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Abstract: Meshless methods continue to generate strong interest as alternatives5

to conventional finite element methods. One major area of application as yet rel-6

atively unexplored with meshless methods is elasto-plasticity. In this paper we7

extend a novel numerical method, based on the Meshless Local Petrov-Galerkin8

(MLPG) method, to the modelling of elasto-plastic materials. The extended method9

is particularly suitable for problems in geomechanics, as it permits inclusion of in-10

finite boundaries, and is demonstrated here on footing problems. The current usage11

of meshless methods for problems involving plasticity is reviewed and guidance is12

provided in the choice of various modelling parameters.13
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1 Introduction15

Problems requiring modelling with elasto–plasticity routinely arise in many areas16

of engineering, two prominent examples being metal–forming and geotechnical en-17

gineering. In the former the boundary conditions are often prescribed and the quan-18

tity of interest is the work required to complete a given manufacturing operation.19

In the latter predictions of movements or of instability are required for domains20

which are generally kinematically less–constrained, and where initial stresses due21

to self–weight must sometimes be considered. There is also a considerable body22

of literature on micromechanical material modelling using numerical methods to23

study crystal plasticity requiring similar models. In all of the above robust finite el-24

ement (FE) modelling is now well–tested and available in a number of commercial25

packages. Where finite elements currently struggle are with challenging problems26

that are beginning to be of interest to practising engineers. In particular there is27

an increasing desire to model in 3D, which leads to a disproportionate overhead in28
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meshing. There are also problems for which finite deformation must be modelled29

and remeshing is required during an analysis to ensure accuracy. In geotechnical30

engineering 3D models are required to accurately predict movements due to tun-31

nelling operations (e.g. Kasper and Meschke (2004)) whilst finite deformation is32

needed to model penetration problems found in site investigation (Sheng, Nazem,33

and Carter, 2009). Many examples exist of 3D finite deformation modelling for34

micromechanics of crystalline materials, a recent example being Wang, Daniewicz,35

Horstemeyer, Sintay, and Rollett (2009). To avoid the difficulties of using finite el-36

ements, some researchers have begun to focus on “meshless" or “meshfree" meth-37

ods which discretise a problem without requiring a mesh. Adaptive refinement38

of a meshless domain is a matter of adding nodes, a far simpler operation than39

remeshing with elements, especially for 3D. While there are currently drawbacks40

to their use, which will be discussed below, it remains possible that in the future41

these methods will challenge finite elements for demanding problems of the types42

mentioned above.43

Meshless methods for solid mechanics were originally derived from work in the44

1980s on smoothed–particle hydrodynamics (SPH) by Monaghan and co–workers45

(Monaghan, 1988) which has been shown to be viable for dynamic simulations but46

less so for statics due to boundary problems. The meshless methods most widely47

used in solid mechanics today are the Element–Free Galerkin (EFG) method (Be-48

lytschko, Lu, and Gu, 1994) and the Meshless Local Petrov–Galerkin (MLPG)49

method (Atluri and Zhu, 1998). These methods have their origins in the work by50

Nayroles, Touzot, and Villon (1992) which introduced the idea of discretisation of51

a problem domain by a nodal distribution and a boundary definition alone, where52

the field variable is approximated by approximants to nodal values. Construction53

of these approximants requires only nodes and no mesh of elements, and is based54

on a “moving least squares" (MLS) approach in which nodes influence zones of55

“support" around their locations. These approximants had already been suggested56

by Lancaster and Salkauskas (1981) for use in other applications such as surface57

reconstruction. A major advantage of these meshless methods is that the solutions58

and their derivatives are smooth thus no post–processing is required to obtain a59

smooth stress field unlike in conventional FE approaches. The difference between60

the EFG and MLPG methods is that the former requires the generation of back-61

ground integration cells. The latter does not as integrations (to provide terms in62

the stiffness matrix for instance) are carried out over local domains around each63

