) are fundamentally restructured by the time they become outputs (e.g. water quality). 127 

The focus in this paper is upon developing a modelling approach that can capture this effect, in a 128 

risk-based framework. 129 

 130 

Model principles: diffuse pollution risk, connectivity and instream impacts 131 

 132 

In the absence of spatially-distributed in-river data, and faced with the need to identify the 133 

locations within the drainage basin that are most likely to be sources of catchment risks, a 134 

number of modelling approaches have been developed. These can be classified into three main 135 

groups (Lane et al., 2006): (1) transfer function modelling – which predicts material export on the 136 

basis of simple empirical transfer functions driven by known inputs such as fertiliser and manure 137 

applications coupled with soil nutrient status (e.g. Jordan et al., 1994; Johnes, 1996; Johnes and 138 

Heathwaite, 1997; Herrmann et al., 2003; Ekholm et al., 2005); (2) land unit modelling – which 139 

applies physically-based (‘mechanistic’) models of sediment and nutrient cycling to individual land 140 

units in order to determine export (e.g. Priess et al., 2001; Weber et al., 2001; Binder et al., 2003; 141 

Wolf et al., 2005; Matthews, 2006; Vatn et al., 2006); and (3) land transfer modelling – which 142 

combines the kind of analysis described in (2) with a physically-based, sometimes dynamic, 143 

treatment of how material is transferred across the landscape (e.g. Adams et al., 1995; De Roo 144 
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and Jetten, 1999). A proper treatment of the transfer process is necessary (Beven et al., 2005) as 145 

local, often small scale, hydrological pathways can exert a major control on whether or not 146 

material is delivered to drainage networks (e.g. Blackwell et al., 1999; Burt et al., 1999; Quinn, 147 

2004) as well as the deposition and transformation processes that result (Harris and Heathwaite, 148 

2005). Hydrological modelling, for instance, suggests a complex pattern of overland flow 149 

generation during an individual storm event (Lane et al., 2004), with saturated parts of the 150 

landscape both connected and disconnected by overland flow to the drainage network. These 151 

patterns of runoff generation and hydrological connection occur at spatial scales of the order of 152 

10 m or less (Lane et al., 2004; Heathwaite et al. 2005), often related to quite subtle topographic 153 

attributes. This local scale hydrological structuring of the landscape may exert an important 154 

control upon the connectivity of sources of risk to the landscape (e.g. Figure 1), leading to the 155 

idea of Critical Source Areas (CSAs, Heathwaite et al., 2000) which are parts of the landscape 156 

that generate risks that can be readily delivered to the drainage network. Delivery is a critical 157 

process in determining whether or not a risky land cover produces material that can reach the 158 

river network. Once delivered, additional hydrological processes may impact upon the level of 159 

instream risk, such as when tributaries with different suspended sediment concentrations meet, 160 

resulting in the dilution of one by the other (e.g. Figure 2). 161 

 162 

The extent to which these three modelling approaches capture delivery is variable. There remains 163 

a tendency either: (1) to treat delivery processes in a simplified way (e.g. as some function of 164 

distance from the nearest stream, Munafo et al., 2005); or (2) to apply models with a potentially 165 

sophisticated treatment of delivery but at coarse spatial scales (e.g. 1 km, Adams et al., 1995), 166 

losing much of the spatial detail known to drive hydrological response. In this paper, we present a 167 

new approach to the modelling of landscape risks that is suited to large rural river catchments, 168 

but that also recognises that the drivers of the delivery of risks at the catchment scale include 169 

processes that occur at small, potentially sub-field, spatial scales. This need to transcend scale is 170 

well-established (e.g. Muscutt et al., 1993; Haycock and Muscutt, 1995; Kuusemets and Mander 171 

1999; McKergow et al., 2003; Quinn, 2004). In theory, physically-based dynamic water quality 172 

models (see Borah and Bera, 2003, 2004) ought to do this. They represent delivery implicitly and 173 
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continuously as a catchment wets and dries using appropriate, commonly distributed, process 174 

rules. Borah and Bera review both the mathematical bases and parameterisation issues 175 

associated with a number of such models. Critically, whilst these models are physically-based, 176 

they commonly depend on model calibration. The information demands of model calibration, 177 

arising in complex models, may significantly exceed the information content of available data 178 

(Young et al., 1996; Heathwaite, 2003). This becomes more acute at large spatial scales: the 179 

poor availability of calibration data does not allow unambiguous estimation of the spatial 180 

distribution of key unknowns (e.g. soil depth); and many different model realisations may yield 181 

similar levels of model success (i.e. equifinality, Beven, 1989). This problem can be addressed in 182 

two ways. The first couples conventional predictive models with differing levels of process 183 

complexity for different scales (e.g. Quinn, 2004). Commonly, the finer the scale, the more 184 

complex is the process resolution. Models applied at the fine-scale are applied over smaller 185 

spatial units and for shorter time periods. This information is then transferred to coarser scales 186 

and longer time periods using generalisation tools in which each fine scale treatment is 187 

representative of other locations in the landscape (Quinn, 2004). Such an approach remains 188 

dependent upon suitable calibration data but also requires appropriate rules for generalising 189 

across scales. The second, adopted in this paper, uses a risk-based analysis in which the fine 190 

scale representation is applied to all locations in the landscape and then integrated up to the 191 

particular scale of enquiry. 192 

  193 

Risk based analysis of this kind for diffuse pollution well-established (e.g. Jordan et al.¸1994; 194 

Johnes, 1996; Johnes and Heathwaite, 1997; Heathwaite, 2003; Heathwaite et al., 2003a, b; 195 

Jordan and Smith, 1994; Munafo et al., 2005). Early applications of these methods focused upon 196 

determining the export of fine sediment and nutrients associated with particular land covers (e.g. 197 

Johnes, 1996), but gave much less attention to delivery, the process by which material produced 198 

at a location in the landscape is transported to the stream network. Herein, we focus upon 199 

incorporating a treatment of delivery into a risk-based analysis in the form of a single modelling 200 

framework, SCIMAP (Sensitive Catchment Integrated Modelling and Analysis Platform), applied 201 

across spatial scales, and with reference to salmonid fry. We take as our first premise the 202 
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fundamental property of catchments: they can be conceived as a set of flow paths that 203 

accumulate distributed sources of pollutants from across the landscape into the river corridor, 204 

where diffuse pollution may become visible, either during routine monitoring or through the 205 

occurrence of water quality problems (e.g. eutrophication). Given an observed downstream 206 

problem, and provided this can be attributed to diffuse sources, the primary challenge is to 207 

determine which parts of the landscape are most likely to be contributing to that problem. Our 208 

analysis is relative, in that we aim to judge the riskiness of one location in the landscape for 209 

locations in the downstream water environment as compared with all other locations in the 210 

landscape. This is what export coefficient models do implicitly, but they differ because they aim to 211 

translate their estimates of relative risks into absolute loadings to water courses (e.g. Johnes, 212 

