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Summary 

Patients with homonymous visual field defects experience disabling functional impairments 

as a consequence of their visual loss. Compensatory visual exploration training aims to 

improve the searching skills of these patients in order to help them to cope more effectively. 

However, until now the efficacy of this training has not been compared to that of a control 

intervention. Given that exploration training uses the visual search paradigm, which is known 

to require visual attention, in this study the efficacy of the technique was compared to a 

training that requires visual attention but not exploration. Participants completed either 

exploration training (n = 21), or attention training followed by exploration training (n = 21). 

Assessment of the visual field, visual search, reading and activities of daily living were 

performed before and after each intervention that the participants completed. The results 

revealed that both the exploration training and the attention training led to significant 

improvements in most of the visual tasks. For most of the tasks exploration training did not 

prove superior to attention training, and for reading both types of intervention failed to yield 

any benefits. The results indicate that attention plays a large role in the rehabilitation of 

homonymous visual field defects.  

 

Keywords: compensation; hemianopia; rehabilitation; visual attention 

 

Abbreviations: AT = attention training; ET = exploration training; HVFD = homonymous 

visual field defect; RT = response time; VIQ = visual impairments questionnaire.   
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Introduction 

A visual deficit is a relatively common consequence of brain injury (Schlageter et al., 1993) 

and homonymous visual field defects (HVFDs), including hemianopia, are one of the most 

prevalent problems. The extent of spontaneous visual recovery experienced is variable, it 

does not occur in all patients and complete recovery is rare (Zihl and Kennard, 1996). 

Therefore, many patients are left with chronic and disabling visual loss. Patients with HVFDs 

have difficulties searching their environment, leading to disorientation and problems in 

avoiding obstacles. HVFDs can impair activities such as reading and driving, and reduce 

employment opportunities, contributing to feelings of insecurity, isolation and depression 

(Zihl and Kennard, 1996).  

Two main rehabilitative approaches have been examined, and there are numerous 

reviews available which provide a detailed analysis of each technique (Kerkhoff, 2000; 

Pambakian et al., 2005; Bouwmeester et al., 2007; Pelak et al., 2007; Lane et al., 2008). 

Restorative methods, such as vision restoration therapy, aim to partially restore vision 

through repeated visual stimulation. Whilst controlled studies have found that vision 

restoration therapy can significantly expand the visual field (Kasten et al., 1998, 2001), the 

benefits are greater for patients with optic tract lesions rather than cortical damage, and it is 

the latter that are of interest here. Furthermore, vision restoration therapy is a controversial 

technique as contradictory findings with regards to visual field expansion have been reported 

(Kasten et al., 1998, 2001; Sabel et al., 2004; Reinhard et al., 2005; Schreiber et al., 2006; 

Mueller et al., 2007).  
 
  

The second, less controversial approach is compensatory visual exploration therapy. 

Patients with HVFDs often exhibit disorganised oculomotor behaviour (Zihl, 1995a), and 

consequently the training involves visual search tasks which are designed to encourage more 

efficient oculomotor exploration. This compensatory training can improve saccadic 
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behaviour, increase the search field (the area of visual space in which stimuli can be detected 

using eye-movements) and improve visual search performance (Kerkhoff et al., 1992b, 1994; 

Nelles et al., 2001; Pambakian et al., 2004).
 
 Two studies confirmed that the improved search 

performance was significantly greater than that observed during untrained periods (Kerkhoff 

et al., 1994; Pambakian et al., 2004), and a recent study reported that the gains are specific to 

compensatory therapy since they were not found following restorative flicker-stimulation 

training (Roth et al., 2009). It therefore appears that compensatory training is a promising 

treatment option for patients with HVFDs. However, what is currently missing is an 

evaluation study which compares exploration training with an appropriate control 

intervention.  

Visual search tasks require not only efficient exploratory eye-movements, but also 

visuo-spatial attention – in fact, this paradigm is frequently used to study visual attention 

(Treisman and Gelade, 1980). No previous study has investigated the relative contribution of 

these two processes to HVFD compensation, and it is therefore unclear to what extent the 

improvements are due to specific training of oculomotor exploration or more general 

improvements in attention. In order to assess the relative effectiveness of these two aspects, 

the present study compared the efficacy of standard visual exploration training (ET) with 

visual attention training (AT). All patients were assessed using a variety of outcome measures 

including perimetry, visual exploration and visuomotor search tasks, reading and a visual 

disability questionnaire. Furthermore, the study used two intervention groups: one received 

only ET and the other received both AT and ET. Importantly, assessment on the outcome 

measures was made both before and after each intervention (including after AT and before 

ET). Therefore, between-subject and within-subject comparisons could be used to examine 

whether ET (which incorporates both the elements of attention and exploration) is superior to 

AT (which involves attention in the absence of exploration).  
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Methods 

Participants 

The study was approved by Durham University and the Multi-Centre Research Ethics 

Committee (05/MRE03/29). Forty-six patients with HVFDs as a consequence of a post-

chiasmatic lesion (confirmed by reports from a clinical consultant) participated in the study. 