node. It can be said therefore that the MLPG method is truly meshless (Atluri64

and Zhu, 1998) and that is the meshless technique used here. Over the last decade65

a bewildering array of variations on EFG and MLPG, as well as other meshless66

methods, have been proposed for use in solid mechanics e.g. Atluri, Liu, and Han67
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(2006). General surveys of methods can be found in Fries and Matthies (2004)68

and, most recently, in Nguyen, Rabczuk, Bordas, and Duflot (2008). Recent pub-69

lications show considerable interest in development of the MLPG method for a70

range of problems and physics in analysis of solids such as fracture (Feng, Han,71

and Li, 2009; Sladek, Sladek, Solek, and Pan, 2008), plates (Jarak and Soric, 2008;72

Sladek, Sladek, Krivacek, Wen, and Zhang, 2007), finite deformation (Batra and73

Porfiri, 2008; Han, Rajendran, and Atluri, 2005), vibrations (Andreaus, Batra, and74

Porfiri, 2005), intelligent materials (Sladek, Sladek, Solek, and Atluri, 2008) and75

poroelasticity (Bergamaschi, Martinez, and Pini, 2009). While many publications76

are confined to 2D models the MLPG method is straightforward to extend to 3D as77

demonstrated in a number of references (Han and Atluri, 2004; Pini, Mazzia, and78

Sartoretto, 2008; Sladek, Sladek, and Solek, 2009; Sladek, Sladek, Solek, Tan, and79

Zhang, 2009) However, development of the MLPG method, and indeed the EFG80

method, for problems with material nonlinearity (e.g. elasto-plasticity) has to date81

been limited.82

The majority of papers in which meshless methods are applied to problems of83

elasto–plasticity use the EFG method and are confined to continuum modelling84

problems rather than micromechanics. Barry and Saigal (1999) describe the for-85

mulation for incremental elasto–plasticity in detail, demonstrating it not to differ86

markedly from the FE approach. They then give examples of use for elastic prob-87

lems and two elasto–plastic problems. Their conclusions, as in most other papers,88

indicate that the choice of nodal support to be of prime importance for the robust-89

ness of a meshless elasto–plastic formulation. The same point is made in other pa-90

pers concerning elasto–plastic continua (Kargarnovin, Toussi, and Fariborz, 2004;91

Hazama, Okuda, and Wakatsuchi, 2001) and plates (Belinha and Dinis, 2006) but92

few details are provided. Askes and co–workers have produced a number of papers93

in this area linking the issue of nodal support to locking seen in perfect plastic-94

ity (Askes, de Borst, and Heeres, 1999), implementation of constraints (Panna-95

chet and Askes, 2000) and in gradient plasticity formulations (Pamin, Askes, and96

de Borst, 2003). A rare example of the use of an alternative to the EFG method is97

given in Wu, Chen, Chi, and Huck (2001), where the Reproducing Kernel Particle98

method (Liu, Jun, Li, Adee, and Belytschko, 1995) is used to model elasto–plastic99

problems. A search of the published literature reveals only three papers that dis-100

cuss modelling elasto–plasticity with the MLPG method. Xiong, Long, Liu, and101

Li (2006) give results for a cantilever beam using a uniform nodal arrangement102

and compare their results with FEM simulations. Long, Liu, and Li (2008) model103

elasto–plastic fracture problems using an MLPG method with a Heaviside test func-104

tion and compare their results with predictions of linear elastic fracture mechanics105

and also ANSYS. However neither of these provide insight or guidance in the use106
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of MLPG with material nonlinearity. Soares, Sladek, and Sladek (2009) presents107

recent work on analysis of dynamic problems including one example with elasto-108

plasticity.109

As well as the concentration on the EFG method, in all of the references cited110

above, uniform distributions of nodes are used which make the conclusions drawn111

thus far of reduced use for unstructured nodal arrangements, perhaps derived from112

an adaptive procedure. The purpose of this paper is to introduce an extension to113

an MLPG-based method to model elasto-plastic materials highlighting some issues114

that arise relating mainly to nodal distributions and choice of support rules, which115

will help those wishing to employ this exciting method for elasto–plastic modelling.116