1996; Johnes and Heathwaite, 1997). Subject to data availability, the analysis can be run for any 213 

size of catchment, and predictions are made for all landscape locations relative to each other 214 

upstream of the catchment outlet chosen. By starting at the coarse scale, and running the model 215 

for progressively smaller spatial units (sub-catchment, tributary, stream, field) it allows successive 216 

identification of the sub-catchments that merit prioritisation, followed by the tributaries within a 217 

prioritised sub-catchment, the streams within a prioritised tributary and finally the fields 218 

connecting to a prioritised stream. 219 

 220 

The second premise is that analyses like these need to more carefully consider how to 221 

incorporate an assessment of delivery, which matters in both a physical and a biochemical sense. 222 

In physical terms, the ease of hydrological connection will control the delivery of both 223 

conservative (e.g. particulate) and non-conservative (e.g. nutrient) parameters. In biochemical 224 

terms, the type of connection (e.g. overland flow, versus pipeflow versus matrix flow) will 225 

determine the nature of the biochemical transformations that result. To date, most approaches 226 

have specified connectivity in terms of simple landscape attributes. For instance, Johnes and 227 

Heathwaite (1997) used a simple distance-decay function to model the impact of land cover 228 

change on nutrient concentrations in streams draining the Slapton catchment, southwest 229 

England. Gburek et al. (2000) used a conceptual approach parameterised with empirical data 230 

based upon a contributing area function for different stream reaches. They found that the risk of 231 
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i i i 

phosphorus (P) delivery in surface runoff decreased with increasing distance from the stream, 232 

reflecting spatial variation in saturation-excess surface runoff: a rising stream water level in 233 

response to storm flow resulted in a rising water table in near-stream zones, so initiating P 234 

transport in surface runoff. The initiation of surface runoff from areas some distance from the 235 

stream required large magnitude long return period storms with the probability of surface runoff 236 

generation is low in such areas. Childress et al. (2002) defined relative connection in inverse 237 

proportion to the downslope distance from a given land unit to the drainage network. 238 

 239 

The third premise is a challenge to classical approaches to modelling the impacts of diffuse 240 

pollution which tend to follow a hydrological process cascade (Lane, 2008). They begin by 241 

identifying the cascade of processes that might lead to a particular impact (e.g. soil erosion, 242 

leading to fine sediment delivery, leading to siltation of salmonid redds, leading to problems of fry 243 

emergence) and then break these down into the processes that need to be modelled (e.g. rainfall, 244 

evapotranspiration, infiltration, runoff generation, soil erosion, instream sedimentation). The 245 

cascade of processes leads to a hierarchy and the emphasis on the parts that make up this 246 

cascade make it reductionist. Furthermore, it is often unknown which aspects of the cascade 247 

matter to the impacted organisms. The focus of modelling is upon what is perceived to matter to 248 

an organism, sometimes supported by field or laboratory evidence, and despite conflicting 249 

ecological evidence over what might matter. Thus, herein, we use and inverse analysis based 250 

upon Bayesian methods. We include in the model the most rudimentary representations of 251 

processes that we think are sufficient: a treatment of erosion of material from the land surface; 252 

and a measure of the likelihood that eroded material can reach a river. We then use spatially 253 

distributed ecological data, in this case for salmonid fry, to determine which connected land 254 

covers seem to explain the ecological patterns. 255 

 256 

Model development and application 257 

Formulation of the model requires: (1) determination of the generation risk (p g ), here for material 258 

that can be eroded; (2) determination of the delivery index, or connection probability ( pc ) for that 259 

eroded material; (3) convolution of (1) and (2) to get the locational risk ( p gc ); (4) routing of the 260 
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locational risk to determine a risk loading (Lj); and (5) transformation of the risk loading to a risk 261 

concentration (Cj). An overview of the processing steps for the generation of the risk map is shown 262 

in Figure 3. 263 

 264 

Generation Risk 265 

The focus of this paper is a formulation of our modelling approach for risks that need to be 266 

eroded, such as fine sediment, rather than risks that are dissolved in water. The generation risk 267 

for material that must be eroded will be determined by: (i) the energy available for erosion (the 268 

hydrological risk); and (2) the resistance to erosion or erodibility, which is used to weight the 269 

hydrological risk. Thus, we define g
ip  as the product of the risk of there being sufficient energy 270 

available to erode ( h
ip ) and the risk of the material on the surface being erodible ( e

ip ): 271 

 272 

e
i

h
i

g
i ppp ×=  273 

[1] 274 

 275 

The energy available to erode is assumed to be positively correlated with: (1) the area draining 276 

through a point in the landscape per unit contour length (which will determine the depth of water 277 

and hence contribute to soil erosion potential), Ai; and (2) the local slope, ib ; as represented by a 278 

stream power index ( iW ): 279 

 280 

iii A btan=W  281 

[2] 282 

This index is linearly scaled to give a hydrological risk of erosion between the largest 5% and 283 

smallest 5% of values defined by [2], and this defines h
ip . Determination of h

ip  requires the use 284 

of the topographic data to determine the upslope area and local slope in [2]. 285 

 286 
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In this paper, we present two methods for estimating e
ip  in this example, we do two things. First, 287 

we develop a logical approach where we use intuitive argument to estimate the effects of land 288 

cover on erodibility: (1) erodibility might be expected to be negligible or zero under woodland 289 

cover ( e
ip =0.00); (2) it might rise slightly under moorland ( e

ip =0.05); (3) rise further under 290 

extensive pasture ( e
ip =0.10); (4) rise again under intensive or improved pasture ( e

ip =0.20); and 291 

(5) rise significantly, to the maximum risk for any land cover (e.g. arable) where the land cover 292 

might be bare for part of the year ( e
ip =1.00). It should be noted that an emphasis upon land cover 293 

may be warranted given that land cover is commonly correlated with soil type which also 294 

influences the erodibility. This approach then allows available land cover to be mapped onto e
ip . 295 