The first 23 were assigned to group A (ET), and the last 23 to group B (AT and ET). All gave 

informed written consent in accordance with the Declaration of Helsinki (International 

Committee of Medical Journal Editors, 1991). One patient dropped-out from group A through 

personal choice and another died. One patient dropped-out from group B through illness, 

whilst another was excluded as a consequence of mid-study neurosurgery. The two groups 

did not differ with regards to age, gender, aetiology, duration of HVFD or baseline visual 

search performance (Table 1). All patients had a HVFD, although the extent and laterality of 

the defect differed on an individual basis (Table 1). Example baseline visual field plots 

(Figure 1) from two patients demonstrate the individual variability.  

 

Insert Table 1 

Insert Figure 1 

 

The exclusion criteria for participant selection included visual field loss as a 

consequence of pre-chiasmatic or chiasmatic damage, additional eye-movement disorders, 

photosensitive epilepsy, progressive neurological disorders or insufficient speech, language, 

cognition or mobility to be able to complete the tasks. Some patients had additional 

difficulties including hemiplegia or hemiparesis (n = 8), memory and cognitive impairments 

(n = 4), aphasia (n = 2) and diplopia (n = 2). Four patients (two in each group) had a 
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comorbid neglect as indicated by their medical records and confirmed with the star 

cancellation task (Halligan et al., 1991). Participants had to be at least 18 years of age. 

The minimum amount of time that had elapsed since onset was three months in order to 

minimise confounding by spontaneous recovery (Pambakian and Kennard, 1997).  

 

Study design 

Two groups of patients were included in the study. Group A received only ET. Group B 

received AT followed by ET. This resulted in three training conditions: ET in group A, AT in 

group B, ET in group B. For each training session patients were assessed on all outcome 

measures both before and after training. This design allowed within-subject comparisons to 

be made (AT versus ET within group B), overcoming problems associated with unmatched 

patient samples by comparing performance within a given patient. However, such 

comparisons result in possible confounds with order effects – i.e. the first training might 

exhaust training potential thereby reducing the benefit possible with another intervention, 

potentially underestimating the efficacy of the second therapy. To compensate for this, 

between-subject comparisons were also made (ET effects in group A versus AT effects in 

group B).  

 

Training methods 

The training programs were created using E-Prime 2.0 (Psychology Software Tools, Inc., 

Pittsburgh, PA) and participants conducted the training at home using a laptop computer. 

Both types of training consisted of 15 sessions and patients completed 288 trials per session 

(9 tasks with 32 trials each). The computer screen was viewed binocularly at approximately 

57 cm. Participants sat comfortably such that they were centrally-aligned with the computer, 

with their hands resting on the keyboard. Participants were instructed to respond as quickly 
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and accurately as possible. Task difficulty was increased across the sessions by reducing 

stimulus presentation time. This was modified for each session and for each participant 

individually, and was determined so that accuracy levels exceeded 80%. Performance 

feedback („correct‟ or „incorrect‟) was provided after each trial and at the end of each task. 

Each trial began with a central fixation cross presented for 1 second, followed by the task 

display which was presented until the participant made a response using a specific key-press, 

or until the pre-determined trial duration was reached.  

 

Exploration training (ET) 

Each session consisted of nine visual search tasks; three feature searches, four conjunction 

searches and two comparative searches. The three feature and four conjunction tasks involved 

the participant deciding whether a specific target was present (50% of occasions) or absent, 

searching an array of between 9 and 18 items. In feature searches the target was defined by 

one characteristic (i.e. colour, shape or size) whilst in conjunction searches it was defined by 

two of these characteristics (i.e. the target is a blue x, with the distractor items being red x‟s 

and blue k‟s). The two comparative searches involved patients deciding whether two pictures 

(one on each side of the display), containing a series of between 3 and 9 real-life objects, 

were the same or different. For each of these tasks the displays subtended ~30º horizontally 

(15° in each hemifield) and ~21º vertically. Participants were instructed to look at the central 

fixation cross which was presented at the start of each trial for 500 ms, and could move their 

eyes freely once the array appeared. Specific instructions for how participants should move 

their eyes were not provided, and instead they were permitted to develop their own search 

strategies. The mean duration of the training was 4 weeks (range: 2-9 weeks), with each 

session typically lasting approximately 40 minutes.  
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Attention training (AT) 