The paper is organized as follows. In §2 the shape functions for moving least–117

squares based meshless methods are derived and then used in a weighted residual118

approach for elasto–plastic solids. This yields a linear system in which the dis-119

placements are unknowns, highlighting the similarities to this derivation and that120

arising from the FE method. In §3 we introduce a recently developed hybrid MLPG121

method that deals with infinite domains commonly found in geotechnics and de-122

velop it to model elasto-plasticity. Some implementation issues related to the hy-123

brid method are discussed and guidance is then giving on choices of modelling124

parameters to achieve good results.125

2 Meshless methods based on moving least–squares126

2.1 Shape functions127

The EFG and MLPG methods are meshless in the sense that no elements are128

needed. However elements are replaced in these methods by the concept of zones129

of “support" around each node. As with FE methods, shape functions can be de-130

rived from each node in the domain and, in these methods, are arrived at via a131

moving least squares (MLS) approach which is now described. Each node’s sup-132

port is the subdomain in which that node influences the approximation (usually in a133

symmetrically weighted sense). Typical weight functions used are truncated splines134

and exponentials, which are smooth and continuous, meaning that the MLS–based135

shape functions are also smooth and continuous to a higher order than standard FE136

functions.137

The MLS approximation to a set of n nodal data points U = fuI;xIg ; I = 1;2; : : : ;n
can be constructed as

uh(x) =
n
∑

I=1
φI(x)uI = Φ

T (x)u (1)

where uh(x) denotes the approximate value of u(x), n is the number of nodes in
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support at x and φI(x) is the shape function of node I at x. Φ
T (x) is a 1�n matrix

collecting together the shape functions φI and u is a vector containing the fictitious
nodal values. As in the FE method if u(x) is approximated as a polynomial then

uh(x) =
m
∑
j=1

p j(x)a j(x) = pT (x)a(x) (2)

where m is the number of monomials in the basis matrix p(x), e.g. m= 3 for a linear
basis in 2D or a quadratic basis in 1D, and a(x) is a vector of coefficients. In the
MLS approximation, the shape functions are obtained by minimizing a weighted
residual J to determine the coefficients a(x) where

J(x) =
n
∑

I=1
wI(x)

�
pT (xI)a(x)�uI

�2
(3)

where wI(x) � w(x� xI) is the weight function for node I evaluated at point x.
Minimizing J leads to the following

A(x)a(x) = B(x)u (4)

where the elements of matrix A(x)m�m are given by

A jk =
n
∑

I=1
wI(x)p j(xI)pk(xI) j;k = 1; : : : ;m (5)

and the elements of matrix B(x)m�n by

B jI = wI(x)p j(xI) j = 1; : : : ;m; I = 1; : : : ;n: (6)

The coefficients a(x) can be found from (4) by inverting A(x)

a(x) = A�1(x)B(x)u;

so (2) becomes

uh(x) = p(x)T A�1(x)B(x)u (7)

and the shape functions are found, by comparison with Eqn (1), as

Φ = pT A�1B (8)

where the dependence on x for all terms has been removed for clarity. The deriva-
tives of the shape functions can be found as

Φ
;k = pT

;kA�1B+pT
�

A�1
;k B+A�1B

;k

�
(9)
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where k denotes the coordinate index and

A�1
;k =�A�1A

;kA�1: (10)

A and B can be written in matrix form as

A = PT WP (11a)

B = PT W (11b)

where P is an n�m matrix defined by

P =

2
6664

p(x1)
p(x2)

...
p(xn)

3
7775 (12)

and W is an n�n diagonal matrix

W = [ diag(w1(x); : : : ;wn(x)) ]n�n : (13)