However, it contains an implicit assumption that what matters is the erodibility of material, as 296 

conditioned by land cover. This may be relevant to an instream organism such as a salmonid, but 297 

the same amount of eroded material from disprate land covers may impact salmonids differently if 298 

the chemicals transported with the material are driving the degradation. So, second, we invert the 299 

problem and use a Bayesian approach to to identify the values of e
ip  that best reproduce the 300 

spatial structure of distributed salmonid fry counts: i.e. we make no a priori assumptions about the 301 

hydrological risk of erosion according to probable surface erodibility.  302 

 303 

Delivery Index for eroded material 304 

 305 

Our treatment of delivery has two primary assumptions. First, conceptually, connectivity within a 306 

landscape can be viewed over a range of spatial and temporal scales. At a point in time, there will 307 

be a binary relationship between two points in space, either there is currently a connection 308 

between the two points or there is not. As the temporal scale is increased, there will be a 309 

distribution of connection durations which gives information on the frequency and length of the 310 

connected periods for each point in the landscape with the receiving waters. The shape of this 311 

distribution will be governed by interaction between the temporal structure of storm events, both 312 

within storms and between separate storms events, and the structure of the landscape. It will also 313 

determine the amount of material that will reach the channel (Reaney et al., 2007) and the 314 
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transformations that the material will undergo during transport. The primary assumption in our 315 

analysis is that these temporal distributions will be spatially structured, leading to a variable 316 

connection strength across the catchment. If we can find a reliable description of this spatial 317 

structure then we can use it to determine the likelihood that generated material is delivered to the 318 

drainage network. The nature of the required description will be dependent upon the type of 319 

material that is being delivered. For eroded material, the description must recognise that since 320 

eroded material is predominantly transported by overland flow, all of the flow path must be 321 

generating overland flow and this flow must be towards the drainage network for its entire length, 322 

in order for there to be connection. If a point on the flow path is not generating such flow, the 323 

water will infiltrate at that point and the eroded material will be deposited leading to the 324 

disconnection of the upper part of the slope (e.g. Figure 1). Thus, the point along a given flow 325 

path that is least likely to generate overland flow becomes the controlling location for the 326 

connection of all points upstream. 327 

 328 

Our second assumption is that the topographic wetness index (Beven and Kirkby, 1979) can be 329 

used to describe the propensity to generate saturation excess overland flow for each point in the 330 

landscape: the higher the wetness, the greater the propensity for overland flow generation. The 331 

topographic wetness index expresses the propensity to saturation as the ratio of the upslope area 332 

per unit contour length draining through a point in the landscape and the tangent of the local 333 

slope, the latter assumed to represent the hydraulic gradient. Lane et al. (2004) show that the 334 

propensity to surface hydrological connectivity can then be described by the lowest value of the 335 

topographic wetness index along a flow path: the network index. Lane et al. (2009) show that the 336 

network index is effectively a measure of the propensity to vertical as opposed to lateral flow. In a 337 

system where delivery is dominated by surface or shallow subsurface flow, vertical flow reduces 338 

the propensity to disconnection.  339 

 340 

Following the assumption made above, we make an ergodic hypothesis and assume that the 341 

network index implicitly contains a temporal dimension, one that applies equally to water, as it 342 

does to the material transported by that water. As the landscape wets up, more of the landscape 343 
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will become connected as points that were previously disconnected areas start to generate and 344 

transmit runoff and hence connect their upslope areas to the river channel. The reverse will 345 

happen during drying. Thus, a point with a higher network index is less likely to be disconnected 346 

from the drainage network and hence is more likely to be connected for a longer duration. Under 347 

the assumption of a topographic control on overland flow generation, the major challenge is how 348 

to map the network index onto the duration of connection, the latter expressed as a probability.  349 

Here, we assume that the mapping between network index and duration of connection is linear 350 

between the largest 5% of values of the network index (always connected, i.e. connection 351 

probability at location i c
ip = 1) and the smallest 5% of values of the network index (never 352 

connected, i.e. connection probability c
ip = 0). The connection probability is taken as our delivery 353 

index for eroded material. We have tested this for a small catchment (52.1 km2) by comparison to 354 

a physically-based distributed hydrological model and have shown that our delivery index 355 

contains a significant amount of information in relation to both the probability and duration of 356 

hydrological connection in upland environments with shallow soils (Lane et al., 2009). 357 

 358 

Locational risk 359 

We now combine the generation and delivery risks to determine the locational risk of delivery of 360 

generated material to the drainage network ( gc
ip ): 361 

c
i

g
i

gc
i ppp ×=  362 

[3] 363 

 364 

Routing, Accumulating and Dilution of locational risk  365 

We route and accumulate the locational risk under the assumption that this is controlled by the 366 

topographically-driven accumulating area: i.e. the risk at a point is the sum of all locational risks 367 

upstream of that point. This leads to the risk loading to a point in the drainage network (Lj) with j 368 

upslope contributing cells which will increase monotonically with distance down through the 369 

drainage network: 370 
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å
=

×=
j

i

c
i

g
ij ppL

1

 371 

[4] 372 

The risk loading takes no account of: (1) the propensity for dilution, where a high loading from a 373 

small upstream contributing area will have a more serious environmental effect that a high 374 

loading from a high upstream contributing area; or (2) loss of risk (e.g. due to deposition or 375 

chemical transformation). In this paper, we assume that although deposition results in the local 376 

degradation of habitat, for fine sediment this deposition is relatively small as compared to that 377 

which is delivered, meaning that there is no need to correct for the loss of risk.  This assumption 378 

is commonly made in sediment delivery models for large river basins (e.g. Naden and Cooper, 379 

1999) and is supported by sediment budget studies. For instance, Owens et al. (1999) showed 380 

that only 4% of the fine sediment delivered was deposited in the bed of the River Tweed, 381 

although the loss may be greater once the transition of gravel to sand has passed (as in lowland 382 

systems, e.g. Collins and Walling, 2007). As the focus of this work is habitat where the bed is still 383 

predominantly gravel, we believe this is an acceptable assumption to make. However, as Figure 3 384 

shows, dilution is a property of drainage networks that cannot be overlooked. The simplest way to 385 

deal with dilution is to scale the loading by the upslope contributing area to give a risk loading per 386 

unit area, akin to a concentration (Cj); 387 

 388 

å

å

=

=

×

×
= j

i
ii

j

i

c
i

g
i

j

ra

pp
C

1

1  389 

[5] 390 

where: ai is the cell size and ri is the rainfall weighting factor. This equation takes account of 391 

possible rainfall variations between sub catchments and the propensity for such variation will 392 

increase with basin size. This is represented by weighting upslope contributing areas by the 393 

amount of upstream contributed precipitation, using temporal averages that reflect the time-394 

integration of the study. However, such an analysis is complicated by the fact that spatial 395 

variability in precipitation should also result in spatial variability in connectivity. Hence, the 396 
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predicted relative long term average wetness, calculated using the topographic wetness index, 397 

also utilises the rainfall weighting factor.  398 

 399 

Bayesian Analysis with Respect to Generation Risk 400 

In the model described above, there will be uncertainty associated with: (1) the determination of 401 

the hydrological risk of erosion; (2) the relationship between land cover and soil erodibility; (3) the 402 

relationship between topographic data uncertainty and the network index; (4) the scaling between 403 

the network index and the delivery index; (5) the impacts of topographic uncertainty upon flow 404 

paths and hence both flow and risk accumulation; (6) the simple manner in which the risk loading 405 

is transformed into a risk concentration using the rainfall weighted upslope contributing area; and 406 