The AT was designed to be as similar as possible to the ET, but the exploration component 

was removed by positioning all stimuli close to fixation; the displays subtended 1º in each 

hemifield. For those patients with macular sparing (57%) all stimuli could be perceived 

whilst fixating centrally, whilst for those patients with macular splitting a slightly eccentric 

fixation (<1°) was required to bring all stimuli into view. This was determined at the start of 

the training. No additional eye-movements were required to view the display throughout the 

training sessions, and participants were instructed to try and maintain fixation as much as 

possible. As with the exploration training there were nine tasks; three feature searches, four 

conjunction searches and two mental rotation tasks. For the feature and conjunction searches 

four items were presented, each subtending ~0.5° (except for the small letters which 

subtended half of this height), with the innermost edge of the items ~0.5° from fixation. For 

the mental rotation tasks one item (a number, letter or symbol) was displayed in the centre of 

the screen. The item could be facing the normal direction or else could be mirror-reversed, 

and was presented in one of five different orientations (rotated by 0º, 45º, 135º, 225º or 315º). 

Participants had to decide whether the standard or mirror-reversed version of the stimulus 

was presented. The mean duration of the AT was 3.5 weeks (range: 2-7 weeks), with each 

session lasting ~30 minutes on average.  

 

Visual assessment tests 

Binocular visual fields were mapped using manual kinetic Tübingen perimetry (Oculus Inc., 

Tübingen, Germany) with a standardised background luminance of 3.2cd/m². The target 

stimulus was a white circle with a 0.25° diameter and a supraliminal brightness of 160cd/m². 

The target was moved inwards from the peripheral visual field at an approximate speed of 2° 

per second until detected. Participants placed their head into the chin-rest, were instructed to 
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keep their eyes on the red circle (0.30° in diameter) in the centre of the perimeter and to press 

the buzzer when they could see the target. The visual field border was measured for 24 

meridians (horizontal, vertical and diagonal, each 15° apart; Figure 2) in a pseudo-random 

order. Fixation was monitored through an oculoscope and a meridian was re-tested when eye-

position shifts were detected.  

The eccentricity of the border separating the seeing and blind portions of the field was 

measured along each of the 24 meridians and could vary between 0° and 90°. The amount of 

visual sparing in each hemifield (blind and seeing) was determined by calculating the mean 

eccentricity of the border across all 13 meridians (11 on each side plus both vertical 

meridians) for the left and right sides of the visual field. Figure 2 provides more detail on 

how the amount of visual sparing was calculated.  

 

Insert Figure 2 

 

Performance on visual search was examined using a find-the-number task in which 

participants had to search for a number (between 1 and 9) hidden amongst four or eight 

distractor symbols (i.e. &, %, £), and then verbally report the number presented. Participants 

were instructed to fixate centrally at the start of each trial (a fixation spot was presented for 1 

second) and could move their eyes freely once the array appeared. Once the number was 

reported by the participant, the experimenter used a key-press to end the trial, a blank screen 

was displayed and the experimenter then typed in the response. For this task participants were 

positioned in a chin-rest to maintain viewing position. All items were 1° in height and the 

target appeared with equal frequency in each of the four screen quadrants. The array 

subtended 40° horizontally and 30° vertically. Participants completed 40 trials per session. 
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The mean response time (RT) was calculated across the trials, using only the trials in which 

the correct response was provided.  

Visual search performance across a greater area of the visual field than directly 

trained was assessed using a 16 item conjunction visual search task that was projected onto a 

wall, such that the array subtended approximately 60° horizontally and 53° vertically 

(projected search). The target was a red forward slash, with blue forward and red backward 

slashes as distractors. All items were ~5° in height. The target was present on 50% of trials 

and appeared in each array quadrant equally. Participants were instructed to fixate the central 

cross at the start of each trial, but were free to move their eyes once the array was presented. 

Responses regarding the presence or absence of the target were made using a response box 

(Cambridge Research Systems, Rochester, UK). Participants completed 40 trials per session. 

Mean RT was determined for the target-present trials, calculated using only correct-response 

trials.  

 Visuomotor search performance was measured using a task in which participants had 

to search an array of 20 numbered blocks (each 3 cm³), sequentially pick them up and place 

them into a container as quickly and accurately as possible. The blocks were displayed in a 

central array atop a table, and were positioned using a polystyrene grid (54 cm by 88.5 cm) 

which was removed after the blocks were positioned. The task was repeated for between five 

and ten trials per session. RT (in seconds) was recorded from the time the participant touched 

the first block until the final block was placed in the container, and mean RT was calculated 

across the trials.  

Reading ability was assessed using four modified passages taken from „The Grey 

Gentlemen‟ (Ende, 1974) which were matched for difficulty; a group of healthy control 

participants (n =17) read all passages at a non-significantly different speed (χ² (3) = 1.59, p = 

0.662). Each passage contained 200 words, presented in a 14-point Arial font with double-
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spacing and left-alignment. Participants were required to read aloud one passage at each 

session. Reading time (in seconds) and the number of errors made were recorded. The 

corrected reading speed in words per minute (wpm) was calculated using the following 

formula: (words read – number of errors) / time x 60.  