The MLS procedure leads to an approximation uh rather than an interpolation. The138

shape functions therefore do not possess the delta property of conventional finite139

element functions.140

2.2 Formation of the stiffness matrix141

Having obtained the shape functions, the procedure to obtain the stiffness matrix142

for the problem is similar to that for the FEM. Dealing with the elastic behaviour143

first, assuming a domain Ω with boundary Γ and writing in matrix–vector format,144

the strong form of equilibrium (in the absence of body forces) is145

LT
σ = 0 (14)

where L is the differential operator and σ the components of the stress tensor in
Voigt notation. Essential boundary conditions are defined as

uh = ū on Γu: (15)

The weak form is obtained by multiplying by a test function v as follows
Z

Ω

vT �LT
σ
�

dΩ = 0: (16)
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Using the Green–Gauss theorem Eqn (16) can be converted to
Z

Ω

(Lv)T
σ dΩ�

Z
Γt

vT t̄ dΓ = 0: (17)

where t̄ are the surface tractions and the domain boundary Γ = Γu[Γt . Since the
shape functions do not possess the delta property, essential boundary conditions
cannot be imposed directly. Instead indirect imposition is necessary by penalty
approach, Lagrange multipliers, Nitsche’s method or via coupling to finite elements
on the boundary (Fernández-Méndez and Huerta, 2004). In this study we use the
first of these methods and the weak form including imposition of essential boundary
conditions becomes
Z

Ω

(Lv)T
σ dΩ�

Z
Γt

vT t̄ dΓ+α

Z
Γu

vT
�

uh� ū
�

dΓ = 0 (18)

where α is a user–defined penalty parameter. Discretisation of Eqn (18) leads to
the linear system

Ku = f (19)

where

K =
Z

Ω

BT
v DB dΩ+α

Z
Γu

vT
Φ dΓ (20)

f = α

Z
Γu

vT ū dΓ+
Z

Γt

vT t̄ dΓ (21)

(22)

in which Bv and B are matrices of derivatives of the test and shape functions respec-146

tively, D is the elastic constitutive matrix and f is the force vector formed from the147

penalty terms at essential boundaries and the tractions t̄ at natural boundaries. The148

choice of test function can be identical to the shape function, i.e. Bv = B, yield-149

ing the Element Free Galerkin (EFG) method (Belytschko, Lu, and Gu, 1994), or150

be taken from another space entirely, yielding the Meshless Local Petrov–Galerkin151

(MLPG) method, i.e. Bv 6= B (Atluri and Zhu, 1998; Fries and Matthies, 2004). In152

the MLPG method the integrations in Eqns (19) and (20) are carried out over test153

domains and their boundaries local to each node.154

2.3 Choice of nodal arrangement and size of zones155

One of the most important issues in the MLPG method is choice of nodal arrange-
ment and support and test zones. We will later show this to be of major significance
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in modelling elasto-plasticity. Uniform nodal arrangements are the most attractive
to modellers and the choice of nodal arrangement is strongly linked to the rule for
determining the support zones and test zones around each node. The former is set
by the nature of the weighting function wI , which in this study was a quartic spline
function

wI(x) =

(
1�6

�
dI

rsupp

�2
+8

�
dI

rsupp

�3
�3

�
dI

rsupp

�4
06 dI < rsupp

0 dI > rsupp

(23)

This function has a value of unity at node I and then decays smoothly to zero a
radius rsupp from the node. (dI � jx� xIj is the distance of the point x to node I).
The test function determines the local zone around each node in which the weak
form is satisfied and, as in previous work, the test function used here is identical
to wI above with rsupp replaced by a smaller test radius rtest . In Atluri and Shen
(2002) both are set to be proportional to the distance from the node in question to
its nearest neighbour (dmin):

rsupp = admin rtest = bdmin ; (24)

where a and b are chosen by the user and are usually within the range [0.5, 5.0]. The156

choice of a is governed by the nodal arrangement, the dimension of the problem157

and the order of the monomial basis, whereas the choice of b depends only on the158

nodal arrangement. The range for a is large, and choice of an optimal value is159

problem dependent. There is little firm guidance in the literature on suitable values160

since they depend on the given problem and the nodal distribution. Therefore it is161

necessary to experiment with a range of values for each problem (in the same way162

that a range of meshes should be used in the FEM).163

The test radius must be large enough so that the domain is completely covered by164

the union of all the test domains (in this case circles of radius rtest). This ensures165

that the weak form of the governing equations is satisfied throughout the domain.166