(7) the meaning of our estimates of risk to instream organisms. In our definition of risk, high levels 407 

of generation and high levels of connection are assumed to produce a higher level of risk. 408 

However, it is possible that for a particular organism, this risk may be good or bad. For instance, 409 

O’Grady (2003) notes that Atlantic salmon are particularly dependent upon invertebrates 410 

supported by autochthonous production of organic matter, something that is more likely to be 411 

sustained by higher levels of nutrient input. Brown trout will also feed on invertebrates supported 412 

by allocthonous production of organic matter. Thus, a land cover such as deciduous woodland 413 

that simultaneously produces organic matter whilst reducing the erosion of sediment-bound 414 

nutrients such as phosphorus, will produce ‘good’ risk for trout and ‘bad’ risk for Atlantic salmon. 415 

This is just one example of the confounding influence of land use on the net ecosystem 416 

productivity, which manifests itself, in our case, as uncertainty as to exactly what our risk 417 

estimates mean for instream organisms. In addition there will be interaction between these 418 

uncertainties, notably arising from the time integration and the possibility that particular land 419 

management practices are coincident with particular periods of higher or lower connectivity. The 420 

causes of uncertainties (1), (3) through (6) and the interaction uncertainties are well known and 421 

hence potentially modelled. However, the uncertainties associated with (2) and (7) are more 422 

acute and so we compliment our use of logical reasoning with a Bayesian method in which we 423 

infer erosion weights, and hence our risk estimates, with reference to the spatially-distributed data 424 

described above, a form of inverse modelling (Lane, 2008).   425 
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 426 

The Bayesian method that we use is effectively a likelihood estimation procedure (e.g. Beven and 427 

Binley, 1992) in which we infer the range of plausible e
ip  values in a Monte Carlo sampling 428 

framework from the spatially-distributed fry data that we have. This approach reduces the 429 

uncertainty that derives from the imposition of our own assumptions as to what constitutes a 430 

‘good’ or ‘bad’ land cover, as happens with our logical estimates. We undertook 30,000 model 431 

simulations, randomly selecting values in the range 0£ e
ip £1 for each land cover for each 432 

simulation. We then determined the values of an objective function, to describe the level of 433 

association between risk estimates and fry abundance appropriate to the nature of the 434 

abundance data (Equation 7), for each simulation. Simulations were ranked according to the 435 

estimated value of the objective function for each simulation from most likely to least likely. 436 

Starting with the x most likely simulations, we determined the mean and standard deviation of the 437 

parameter values associated with those x simulations, then progressively increased x, each time 438 

recalculating the mean and the standard deviation. The maximum value of x considered was 200. 439 

The plot of rank against mean and standard deviation allows us to see two things: (1) those land 440 

covers whose e
ip values matter will be characterised by a narrow range of values, or a small 441 

standard deviation; and (2) whether or not the e
ip  values themselves match our a priori 442 

expectations of the relative erodibility associated with different land covers. In the final stage of 443 

analysis, for each value of x, we compared the mean and standard deviation of parameter values 444 

for each value of x greater than 10 with the mean and standard deviation of parameter values for 445 

the 30,000 simulations. Where the difference was significant at the 95% level (Student’s t, two-446 

tailed) we concluded that weighting of the source risk by a particular land cover mattered.  447 

 448 

Case study and data sources 449 

In this paper, we develop and assess the SCIMAP (Sensitive Catchment Integrated Modelling 450 

and Planning) framework for the 2310 km2 River Eden catchment in northern England (Figure 4). 451 

The Eden catchment comprises a range of land covers, with four dominant: arable; intensive or 452 

improved pasture; extensive pasture; and moorland. There are a range of physical, ecological 453 
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and topographic conditions, with the geology ranging from sandstone to limestone and instream 454 

ecological conditions ranging from oligotrophic to mesotrophic (Parsons et al. 2001). The large 455 

spatial area, variety of land cover classes and differing ecological environments make the Eden 456 

catchment a useful place to test the prediction of the risk model.  457 

 458 

In the form that the risk management framework is applied here, it requires the following data 459 

sources: (1) topographic data of appropriate spatial resolution and vertical precision; (2) land 460 

cover data; and (3) rainfall data to determine potential dilution effects. For the topographic data, 461 

we use Interferometric Synthetic Aperture Radar data produced by InterMap. This comprises 5 m 462 

resolution digital terrain data (i.e. after trees and buildings have been removed) that is estimated 463 

to be precise to ± 1.0m. These data required pre-processing in two steps. First, although 464 

topographic depressions or pits in the landscape are genuine features, they are often errors in the 465 

DEM surface. In particular, the determination of the upslope contributing area and flow routing 466 

requires information on the direction in which the water would flow once a pit has been flooded. 467 

Therefore, to calculate the upslope contributing area the pits in the digital elevation model (DEM) 468 

are filled using the Planchon and Darboux (2001) algorithm. This pre-processing is only utilised 469 

for the calculation of the upslope contributing area and other terrain derivates, such as slope, are 470 

calculated with the original DEM. This processing enables the capturing of the impact of 471 

depressions and their role in landscape disconnection while accurately representing the upslope 472 

contributing area. The second step is the calculation of the upslope contributing area for each 473 

point in the landscape. We use the D-infinity (D¥) method of Tarboton (1997). This method 474 

utilises multiple flow paths to give an accurate representation of the flow direction and avoids the 475 

straight line artefacts of simpler approaches such as D8 (Gallant and Wilson 1996).  476 