The participants completed a ten-item rating-scale questionnaire (visual impairments 

questionnaire; VIQ), modified from the version developed by Kerkhoff et al. (1994). 

Participants had to rate the level of impairment they experienced with particular activities, 

with higher scores indicating more difficulty.  

 

Statistical analyses 

For each training condition (ET in group A, AT in group B and ET in group B) two-tailed 

Wilcoxon signed ranks tests were conducted to compare performance before and after 

training, to determine if the training was beneficial. Training effects were then calculated for 

each training condition (post-training performance minus pre-training performance) to 

compare the relative effects of AT and ET. Within-subject comparisons (AT in group B 

versus ET in group B) were conducted using Wilcoxon signed ranks tests (dependent 

samples), whilst the between-subject comparisons (AT in group B versus ET in group A) 

were performed using Mann-Whitney U tests (independent samples). 

 

Results 

For each training condition (ET in group A, AT in group B, ET in group B) Wilcoxon signed 

ranks tests were conducted for all of the assessment tasks to compare performance before and 

after the training (Table 2).  

 

Insert Table 2 
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Perimetry: 

 

Insert Figure 3 

 

The mean visual field border at baseline was comparable for both groups (Figure 3; (U = 184, 

p = 0.498)). Significant increases were found for both the blind and seeing hemifields, after 

both ET and AT (Table 2 and Figures 4-5). Figure 5 demonstrates the variability of the 

change within each hemifield, depicting the mean change for each of the meridians 

separately. The within-subject analyses revealed that the two types of training had similar 

effects on the size of the blind (z = -0.04, p = 0.970) and the seeing hemifields (z = -1.12, p = 

0.263). The same outcome was found in the between-subject analyses (blind hemifield: U = 

148, p = 0.106; seeing hemifield: U = 168, p = 0.273). Therefore, ET does not lead to a 

greater increase in the visual field than AT.  

 

Insert Figure 4 

 

Insert Figure 5 

 

Find-the-number visual search: 

In all conditions mean accuracy exceeded 97.1% and changes in RT cannot be attributed to a 

meaningful speed-accuracy trade-off effect. For both groups significant improvements in RT 

were found after ET but not AT (Table 2 and Figure 6). The two types of training had a 

significantly different effect on find-the-number task performance as revealed by the 

between-subject analyses (U = 116, p = 0.009). However, this was not confirmed by the 
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within-subject comparison (z = -0.43, p = 0.664), possibly resulting from an order-effect of 

the training or the slightly faster baseline RT in group B relative to A. For this task ET led to 

significant improvements whereas AT did not, and the relative benefit of ET compared to AT 

was significant when each training was completed independently.  

 

Insert Figure 6 

 

Projected visual search: 

For all conditions accuracy was between 81% and 86%, and any improvements in RT were 

not the consequence of a speed-accuracy trade-off effect. Significant improvements in RT 

were observed for ET in group A and AT in group B, although not for ET in group B (when 

completed after AT; Table 2 and Figure 7). There was no significant difference between the 

effects of the two training types as shown by the between-subject analyses (U = 356, p = 

0.922). However, the within-subject comparison revealed a significant difference (z = -2.56, 

p = 0.011): AT was more beneficial than ET. This is most likely the result of an order-effect 

whereby the scope for improvement was exhausted by the first intervention, as demonstrated 

by the similarity in the magnitude of the training effects between ET in group A and AT in 

group B.  

 

Insert Figure 7 

 

Visuomotor search: 

Percentage accuracy was determined based on the number of errors made (blocks missed or 

picked up out of sequence), of which there were 20 possible per trial. Mean accuracy 

exceeded 97.9% for all sessions and changes in RT cannot be attributed to a speed-accuracy 
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trade-off effect. Both the ET and the AT led to significant improvements in RT (Table 2 and 

Figure 8). The relative effects of the two interventions were not significantly different as 

revealed by both the within-subject (z = -0.43, p = 0.664) and the between-subject 

comparisons (U = 203, p = 0.660). Therefore, for this task ET was not superior to AT.  

 

Insert Figure 8 

 

Reading: 

Overall there was a significant effect of defect side on reading performance at the baseline 

session (χ²(1) = 41.00, p < 0.001) with patients with a right-sided defect being more impaired 

than those with a left-sided defect (Table 3). Also, patients with macular splitting were 

significantly more impaired than those with macular sparing (z = -5.58, p < 0.001).   

 

Insert Table 3 

 

Neither ET nor AT had a significant effect on reading performance (Tables 2 and 3). 