For uniform arrangements of nodes the minimum value of rtest can be calculated167

in advance and will be the same for all nodes (rtest > dmin=
p

2). For non–uniform168

grids the minimum value of rtest is not known a priori. The authors have found169

that setting rtest to be larger than the minimum value gives better results. This is170

discussed further in §3.2.171

As stated in §2.1 the support radius determines the area over which a node influ-172

ences the solution. Increasing the support radius means that a node will affect the173

solution over a larger area, and also leads to more couplings between the nodes in174

the stiffness matrix. As with the test radius, there is a minimum value for the sup-175

port radius, based on the requirement that there must be at least m nodes in support176
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of each (integration) point. If this is not satisfied the inverse of matrix A cannot be177

calculated (see (8)). However the support radius should also be small enough so178

that it can model the local behaviour of the solution. Some previous studies take a179

different approach, which is, to determine the radius of support for each node from180

a pre–defined, ‘ideal’ number of supporting nodes for each point in the domain.181

In Barry and Saigal (1999) the support radii were based on observations that for182

a quadratic basis a minimum of 27 nodes should be in support of any integration183

point in the domain, while in more recent work Sterk and Trobec (2008) carry out184

an extensive study of support radii rules based on this idea and to find which give185

accurate results for certain example problems. General advice relating to the MLS186

approximation itself can be found in Nie, Atluri, and Zuo (2006) and Zhuang and187

Augarde (2010).188

3 An elasto–plastic hybrid MLPG method189

Deeks and Augarde (2007) describes a novel hybrid MLPG method in which the190

near field of a problem is modelled with the MLPG method and the far-field with191

a meshless scaled boundary method, originally described in Deeks and Augarde192

(2005). This arrangement permits correct modelling of an infinite elastic far-field193

thus removing the need to decide on location of boundaries. It is particularly use-194

ful for geomechanical analyses, such as for foundations, tunnels and slopes, where195

serious errors can result from inadequately located boundaries. Deeks and Au-196

garde (2007) describes the means by which correct coupling is achieved between197

the MLPG near field and the scaled boundary far field, which will not be revis-198

ited here. As an example of how the hybrid method works Figure 1 shows the199

arrangement of the two subdomains for the classic 2D plane strain footing problem200

(closely related to Prandtl’s problem) which will be used later in the paper. In the201

original description of the hybrid MLPG method both subdomains were limited to202

elastic behaviour only. Here we present results to show the behaviour of a new hy-203

brid MLPG formulation in which elasto-plasticity is incorporated into the MLPG204

near field (as outlined in the previous section) while the meshless scaled boundary205

subdomain remains elastic.206

Beginning from the elastic formulation of (20) and (21) plasticity can be imple-207

mented with an incremental-iterative scheme in the MLPG in the same way as for208

the FEM and as described in many texts. In the following we use dot notation to209

indicate infinitesimal or rate quantities. For associated flow and perfect plasticity,210

the classical theory of plasticity is based on the following assumptions:211

(i) additive decomposition of total strain into elastic and plastic parts212

ε̇ = ε̇e + ε̇ p ;213
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Figure 1: The hybrid meshless scaled boundary method for the footing problem