 477 

We use the land cover map of Great Britain for 2000 (Centre for Ecology and Hydrology, 2000) to 478 

give land cover estimates at a 30 m resolution, which were then interpolated from 30 m onto the 479 

finer scale data using a nearest neighbour algorithm. As the land cover dataset is synoptic and 480 

dated, it is probable that the actual nature of land management is misrepresented. However, as 481 
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data from the annual Agricultural Census remains confidential at resolutions higher than the 482 

parish scale, this was judged as the best alternative. 483 

  484 

The spatial pattern of rainfall is derived from the UK Metrological Office long term annual average 485 

rainfall dataset (Perry and Hollis 2005). This dataset was then interpolated onto the topographic 486 

data resolution used herein via a nearest neighbour algorithm. 487 

 488 

We use salmonid fry data from the Eden Rivers Trust, who have conducted catchment-wide 489 

surveys of brown trout and Atlantic salmon fry (0+ year class / subyearling) for the years 2002 – 490 

2005 at 200-300 sites per year (Maltby, 2002, Townsend-Cartwright, 2004, Dickson, 2004, 491 

Dickson et al., 2005). These surveys have been carried out using semi-quantitative electrofishing 492 

following the approach of Crozier and Kennedy (1994). The method is semi-quantitative as it is 493 

based upon single-pass, rather than repeat-pass electrofishing. The focus on salmon fry is based 494 

upon observations that suggest that for these species, fry tend to remain within 100s of metres of 495 

their spawning site. For example, Einum and Nislow (2005) observed fry to remain within 644m 496 

and 884m downstream, and 1,500m and 642m upstream of their redd in two years of 497 

observations respectively, with the median dispersal range being 92m and 41m in Year 1 and 498 

Year 2 respectively. Similarly, Kennedy (1982, cited in Crisp, 1996) found over 70% of fry to be 499 

within 100m downstream of their stocking point. There are always exceptions and Beall et al., 500 

(1994, cited in Crisp, 1996) found that salmon had dispersed over 2000m downstream, with a 501 

substantial number moving between 1000m and 1500m by the October of their first year. It has 502 

been suggested that dispersal of fry is constrained by: (1) energetic costs and the lack of feeding 503 

opportunities during dispersal, which may lead to starvation; and (2) increased exposure to 504 

predators (Einum and Nislow, 2005). This lack of mobility within the first few weeks and months of 505 

life means that fry are highly susceptible to density-dependent mortality and, as a result, to local 506 

habitat conditions which regulate the local carrying-capacity. Parr and adult populations can be 507 

more mobile, with dispersal ranging from 10s m-1000s m. Dispersal downstream is typically 508 

greater than the degree of dispersal upstream. Some dominant fish may aggressively defend a 509 
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small localised territory which is profitable for food, whilst other, more subordinate fish may be 510 

more mobile and ‘float’ between territories (Suter and Huntingford, 2002).  511 

 512 

These observations inform the sampling strategy adopted in the Eden Rivers Trust sampling 513 

strategy. Typically, these species spawn in the Northern hemisphere winter and the alevin 514 

emerge in late winter / early spring. Thus, the semi-quantitative electrofishing focused upon late 515 

spring and summer, corresponding to the fry life stage. Here, we use data from 2002 and 2003. In 516 

both years, sampling was stratified to sites where trout fry were expected to be found (suitable 517 

riffle habitat). Suitable trout fry locations were then sampled randomly, with no repetition. Catch 518 

efficiency was recorded at each site. This was defined as the number of caught fish as a 519 

percentage of the total number of fish that could be caught (i.e. caught, plus visually observed but 520 

not caught) (Hilborn and Walters, 1992). To focus on sites where we had a reasonable 521 

confidence in the salmonid fry estimates, we followed Crozier and Kennedy’s (1984) 522 

recommendation and only sites where catch efficiency exceeded 60% were used in all of the 523 

subsequent analysis. Thus, 17.5% of sites were rejected by this criterion in 2002 and 17.6% in 524 

2003. This has the potential to introduce some bias into our dataset as the sites that were 525 

excluded were ones where fish were present, but unidentifiable. However, the sites with low catch 526 

efficiency were randomly distributed in space and the proportions were relatively small. The two 527 

years of data were not pooled as interannual variability in catchment scale abundance did occur, 528 

which we assume is related to catchment-scale exogenous factors (such as broad climatic 529 

variability). All samples were transformed to abundance, defined as the number of fry sampled 530 

per 5 minute interval. We checked for spatial autocorrelation in our analysis. Ideally, each sample 531 

location should contain a brown trout population independent of all other locations: i.e. it should 532 

be associated with a distinct set of redds which may or may not have been impacted upon by the 533 

upstream catchment characteristics. This independence was easier to achieve given the 534 

restricted range of dispersal of brown trout. However, to check for this independence, we 535 

calculated the distance between adjacent sites and thresholded this to determine an index of the 536 

number of non-independent sites. We could not identify significant spatial autocorrelation in the 537 

datasets provided sites were set at > 500 m apart. Where this was not the case, one of the two 538 
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sites causing the spatial autocorrelation was randomly sampled and removed. Finally, a subset of 539 

semiquantitative sites were compared with the results of fully quantitative fishing as a final check 540 

on the quality of the semiquantitative estimates. 541 

 542 

The focus on salmonid fry is valuable in this application for three reasons. First, salmonid fry are 543 

the least mobile life stage and supporting the assumption that their abundance is strongly 544 

influenced by exposure to local conditions, and hence contain a spatial signal that reflects the 545 

spatial variability in those local conditions. Second, the recruitment of salmonid fry is though to be 546 

impacted by processes that are associated with surface transport of eroded material (e.g. fine 547 

sediment, pollutants bound to fine sediment). For instance, low fry counts have been attributed to 548 

fine sediment infiltration into spawning gravels (Soulsby et al., 2001; Greig et al., 2005), which 549 

reduces the supply of the oxygen required for effective incubation and alevin emergence. There 550 

are two main disadvantages of using such validation data in this application: the abundance of fry 551 

will reflect other potential limits upon fry recruitment. Therefore the data may contain a spatial 552 

signal that is driven by other factors and hence be noisy with respect to the fine sediment signal 553 

that is a focus of this research. The second is that the method is only semi-quantitative: in order 554 

to allow a larger number of sites to be sampled, it is based upon single pass rather than multiple 555 

pass. In order to assess the general reliability of the semi-quantitative data, fully quantitative 556 

electro-fishing was undertaken for a subsample of sites in each sample year. 557 

 558 

Comparison of risk predictions with the fry abundance data considered risk predictions classified 559 

by the presence/absence of fry but also the relationship between fry abundance and associated 560 

predicted risk. For the presence/absence analysis, generated risk predictions were extracted at 561 

sites in the river Eden catchment with and without fry present. Mann Whitney tests were used to 562 

examine whether there was a statistically significant difference in the central tendency of the risk 563 

predictions. Two sample Kolmogorov-Smirnov tests were also used to test whether there was a 564 

difference in the distribution (location and shape) of the risk predictions between sites with and 565 

without salmonid fry. Nonparametric tests were selected due to the non-normal distribution of the 566 

data which could not be corrected for using standard transformation procedures. 567 
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 568 