The laterality of the HVFD and the extent of macular sparing did not significantly affect the 

change in reading performance resulting from intervention (p > 0.150), although the sample 

size makes it difficult to examine such effects reliably. Since neither training type affected 

reading the relative effects of the two conditions were not compared.  

 

 

VIQ: 

„Reading‟ was the only item to show a significant improvement (lower score) after ET in 

group A (z = -2.51, p = 0.012; Table 4). This effect was not replicated in group B, and AT did 

not affect this either (Table 4). Neither training had a significant effect on any other item. 
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Insert Table 4 

 

Since reading was the only item for which a significant effect was observed it was the 

only item compared. Intervention type proved non-significant both for the within-subject (z = 

-0.43, p = 0.668) and between-subject analyses (U = 148, p = 0.061). The latter statistic was 

however nearing significance, indicating that ET might have a somewhat greater effect on 

increasing patients‟ subjective assessment of their own reading ability.    

 

Discussion 

The present study revealed significant post-training improvements in most outcome measures 

demonstrating that ET can lead to generalised improvements in visual search. Whilst not 

every task can benefit (specifically reading), it appears that the training effects do transfer to 

different tasks requiring visual exploration. However, with the exception of the find-the-

number task, comparable effects were always obtained with the attention training, thus 

questioning the need for specific visual exploration training. The following discussion 

focuses on why, in general, attention training proved as effective as visual exploration 

training, and then examines the two exceptions: the find-the-number task and reading.  

The most likely explanation for why both types of training yielded similar benefits is 

that visual attention plays an important role in HVFD compensation, and that both 

interventions improve the patients‟ attentional capacities. As mentioned previously the visual 

search paradigm has been used to examine visuo-spatial attention (Treisman and Gelade, 

1980), and therefore one might expect that training involving this paradigm would also act as 

an attention training. Zihl (2000) proposed that spatial shifts in attention associated with 

visual search were likely to enhance oculomotor modification resulting from exploration. 
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However, perhaps the surprising finding reported here is that attention training on its own 

already conveys most of the benefits which are associated with the more specialised 

exploration training. This certainly suggests that previously the role of attention in HVFD 

rehabilitation may have been underestimated.  

This attentional account can also explain the somewhat counter-intuitive finding of 

bilateral visual field enlargements following both interventions, although the perimetry data 

is susceptible to experimenter bias and subsequently must be interpreted with caution. Visual 

field increases after compensatory training have sometimes (Kerkhoff et al., 1992b, 1994)
 
but 

not always (Pommerenke and Markowitsch, 1989; Zihl, 1995a; Nelles et al., 2001; 

Pambakian et al., 2004) been observed. However, they were reported only for the affected 

hemifield and were interpreted as signs of training-induced visual restoration. The fact that 

such increases were also found in the patient‟s intact visual hemifield and can be achieved 

with an attentional training suggests that the field enlargement may reflect improved 

attention. It is plausible that the increased visual detection reflects an enhanced ability to shift 

visuo-spatial attention: shifting attention enhances the excitability of preserved portions of 

the visual cortex thereby lowering the detection threshold in the particular corresponding 

visual field location. This is in line with psychophysical (Carasco et al., 2004), physiological 

(Reynolds and Chelazzi, 2004), behavioural (Lu and Dosher, 1998; Simons and Chabris, 

1999; Smith and Schenk, 2008), functional imaging (Pessoa et al., 2003) and transcranial 

magnetic stimulation evidence (Bestmann et al., 2007) that attention can modulate perception 

and cortical excitability. More specifically it has also been demonstrated that the size of the 

visual field can be significantly improved when patients with HVFDs learn to allocate 

attention to parts of their visual field (Trexler, 1998; Schendel and Robertson, 2004; Smith et 

al., 2008). Furthermore, Kasten et al. (2007) recently observed a significant post-vision 

restoration therapy visual field enlargement that was not specific to the trained location, and 
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that was correlated with increased spatial attention and alertness. Finally, it should be noted 

that the changes in the visual field that we have reported here were measured using manual 

kinetic perimetry, and the results might therefore be specific to this method. Thus it might be 

worthwhile to re-examine this question using other forms of perimetry. 

Whilst it seems reasonable to associate the benefits with improved visuospatial 

attention, there are alternative mechanisms to consider. Many patients have limited awareness 

of their visual loss immediately after onset (Celesia et al., 1997; Townend et al., 2007) and 

may not compensate spontaneously because of this. Being involved in training may increase 

patients‟ awareness of their HVFD, subsequently leading to them altering their behaviour. It 

is also possible that sustained attention is enhanced by training, which could lead to the 

observed improvements in functioning across multiple tasks. Sustained attention training can 

improve symptoms of neglect (Robertson et al., 1995) and it is possible that AT was working 

in a similar manner by enhancing concentration and thus performance. Furthermore, for those 

patients with macular splitting, AT involved them adopting a slightly eccentric fixation 

towards the blind hemifield in order to bring the full array into view, and it is possible that 

this contributed to their improved performance. The results at present do not allow one to 

distinguish between the possible mechanisms of compensation.  