(ii) a hypoelastic law214

σ̇ = Deε̇e ;215

(iii) the associated flow rule (with plastic multiplier λ̇ )216

ε̇ p = λ̇
∂ f
∂σ

;217

(iv) the Karush-Kuhn-Tucker loading conditions218

f 6 0; λ̇ > 0; λ̇ f = 0 ;219

(v) the consistency condition220

λ̇ ḟ = 0 (applied if f = 0) :221

Throughout this study we use the Prandtl–Reuss constitutive model, which com-222

prises a von Mises yield function with perfect plasticity and associated flow. The223

von Mises yield function has the form224

f =
p

J2� cu ;

where J2 is the second invariant of the deviatoric stress tensor and cu is the undrained225

shear strength of the material. To solve equations (i)–(v) the Closest Point Projec-226

tion (CPP) method is used, which is widely adopted within elasto-plasticity (Simo227
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and Hughes, 1998). For this particular constitutive model the CPP reduces to the228

radial return method. Linearising the CPP algorithm leads to the so–called algorith-229

mic or consistent tangent Dalg. When forming the stiffness matrix, the use of this230

tangent allows asymptotic quadratic convergence of the global Newton Raphson231

algorithm.232

3.1 Results for elasto-plasticity with uniform nodal arrangements233

The effects of using a uniform nodal arrangement for elasto-plastic modelling us-234

ing the hybrid MLPG method is investigated using a large number of analyses of235

the footing problem. One half of the problem is modelled due to symmetry (see236

Figure 1(b)) and load–control used throughout (i.e. a flexible footing). The ma-237

terial properties adopted for the uniform material are Young’s modulus E = 1000,238

Poisson’s ratio ν = 0:25 and undrained shear strength cu = 0:3 in compatible units.239

(The radius of the von Mises cylinder is
p

2cu.) The size of the MLPG domain240

in all cases is 3� 3 units. The results are compared to the analytical solution of241

a limit load of (π + 2)cu for the related problem of a rigid footing. Referring to242

the work of Prandtl and Hencky, Hill (1950) develops this solution in regard to an243

indentation problem for a perfectly plastic–rigid material. This solution therefore244

acts only as a guide, since, in our examples, we model a flexible footing impinging245

on an elasto–perfectly–plastic material. The analytical limit load (π +2)cu applies246

to a von Mises material of radius
p

2cu (“inner von Mises cylinder”). Analytical so-247

lutions for footing problems with different materials and boundary conditions can248

be found in a number of references, e.g. Seyrafian, Gatmiri, and Noorzad (2007).249

Load–displacement plots for the footing problem (using load–control) for a uni-250

form nodal arrangement are shown in Figure 2(a). The limit load for this problem251

is taken to be close to the normalised analytical solution for the rigid footing prob-252

lem of (π + 2) given in §3.1. It is clear that for this arrangement it is impossible253

to get very close to the expected solution. For a nodal support rule where more254

nodes contribute to the approximation at a point (a = 4:0) convergence is poorer255

than for a rule with a more local approximation (a = 3:0). The errors seen with256

the uniform grid can be explained with reference to the manner in which the nodal257

supports combine. Points near the domain boundaries will have fewer nodes in sup-258

port than points in the centre of the domain, and consequently the approximation259

in the centre will be richer than that near the boundaries. This mismatch then leads260

to errors in stress updates at the boundaries which accumulate until the problem261

cannot converge.262
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(a) Uniform nodal arrangement

Figure 2: Load displacement curves for uniform nodal arrangement.
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Figure 3: The hierarchical nodal arrangement, for 233 nodes (266 nodes in total).
For a spacing of h in the centre of the domain, the support radius for ‘�’ nodes is ah,
for ‘x’ nodes is ah=2 , and for ‘�’ nodes is ah=4, where a is the factor in Eqn (24).