In order to understand the relationship between individual fry abundance values and SCIMAP 569 

predictions of risk concentration we developed an objective function. Semi-quantitative fry 570 

abundance data are commonly severely skewed, with many sites have low or zero abundance 571 

and a small number of sites having a high abundance. As a result, most descriptors of fry 572 

abundance use classifications. Here, we adopt the classification of Crozier and Kennedy (1994) 573 

which has five classes: Excellent; Very Good; Average; Poor; and Very Poor. We use these data 574 

in two ways. First, we classify the predicted risk concentration values for each fry sampling site in 575 

each year into five categories: very low risk); low risk; average risk; high risk; and very high risk. 576 

We use this to determine a contingency tabulation of risk concentration class (p) with fry 577 

abundance class (q). This is used to determine an objective function based upon the orthogonal 578 

distance (dpq) of each combination of risk concentration class and fry class from the diagonal of 579 

equality (p=q), weighted by the number of sites classed into pq: 580 

 581 
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Using [6], and with the five classes used here, a perfect level of agreement should be with an 584 

0=OF  and a perfect level of disagreement should be with an 5.12=OF . Thus, we rescale [6] to 585 

vary from 1 (perfect agreement) to 0 (perfect disagreement): 586 
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[7] 588 

 589 

The objective functions were used in three ways. First, they were used in a conventional 590 

validation, in which the reasoned erodibility weights were used in the risk estimation. Second, 591 

they were used for the Bayesian modelling as a means of determining the values of the erodibility 592 
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weights on each land cover required to maximise the objective function. The appeal of this 593 

approach is that it makes no prior assumptions about the land cover weightings required in 594 

relation to salmonid populations. Third, the OF [7] was applied to test the level of agreement 595 

between the quantitative and the semi-quantitative fry data. The OF value for salmon fry was 596 

0.874 and that for trout fry was 0.842. In contingency terms, the accuracy of the comparison (i.e. 597 

the percentage of sites for which p = q) was 66.7% for salmon and 61.3% for trout. The accuracy 598 

measure does not take into account the percentage of sites for which p would equal q under 599 

random sampling of all p,q combinations. Given the class memberships of salmon and trout, we 600 

would expect the percentage level of agreement under random assignment to be 14.5% and 601 

16.8% for salmon and trout respectively. Thus, we conclude that the semi-quantitative data 602 

contain a significant signal for the purposes of this analysis. We note that the OF values 603 

calculated from [7] (i.e. 0.874 and 0.872) represent the upper limits of the possible OF values that 604 

might be achievable during inverse modelling due to uncertainties in the semi-quantitative data. 605 

Only semi-quantitative data are used in the subsequent analysis. 606 

 607 

Results 608 

 609 

Model application using logical erodibility weights 610 

 611 

Error! Reference source not found. shows the main derivates of the DEM that are used in the 612 

calculation of the point scale soil erodibility risk. Error! Reference source not found.a shows the 613 

network index which is used to determine the surface flow connection risk. The map shows that 614 

the areas of the Eden catchment that are predicted to be the most highly connected are located in 615 

the western section of the lowlands. The Pennine hillslopes on the eastern side of the catchment 616 

and the Lake District hillslopes in the south west are predicted to be the least connected areas. 617 

Error! Reference source not found.b shows the predicted spatial pattern of the soil erodibility as 618 

determined by the surface land cover. This map shows that the greatest risk of soil erosion 619 

occurs in the main lowland plain of the Eden catchment, especially towards the north-west. 620 

Error! Reference source not found.c shows the distribution of the stream power index which 621 
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represents the energy available to erode the surface. The highest values of the stream power 622 

index occur on the steep slopes located both on the Pennine and Lake District hillslopes. In the 623 

areas of the catchment which have high soil erodibility risk (Error! Reference source not 624 

found.b) tend to be negatively correlated with the high stream power index (Error! Reference 625 

source not found.c). 626 

 627 

Figure 5d and Figure 5e  show the convolution of the source area analysis with the connectivity 628 

analysis.   The effect  of this calculation  (Figure   5d)  is   to   highlight  areas predominantly in 629 

the catchment headwaters and certain areas in the main valley as being at risk of erosion due to 630 

hydrological processes. This does not take into account the mitigating effect of land cover, which 631 

is introduced via the erodibility treatment in Figure 5e. This removes much of the area classified  632 

as  having  a  high  risk  of  erosion  and  focuses  the  risk  in  the  main  valley  of  the 633 

catchment, largely where arable land is well-connected to  the drainage network.  Note the 634 

implication here is both curative and preventative. An environmental restoration strategy aiming to 635 

reduce  risk  (i.e., curative)  would  focus  upon  Figure  5e.  However,  strategies aimed at  636 

preventing  further environmental  degradation would evaluate  the  locations  in  Figure  5d  are  637 

where  a  change  land  management activities should be evaluated carefully in order to prevent 638 

future environmental degradation.. 639 

 640 

In the final stage of the analysis, we integrate through to the drainage network. Error! Reference 641 

source not found. shows the accumulated risk weighted by the dilution potential, essentially the 642 

risk concentration. If the convolution of connectivity and locational risk were everywhere uniform, 643 

and the rainfall field homogeneous, then the risk should accrue linearly as the potential for dilution 644 

accrues. Where the risk is some multiple of the standard deviation greater than the mean, then 645 

the risk is increasing disproportionately faster than the increase in dilution potential: i.e. a 646 

particular risky input to the drainage network has been identified. Where the risk is some multiple 647 

of the standard deviation less than the mean, the risk is increasing disproportionately more slowly 648 

than the increase in dilution potential and the drainage network is benefiting from low risk inputs. 649 