In principle it is possible that the observed improvements are simply a consequence of 

spontaneous recovery. This is unlikely for two reasons. Firstly, patients did not participate 

until at least three months post-onset, and therefore the potential for spontaneous recovery 

was substantially reduced (Pambakian and Kennard, 1997). Secondly, previous research has 

established improved visual search to a similar magnitude as reported here only during 

periods of training (Kerkhoff et al., 1994; Pambakian et al., 2004). It can therefore be argued 

that the findings from this study are better understood if one assumes that both training types 

lead to significant attentional gains in patients with HVFDs. However, this does not explain 
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why the find-the-number task benefitted only from ET but not AT, and why reading 

performance did not improve at all.  

These exceptions are best understood in a framework which assumes that ET 

improves both visual attention and task-specific skills. While many visual tasks will benefit 

from the improvement in visual attention, only tasks which share essential features with the 

training tasks will benefit from the acquisition of task-specific skills following ET. The find-

the-number task shares one essential aspect with ET: in both cases the stimuli to search are 

presented on a computer screen. Therefore the set of saccadic amplitudes and search 

strategies that prove successful during ET will also improve performance in the find-the-

number task. While performance in the find-the-number task benefitted from AT, this was 

not true for projected search. This prompts us to ask why training might be beneficial for one 

type of visual search and not the other. At the moment we can only offer some speculations. 

The projected search task requires participants to report the presence/absence of a specified 

target (red /), whereas the find-the-number task requires participants to report which of 10 

possible numbers is present. This type of accurate identification requires that items are 

foveated, which is perhaps not essential in the projected-search task, especially given the 

larger item size in the latter task (~5° relative to 1°). Accurate eye-movements may therefore 

be of greater importance for the find-the-number task possibly explaining why AT on its own 

did not lead to a significant improvement in this task. 

A similar analysis also explains why reading did not improve. During reading the eyes 

scan in the direction of the text in a step-wise manner (horizontal saccades interspersed with 

fixations), followed by a large saccade returning the eyes to the beginning of the next line 

(Rayner, 1998). The compensatory strategies needed for reading not only differ from those 

used during exploration, but also for left versus right-sided HVFDs (Trauzettel-Klosinski and 

Brendler, 1998). Little transfer should therefore be expected from the exploration training to 
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reading, and the results from this study further demonstrate that enhanced attention alone 

cannot replace the teaching of the required reading-specific oculomotor strategies. Kerkhoff 

et al. (1992a) and Zihl (1995b) previously reached similar conclusions and developed 

specific reading training. The efficacy of a reading training has recently been demonstrated 

by Spitzyna et al. (2007) and such training has been found to improve reading but not visual 

search (Schuett et al., 2008). Schuett et al. (2008) reported that patients‟ reading ability can 

be improved using non-word material as effectively as using words. Like the present study, it 

revealed that that the content of training displays could be simplified. Furthermore, both 

studies show that the generalisation of training improvements are possible to some extent if 

the transfer task requires similar (but not content-specific) skills, but that there are also limits 

to this; reading training does not benefit search, and ET does not benefit reading. 

With regards to the questionnaire-item “reading”, the difference between pre- and post-

training assessment was almost significantly greater for ET than for AT (p = 0.06). It should 

be stressed that this is a purely subjective assessment by the patients, which does not correlate 

with the objective outcome measure. Similar discrepancies between subjective and objective 

outcomes for visual training have been reported before (Reinhard et al., 2005), and suggest 

that self-reports do not provide a reliable indicator of functional improvement. The greater 

effect of ET than AT on subjective assessment of reading ability might simply reflect 

patients‟ perception that reading is more similar to the tasks involved in ET. 

The results reported here imply that for the most part the two interventions are equally 

as effective, and both provide a practical rehabilitation option since training can be completed 

at home using standard computer equipment. However, there are other factors to consider 

when determining preference. AT is simpler than ET to program and it is faster to complete. 

Also, due to the limited size of the display needed for AT (2°) it may be possible to perform 

this training using existing, non-medical technologies such as mobile phones or portable 
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games consoles, which would make it cheaper. Therefore, if research can confirm the 

comparable functional efficacy of the techniques then AT may be the preferred option.  

Clinical efficacy has not been unequivocally established for any HVFD rehabilitation 

procedure, and large randomised controlled trials are required in order to address this issue. 

Such research could help to confirm the relative efficacy of AT and ET, including using 

automated perimetry to examine the visual field. Future studies should include measures of 

attention to assess the effect of visual training procedures on attentional capacity. It should 

also be noted that for some aspects of functioning small but non-significant improvements 

were observed. Our results cannot exclude the possibility that those aspects might also benefit 

from training, but it is clear that the effects are relatively small and substantially larger 

samples may therefore be needed to demonstrate these effects. 