3.2 A hierarchical nodal arrangement and support rule263

In the arrangement described above a set rule for the nodal support is used through-264

out the domain. Here we show that varying the rule for support radius depending265
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on proximity to a boundary has a major effect on the performance of this meshless266

method for elasto–plasticity, whilst still allowing a degree of structure to the nodal267

layout. We term this arrangement “hierarchical" and it is constructed in a man-268

ner reminiscent of h–adaptivity in the FEM. A uniform nodal arrangement is first269

generated with a spacing h. Extra nodes are then added around the boundaries with270

spacings h=2 and h=4 (see Figure 3). Adding extra nodes would ordinarily decrease271

the support radius for some of the h–spaced nodes by a straightforward application272

of the rule in Eqn (24). Instead these nodes retain the support radius associated273

with the larger spacing. For example, in Figure 3, without the extra nodes, node A274

would have a support radius of ah. Due to the extra nodes, node B in particular,275

the support radius of node A would be given by ah=2 according to Eqn (24). We276

ignore this, and leave node A with a support radius of ah. Therefore a structured277

nodal arrangement is combined with a variable rule for nodal support. This has im-278

plications for adaptive re–gridding in meshless methods which will be highlighted279

later.280

Table 1: The residual force for several load steps.

normalised residual force

iteration load step number
number 26 27 28 29

1 2.7540E-01 3.9499E-01 5.3573E-01 5.6752E-01
2 7.5770E-02 6.7376E-02 6.2604E-02 1.4941E-01
3 6.9034E-03 2.2317E-03 6.5026E-03 1.0072E-02
4 6.9047E-06 7.9570E-07 1.4430E-06 3.0972E-05
5 1.4239E-11 4.2575E-11 1.3345E-11

The performance of this scheme is demonstrated using the same (flexible) footing281

problem as above. The parameters used are summarized in Table 2. Figures 4, 5282

and 6 show the normalised load–displacement response using the hierarchical ar-283

rangement for 181, 485 and 980 nodes in the meshless near field. We see that for284

certain values of the nodal support parameter a convergence to the limit load is285

not possible. However generally the ability of the meshless formulation to reach286

the limit load is much improved over the uniform arrangements. The results sug-287

gest that with the nodal arrangement specified (i.e. subdivisions by one–half and288

one quarter at the domain corners), the optimum value for the nodal support pa-289

rameter is a = 2:5� 3:0. This is in contrast to the much larger upper limit on this290

parameter suggested by other authors and mentioned above. Figure 7 shows the291

progress of convergence for an example analysis in this series. Figure 7(a) shows292

the out-of-balance (or residual) load at each iteration step showing the increasing293
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Table 2: Parameters used in the numerical simulations
Material Parameters E = 1000, ν = 0:25, cu = 0:3

von Mises and Trecsa yield surfaces used
MLPG parameters domain size [0;∞)� (�∞;3]

2D meshless domain [0;3]� [0;3]
dmin calculated by the code;

the distance between a node and
its nearest neighbour

rsupp rsupp 2 [2dmin;4dmin]
rtest dmin or 1:5dmin

nodes (meshless) 181, 485, 980
nodes (in total) 198, 518, 1031

order of basis quadratic
weight function a quartic spline, given in Equa-

tion (23)
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Figure 4: Load displacement curves for the hierarchical arrangement using 181
nodes and the test radius given by Eqn (24) with b = 1:5.
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Figure 5: Load displacement curves for the hierarchical arrangement e using 485
nodes and b = 1:5
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Figure 6: Load displacement curves for the hierarchical arrangement using 980
nodes and b = 1:5.
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values until a failure to converge, while Figure 7(b), on a semilog plot shows the294

expected quadratic convergence of the Newton Raphson solver for each out-of-295

balance force vector. From Table 1 we can see that during a load step the residual296

force at a particular iteration is approximately equal to the square of the residual297

force at the previous iteration. This demonstrates the quadratic convergence of the298

global Newton–Raphson scheme. Figure 8 shows the surface displacement for an299

example analysis for a sequence of load steps. The ability to model the movements300

of a flexible footing at the surface is clear in this plot. The progressive expansion301

of the plastic region under the footing is modelled accurately by this method as302

demonstrated in Figure 9. Points that have just reached the yield surface are shown303

in orange, while those that reached it in a previous load step are red. The plot304

shows the development of the usual “bulb" of yielded material beneath the footing305

and its expansion as the load increases. To guarantee coverage, rtest > dmin=
p

2, or306

b > 1=
p

2. Two values of b have been tested, b = 1 and b = 1:5. For b = 1 Fig-307

ure 10 (upper plot) shows that on varying the support radius, the load displacement308

curve varies significantly. However, for the larger test radius of b = 1:5, Figure 10309