If we consider hydrological risk without land cover weighting (Error! Reference source not 650 
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found.a), this would focus diffuse pollution mitigation activities on the catchment headwaters, 651 

where the risk of erosion and the risk of connectivity combine to cause an accumulated risk that is 652 

not well balanced by accumulating dilution potential. These are sensitive areas of the catchment 653 

where land covers or land use practices that allow more erosion (e.g. temporary change in land 654 

cover due to heather burning) might have a major water quality impact due to increased export of 655 

fine sediment. However, Error! Reference source not found.b shows that when the land cover 656 

weighting is introduced, concern switches to areas lower in the drainage basin, where the 657 

presence of arable cropping, and hence the risk of the land surface being bare, results in a 658 

different identification of risky sub catchments.  659 

 660 

Model testing using logical risk estimates 661 

 662 

Table 1 shows that the risk predictions discriminate extremely effectively between the presence 663 

and absence of trout fry in both 2002 and 2003, and the Mann Whitney and Kolmogorov-Smirnov 664 

tests reveal that these differences are statistically significant (p<0.05). The risk predictions are 665 

less effective at discriminating between sites where salmon fry are present and absent. 666 

Differences in the mean risk are slight and Mann Whitney tests are not significant (p>0.05) in both 667 

years. However, the Kolmogorov-Smirnov tests for sites with and without salmon fry do report a 668 

statistically significant difference in the distribution of risk predictions for all years excepting 2005. 669 

This suggests that there may still be a relationship between risk predictions and salmon fry but 670 

that it is non-linear. To investigate the ecological significance of the risk predictions further, 671 

salmonid abundance data were also examined. The risk predictions were classified into five equal 672 

membership risk classes ranging from 1 (the 20% of sample locations with the lowest risk) and 5 673 

(the 20% of sample locations with the highest risk).  674 

 675 

Model application using the Bayesian-based inverse modelling 676 

 677 

Figure 7 shows the results of the inverse modelling for the years 2002 (Figure 7a and Figure 7c) 678 

and 2003 (Figure 7b and Figure 7d) for both trout (Figure 7a and Figure 7b) and salmon (Figure 679 
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7c and Figure 7d). In these plots, the solid line plots the mean erodibility against the associated 680 

objective function value. As the objective function value is defined as a perfect association with a 681 

value of 1.0, the mean weighting for the best 10 simulations is the farthest right of each plot and 682 

the mean weighting for the best 200 simulations is the farthest left on each plot. The dashed line 683 

is the standard deviation of the erodibilities assigned to each land cover. These results can be 684 

interpreted as follows. First, as we randomly sampled erodibility weights (pi
g) between zero and 685 

one, the mean of all 30,000 simulations was 0.50 and the standard deviation ±0.29. The arable 686 

land cover plots in Figure 7 have mean and standard deviations almost identical to these values 687 

for almost all values of the objective function. Thus, for this analysis, the erodibility weighting 688 

given to arable land cover in the risk analysis could be sampled randomly between 0 and 1, and 689 

there would be no impact upon the value of the objective function achieved. Thus, the extent to 690 

which there are arable cover classes upstream of a fry sample point does not seem to explain the 691 

spatial variability in fry populations. Second, the results are very different for improved pasture. 692 

Here, the standard deviations widen as the magnitude of the objective function (the level of 693 

association between salmonid fry abundance and the predicted risk) is reduced, suggesting that a 694 

narrower range of erodibility weights needs to be applied to the improved pasture to optimise the 695 

association between risk and fry. Similarly, the erodibility weights that produce higher levels of 696 

association between predicted risk and salmonid populations are generally greater than 0.75, 697 

although in two cases (Figures 7a and 7c), the weightings trend towards 0.5 at lower values of 698 

the objective function. For the 200 best simulations shown in the improved pasture plots in Figure 699 

7, the mean erodibility is still statistically distinguishable from 0.5 (at p = 0.05). Thus, to get good 700 

levels of agreement with observed data, improved pasture should not be assigned randomly. 701 

Following from the ordinal form of the objective functions ([7]), this can be interpreted 702 

symmetrically: the extent to which there are improved pasture land uses, as filtered by the 703 

propensity to connect in the risk analysis, upstream of a fry sample point is important in 704 

explaining the spatial variability in fry populations; or where improved pasture is hydrologically 705 

connected, it produces higher risk, in relation to the spatial variability in fry populations. The 706 

reverse is true for extensive grazing: in all cases, well-connected extensive grazing sites produce 707 

low risk from the perspective of fry populations. The third, and perhaps most interesting 708 
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observation relates to moorland. For trout, in both 2002 and 2003, the required erodibility 709 

weighting must be low: the standard deviation increases rapidly as the values of the objective 710 

function fall (Figure 7a and 7b) suggesting that only low weightings of moorland give the best 711 

values of the objective function. For salmon, also in both 2002 and 2003, the required land cover 712 

risk weighting must be high, and again, the weighting seems to matter, albeit only for the best 150 713 

or so simulations (e.g. values of the objective function less than c. 0.575 in Figure 7d). There 714 

appears to be a functional difference between what salmon fry and trout fry view as creating risk: 715 

well-connected moorland is risky for salmon but not for trout.  716 

 717 

Discussion and conclusions 718 

The primary findings of this work are four fold. First, combination of hydrological connection and 719 

erodibility into a risk model produces patterns of risk that vary spatially in ways that distinguish 720 

both salmonid and trout fry populations. Second, there are functional differences between salmon 721 

and trout as to what constitutes a risky land cover. The ecological interpretation of these 722 

differences is currently under way. For instance, it is well-known that trout can display strongly 723 

territorial behaviour (e.g. Elliot, 1994). If trout have a preference for low levels of risk associated 724 

with a combination of poor hydrological connection and large amounts of upstream moorland, 725 

then this may be to the exclusion of salmonid fry in those locations. Thus, the higher optimised 726 

erodibility weight of moorland for salmon may not be because moorland is bad, but simply sites 727 

with large amounts of well-connected moorland upstream are preferential to trout.  728 

 729 

Third, and related to this moorland weighting finding, the work demonstrates the importance of 730 

inverse modelling (Lane, 2008), certainly in studies of fish populations, but also diffuse pollution 731 

more widely. The logical assignments of erodibility originally identified were very different to those 732 

identified using inverse modelling. Notably, we identified that the erodibility weightings assigned 733 

to arable land covers were unimportant, that those associated with improved pasture needed to 734 

be much higher (~0.75) than expected (0.2) and that those assigned to moorland were species 735 

dependent. It is worth reflecting on why our logical assignments were incorrect. This was largely 736 

because we had a perceptual model that emphasised the delivery of fine sediment to the water 737 



 