In conclusion, the findings from this first study comparing visual exploration training 

with a control intervention might seem disappointing given that visual exploration training 

has been consistently viewed as a promising HVFD rehabilitation approach. The findings 

suggest that exploration training is not significantly better than attention training. However, 

this could also be seen as positive news. It suggests that a simple attention training presented 

on a small display, potentially even on portable games-console, can provide many of the 

benefits observed after exploration training. However, this study also highlights the limits of 

this approach: hemianopic dyslexia, one of the most disabling consequences of HVFDs, is 

not improved by either training. This suggests that an effective HVFD treatment requires both 

general and specific components, in accordance with other areas of cognitive rehabilitation 

(Sohlberg and Mateer, 2001). The treatment should include a general training of visual 

attention in addition to the teaching of skills and strategies that are specific to functionally 

relevant activities, such as reading (see also Kerkhoff et al., 1992b, 1994).   
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Tables 

Table 1 Summary of the baseline patient characteristics for the two groups.  

 Group A 

 (n = 21) 

Group B 

 (n = 21) 

Comparison of 

samples 

Mean age in yrs (SD) 65.3 (12.1) 57.1 (15.8) t (40) = 1.87, P = 0.069 

Gender, n (%)   χ²(1) = 0.12,  P = 0.726 

       Male 16 (76.2%) 15 (71.4%)  

       Female 5 (23.8%) 6 (28.6%)  

HVFD side, n (%)   χ²(2) = 1.22,  P = 0.542 

       Right 5 (23.8%) 6 (28.6%)  

       Left 16 (76.2%) 14 (66.7%)  

       Bilateral 0 (0%) 1 (4.8%)  

Macular splitting/sparing, n (%) 5 (23.8%) /      

16 (76.2%) 

9 (42.9%) /      

12 (57.1%) 

χ²(1) = 1.17,  P = 0.190 

       Splitting: right/left side, n 2 / 3 2 / 7  

       Sparing: right/left/bilateral, n 3 / 13 4 / 7 / 1  

Aetiology, n (%)   χ²(2) = 1.40,  P = 0.497 

       Ischaemic stroke 14 (66.7%) 14 (66.7%)  

       Haemorrhage 6 (28.6%) 4 (19.0%)  

       Traumatic brain injury 1 (4.8%) 3 (14.3%)  

Mean HVFD duration, months (SD) 24.9 (60.5) 14.0 (19.0) t (40) = 0.80, P = 0.431 

Find-the-number task performance     

       Reaction time in ms (SD) 2836.5 (712.5) 3059.5 (1023.0) t (40) = 0.82, P = 0.417 

       Accuracy in % (SD) 96.6 (8.2) 97.5 (4.4) t (40) = 0.42, P = 0.676 
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Table 2 Results from the Wilcoxon signed ranks tests conducted for each outcome task and 

each training session.  

Task ET (group A)  AT (group B)  ET (group B) 

z p  z p  z p 

Perimetry         

     Blind hemifield -3.21 <0.001*  -2.69   0.007*  -2.05   0.040* 

     Seeing hemifield -2.45   0.014*  -2.32   0.021*  -2.05   0.040* 

Find the Number -4.02   0.001*  -1.86 0.063  -3.08   0.002* 

Projected Search -2.94   0.003*  -2.97   0.003*  -0.75 0.455 

Visuomotor Search -3.27   0.001*  -3.35   0.001*  -4.02 <0.001* 

Reading -1.42 0.156  -1.93    0.054  -1.03 0.305 

VIQ         

     Reading -2.51   0.012*  -0.09 0.931  -1.40 0.163 

     All other items >-1.85 >0.064  >-1.81 >0.070  >1.97 >0.048 

Note: Results from the patients’ performance in the assessment tasks are illustrated in Figures 1-4.   

 



30 
 

Table 3 Mean corrected reading speed in words per minute (and standard deviation) for 

each of the assessment sessions and for both groups (A and B). Each group has been 

subdivided to demonstrate the results for patients defined by defect side and whether or not 

the macula was spared or split.   