(lower plot) shows that changing the support radius has almost no impact on the310

profile of the load displacement curve.311

For comparison on these plots we also show the load–displacement response using312

finite elements. The finite element parameters are as follows: the domain measures313

12� 5. At the truncated edges boundary conditions are applied that fix both the314

horizontal and vertical displacements. The footing half–width is 2 and the domain315

is covered by 32 quadratic quadrilateral elements. An arc–length method was used316

in order to obtain the limit load. The material parameters used are the same as317

those used in the meshless simulations and are given in Table 2. The response of318

the finite element model is always stiffer than the meshless results however this is319

due to the coarseness of the finite element mesh used here.320

To demonstrate that the elasto-plastic MLPG region could be used on its own, same321

code is used to solve the governing equations for the finite region (“MLPG zone” in322

Figure 1(b)) alone with essential boundary conditions applied along the boundary323

between the MLPG and scaled boundary zones (the latter being removed entirely).324

In Figure 11 the FEM results are compared with results from the meshless code325

solving the problem on the MLPG zone and also with the results from the hybrid326

MLPG method (i.e. including the scaled boundary zone). It can be seen that the327

meshless results from the finite domain have a steeper elastic response than the328

results from the hybrid code on the semi–infinite domain, as might be expected329

given the imposition of essential boundaries a finite distance from the loading in330

the former. The responses of the meshless models are still not as stiff as the FE331

results however due again to the coarseness of the FE grid.332
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Figure 7: Convergence patterns of the global NR scheme (485 meshless nodes /
518 nodes in total and a = 2).
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Figure 8: Plots of surface vertical displacement for several load steps.

These results provide sufficient evidence that elasto–plasticity can be accurately333

modelled using the hybrid MLPG method but also demonstrate the need for a care-334

ful choice of nodal arrangement and support radius rules. The implications for335

adaptive refinement in meshless methods are that merely inserting nodes without336

changing the nodal support radius rule could actually make the solution less opti-337

mal rather than improving it, unless the nodal support rules are also varied. The338

hierarchical approach is necessary here due to the proximity of the boundaries; at339

a corner there are two boundaries and therefore the nodal arrangement needs to340

be more refined but also the nodal support rules have to be changed. If we were341

to refine the mesh based on some measure of error estimation, this would be an342

additional consideration and it will be interesting to see if the two requirements343

compete or are complementary.344

4 Conclusions345

Meshless methods remove the need for a mesh to be generated in order to solve346

problems in elasto–plasticity, thereby having strong potential for their future use in347

very large 3D simulations and in problems for which successive remeshing would348

be necessary, as in those involving large deformations. Before we can get to that349

point however, these methods need to be proved on problems that are well–within350
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Figure 9: Plastic zone at several load steps. (Integration points that have become
plastic at the current load step are in orange, those points that were already plastic
are marked in red.)
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Figure 10: Load displacement curves for the hierarchical arrangement using 485
meshless nodes showing a range of support radii. Above rtest with b = 1, below
b = 1:5
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Figure 11: Load displacement curves comparing FEM results from a truncated
domain with meshless results from a truncated domain and a semi-infinite domain
(for b = 1:5, 485 meshless nodes).

the capabilities of the conventional finite element method. In this study we have351

shown that the MLPG method is sensitive to a number of user–defined features of352

a simulation. Firstly the distribution of nodes has been shown to be very important353

for the accurate determination of stresses and for the success of an incremental354

scheme. Secondly the choice of nodal support rule has a major effect both on355

accuracy and robustness using elasto–plasticity. Both of these points should not356

unnecessarily deter modellers from using these methods, for the potential future357

advantages mentioned above. However, the results of this study indicate that care358

is necessary at all stages.359
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