  27 

course as being instrumental to habitat degradation. Hence, we weighted our erosion potential by 738 

a land cover defined erodibility ([1]). There is good support for this, as whilst female salmon are 739 

commonly able to clear out fines from river gravels during construction of a redd, high rates of 740 

delivery of fine sediment to the redd (e.g. Soulsby et al., 2001; Greig et al., 2005) can prevent fry 741 

emergence. However, this is only one of a number of possible impacts of fine sediment erosion. 742 

The inverse modelling results question at least two possible dimensions of the logical analysis: (i) 743 

that the association between erodibility and land cover was as we hypothesised (i.e. arable is the 744 

most erodible); and/or (ii) that the eroded material that causes habitat degradation is associated 745 

with particular land covers because it carries other potentially problematic material such as 746 

animal waste. The observation that improved pasture requires a higher erodibility risk factor may 747 

not reflect the fact that improved pasture is more erodible, but rather that material eroded from 748 

improved pasture carries risks that impact disproportionately upon salmonids. Although this is 749 

only one of a number of possible explanations for the weightings arrived at during inverse 750 

modelling, and the account of the importance of and dynamics of pesticides is only one part of a 751 

more complex process of pesticide behaviour, it emphasises the advantage of spatially rich data 752 

in guiding the model building process, notably that associated with what we perceive is important. 753 

We cannot be certain about the pesticide explanation but, in management terms, and notably in 754 

the context of a precautionary approach, the formulation of the risk analysis is advantageous. The 755 

high risks are not only caused by particular land covers but also the process of delivery. Thus, 756 

where the science is uncertain (exactly why improved pasture seems to be responsible for 757 

degradation of salmonid fry), and may not be sufficient to justify landscape scale changes in 758 

agricultural practice, our approach focuses analyses upon upon a sub-set of fields that are both 759 

potentially risky in terms of the generation of material (e.g. improved pasture) and hydrologically 760 

well-connected. 761 

 762 

Fourth, this analysis is based upon demonstrating that hydrologically-connected risks impact the 763 

spatial structure of fry. This is likely to be only one factor, as part of a multitude of different 764 

factors, including local riparian scale factors, such as canopy cover and in stream barriers, that 765 

need to be considered. We are currently exploring combining the risk predictions with information 766 
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on other possible causes of salmonid habitat degradation in a multivariate framework in order to 767 

address the relative importance of the methodological approach reported here. 768 

 769 

This analysis does make a number of important hydrological assumptions regarding the ways in 770 

which the landscape mediates patterns of water flow and hence the transfer of material from the 771 

landscape to rivers and streams. In this case, our parameterisation of delivery, including the 772 

simple linear transformation of the Network Index into a delivery index, was tested upon a 773 

hydrologically-similar upland catchment by comparison with a distributed and physically-based 774 

hydrological model (Lane et al., 2009). This does not take into account the effects of soil depth, 775 

vegetation cover etc. A more computationally intensive approach would use a time-dependent 776 

numerical model to simulate the actual percentage of time that a point in a catchment is saturated 777 

and able to export, and use this information to assign a relative risk to each location. However, 778 

such an approach requires use of additional hydrological theory. The simplicity of the risk-based 779 

approach becomes undermined as attention has to be given to the well-established problems of 780 

calibrating hydrological models. However, such an approach opens up the possibility of 781 

simulating how the relative risk of connection changes due to the effect of climate change upon 782 

rainfall and evapotranspiration, and hence upon the amount of time that each location is surface 783 

connected. In relation to the focus of this manuscript, salmonid fry, thinking through how to 784 

parameterise the delivery index may provide a means of exploring assumptions regarding the 785 

impacts of climate and landscape change upon fry habitat. 786 
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 1047 

 1048 

 1049 

Figure 1. A hydrologically disconnected fine sediment source: surface erosion by overland flow 1050 

and its accumulation in a surface hollow. Source, Eden Rivers Trust. 1051 
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 1052 

Figure 2. Dilution effects where a high risk suspended sediment tributary meets a low risk 1053 

suspended sediment tributary. Source, Eden Rivers Trust. 1054 
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 1055 

Figure 3. Overview of the SCIMAP model for fine sediment risk 1056 
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 1057 

Figure 4. The River Eden catchment, north England, UK. Crown Copyright Ordnance Survey. An 1058 

EDINA Digimap/JISC supplied service. 1059 
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 1060 

Figure 5 shows the main derivates of the DEM that are used in the calculation of the point scale 1061 

soil erodibility risk.  Figure 5a shows the network index which is used to determine the surfaces 1062 

flow connection risk. Figure 5b shows the predicted spatial pattern of the soil erodibility as 1063 

determined by the surface land cover Figure  5c  shows  the  distribution  of  the  stream  power  1064 

index  which  represents  the energy available to erode the surfaces. Figure 5d and Figure 5e 1065 

show the convolution of the source area analysis with the connectivity analysis. 1066 
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 1067 

Figure 6. The  accumulated  risk  weighted  by  the  dilution  potential,  essentially  the  risk  1068 

concentration 1069 
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1072 

Figure 7. The results of 1073 

the Bayesian-based inverse modelling for the years 2002 (Figure 7a and Figure 7c) 1074 

 1075 
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and 2003 (Figure 7b and Figure 7d) for both trout (Figure 7a and Figure 7b) and salmon (Figure 1076 

7c and Figure 7d). In these plots, the heavy solid line plots the mean erodibility against the 1077 

associated objective function value. As the objective function is defined as a perfect association 1078 

with a value of 1.0, the mean weighting for the best 10 simulations is the farthest right of each 1079 

plot and mean weighting for the best 200 simulations is the farthest left on each plot. The light 1080 

solid line isthe  standard  deviation  of  the  erodibilities  assigned  to  each  land  cover. 1081 
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 1092 

Table 1. Statistical comparison of risk estimates with and without trout and salmonid fry present. 1093 

Year Species Fry present Fry absent 

p value 

Mann 

Whitney 

Kolmogorov-

Smirnov 

2002 
Trout 0.0450 ± 0.0024, n = 167 0.0587 ± 0.0025, n = 184 <0.0001 0.0003 

Salmon 0.0506 ± 0.0021, n = 204 0.0543 ± 0.0031, n = 147 0.937 0.050 

2003 
Trout 0.0521 ± 0.0022, n = 192 0.0762 ± 0.0046, n = 83 <0.0001 <0.0001 

Salmon 0.0575 ± 0.0024, n = 154 0.0619 ± 0.0040, n = 121 0.773 0.018 

 1094 