 Mean corrected reading speed (wpm) 

Baseline  Post-AT  Post-ET 

Group A (n) 115.66 (41.19) - 121.94 (43.28) 

   Left + (13) 127.28 (33.55)  132.12 (38.32) 

   Left – (3) 119.65 (37.04)  106.71 (49.14) 

   Right + (3) 121.89 (14.96)  141.40 (16.46) 

   Right – (2) 30.62 (20.43)  54.58 (43.85) 

Group B (n) 85.76 (28.70) 91.31 (31.58) 95.21 (38.77) 

   Left + (7) 98.41 (23.17) 107.47 (29.42) 122.06 (31.85) 

   Left – (7) 96.11 (17.79) 99.89 (21.35) 98.03 (25.61) 

   Right + (4) 68.79 (38.82) 71.39 (41.21) 82.48 (43.80) 

   Right – (2) 46.65 (23.10) 63.34 (1.96) 49.93 (7.19) 

   Bilateral + (1) 71.00 53.64 28.99 
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Table 4 Table showing the mean rating (and standard deviation) for each item of the Visual 

Impairments Questionnaire, for each assessment session for group A and group B. A lower 

score indicates less impairment.  

VIQ Item Group A  Group B 

 Post-ET  Baseline Post-AT Post-ET 

Seeing objects 1.76 (1.42) 1.57 (1.18)  1.95 (1.42) 2.38 (1.13) 1.79 (1.29) 

Bumping into objects 1.55 (1.40) 1.38 (1.20)  1.74 (1.36) 1.72 (1.31) 1.67 (1.28) 

Losing way 0.38 (0.92) 0.29 (0.96)  1.35 (1.41) 0.94 (1.20) 0.71 (0.99) 

Finding items (table) 1.17 (1.41) 1.02 (1.36)  2.10 (1.38) 1.81 (1.26) 1.50 (1.22) 

Finding items (room) 1.50 (1.33) 1.07 (1.29)  1.71 (1.39) 1.76 (1.21) 1.69 (1.36) 

Finding items (shop) 1.55 (1.61) 1.30 (1.45)  2.09 (1.29) 2.06 (1.34) 2.06 (1.34) 

Using public transport 0.55 (1.29) 0.36 (1.21)  1.13 (1.25) 1.50 (1.60) 1.13 (1.55) 

Finding way at home 0.10 (0.30) 0.17 (0.48)  0.05 (0.22) 0.00 (0.00) 0.05 (0.22) 

Crossing the street 1.24 (1.40) 0.90 (1.17)  1.91 (1.60) 1.92 (1.43) 1.67 (1.27) 

Reading 1.95 (1.53) 1.19 (1.48)  2.41 (1.54) 2.29 (1.32) 1.98 (1.29) 
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Figures 

 

 

Figure 1. Examples of the baseline visual field of two patients. Plot A demonstrates a patient 

with a left-sided hemianopia with a minimum of 3° of macular sparing. Plot B is an example 

of a patient with a right-sided hemianopia with macular splitting.  

 

  



33 
 

 

Figure 2. Diagram representing the 24 meridians assessed during the perimetry with 11 

meridians for each side; the two vertical meridians (X1 and Y1) were used for both fields, 

resulting in a total of 13 eccentricity values for the blind/seeing border for each hemifield. 

Each concentric circle represents 10° of visual angle. The mean left visual field border was 

calculated using the formula (X1 + X2 + ... + X12 + Y1) / 13, whilst the mean right visual field 

border was calculated using (Y1 + Y2 + ... + Y12 + X1) / 13.  
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Figure 3. Diagrams representing the mean baseline visual field border (in degrees) for each 

meridian for groups A (panel A) and B (panel B) separately. The left side of each plot 

represents the blind hemifield and the right side represents the seeing hemifield (those 

patients with a right-sided defect had their visual field mirror-reversed).   
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Figure 4. Bar-graphs showing the mean visual field sparing for the blind (dark bars) and 

seeing (pale bars) hemifields, for each assessment session (baseline and post-training) for 

group A (Fig. 4A) and group B (Fig. 4B). The error bars represent the standard error of the 

mean and * indicates a significant difference (p < 0.05).  
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Figure 5. Diagrams representing the mean change in the visual field size (in degrees). Each 

concentric circle represents 1° of visual angle, and changes less than 1° have not been 

depicted. There are separate plots for the blind and seeing hemifields, and for each group 

and condition. Data from patients with left and right sided defects were collapsed and 

presented within one hemifield, namely the left hemifield.   
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Figure 6. Bar-graphs showing the mean response time (ms) for the find-the-number task, for 

each assessment session for group A (Fig. 6A) and group B (Fig. 6B). The error bars 

represent the standard error of the mean and * indicates a significant difference (p < 0.05).  
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Figure 7. Bar-graphs showing the mean response time (ms) for the target-present condition 

of the projected search task. Each bar represents a different assessment session for group 

A (Fig. 7A) and group B (Fig. 7B). The error bars represent the standard error of the mean 

and * indicates a significant difference (p < 0.05).  
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Figure 8. Bar-graphs showing the mean response time (s) for the visuomotor search task, 

for each assessment session for group A (Fig. 8A) and group B (Fig. 8B). The error bars 

represent the standard error of the mean and * indicates a significant difference (p < 0.05).  

 

 

 

 

 

 


