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Abstract

Background: The control of vascular tissue development in plants is influenced by diverse hormonal signals, but their
interactions during this process are not well understood. Wild-type sterol profiles are essential for growth, tissue patterning
and signalling processes in plant development, and are required for regulated vascular patterning.

Methodology/Principal Findings: Here we investigate the roles of sterols in vascular tissue development, through an
analysis of the Arabidopsis mutants hydra1 and fackel/hydra2, which are defective in the enzymes sterol isomerase and sterol
C-14 reductase respectively. We show that defective vascular patterning in the shoot is associated with ectopic cell divisions.
Expression of the auxin-regulated AtHB8 homeobox gene is disrupted in mutant embryos and seedlings, associated with
variably incomplete vascular strand formation and duplication of the longitudinal axis. Misexpression of the auxin reporter
proIAA2:GUS and mislocalization of PIN proteins occurs in the mutants. Introduction of the ethylene-insensitive ein2
mutation partially rescues defective cell division, localization of PIN proteins, and vascular strand development.

Conclusions: The results support a model in which sterols are required for correct auxin and ethylene crosstalk to regulate
PIN localization, auxin distribution and AtHB8 expression, necessary for correct vascular development.
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Introduction

The evolution of vascular tissues has been a critical event in the

movement of plants from water to land, and in the construction of

the higher plants. As well as providing mechanical strength, these

tissues act as conduits for the transport of water, nutrients,

hormones and even small RNA molecules around the plant [1].

The mechanisms by which the formation and maintenance of the

patterns of vascular tissues are regulated are still poorly understood

at the molecular level [2,3]. It is in the embryo that the

establishment of the early vascular tissues, the procambium,

occurs. In Arabidopsis thaliana, this process involves stereotypical

and predictable patterns of cell division, expansion and differen-

tiation coordinated by signalling systems, and notably auxin, to

execute spatially and temporally controlled patterns of gene

expression [4,5].

A number of models have been proposed to account for

vascular development. Sachs pioneered the ‘auxin signal flow

canalization hypothesis’, which suggests that polar auxin transport

promotes strand extension [6]. Scarpella et al. [7] extended this

model to suggest that expression domains of the auxin efflux

carrier-encoding PINFORMED1 (PIN1) [8] in the epidermis

provide positional information for the specification of procambial

cells and the positioning of veins in the leaf. Inhibition of polar

auxin transport by chemical inhibitors has also been shown to

affect leaf vein patterning [9], further implicating auxin transport

in vascular patterning.

Mutant screens have led to the identification of several classes of

gene that are required for wild-type vascular development. The

monopteros mutant, for example, is expressed in the Arabidopsis

embryo, and the mutant is characterized by abnormal divisions in

the prospective procambial tissue in the embryo and defective

cotyledonary vein formation [10,11]. Interestingly, the MONO-

PTEROS (MP) protein is a member of the auxin response factor

(ARF) family, a class of transcription factors that regulate the

transcription of auxin-responsive genes [12]. MP interacts with the

related NONPHOTOTROPIC HYPOCOTYL4 (NPH4) [13].

ATHB8 is an HD-Zip protein which is a positive regulator of

vascular cell differentiation, and its overexpression can lead to

excessive xylem cells in vascular bundles [14,15]. Recent data

show that ATHB8 expression is regulated directly by MP, is

required for procambial cell specification, and its loss of function

phenotype is masked by MP function [16]. A related protein is

PHAVOLUTA, also an HD-Zip transcription factor that is

required for vascular cambium development as well as other

aspects of leaf morphogenesis [17,18]. Other mutant analyses

provide alternative models for the control of vascular patterning to

the auxin flow canalization model [19]. Recently, Petricka et al.
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[20] identified 45 different loci in a screen for mutants affecting

vein pattern in Arabidopsis.

One intriguing class of mutants that show defective vascular

patterning is that defective in sterol biosynthesis. This includes orc/

sterol methyltransferase1 (smt1)/cephalopod (cph), hydra1 (hyd1), fackel (fk)/

hyd2, cotyledon vascular pattern (cvp1/smt2) and cyclopropylsterol

isomerase1-1 (cpi1-1) [21–27]. Although dwarfed, these can be

considered as being distinct from the brassinosteroid (BR) dwarf

mutants, even though they are defective in enzymes upstream of

BR synthesis. For example, they exhibit defective embryonic and/

or seedling cell patterning, including vein patterning, are typically

seedling-lethal, and cannot be rescued by exogenous application of

BRs [28]. Metabolic profiling of sterol methyltransferase mutants

similarly suggests that developmental defects in these mutants are

not due to defective BR content [29].

This raises the interesting question of the role of sterols (as

distinct from BRs) in plant development. It has been postulated

that specific sterols that are absent from, or are present at

abnormally low levels in, the mutants and are required for

appropriate signalling for cell division and expansion. Schrick et al.

[23], for example, following an analysis of the fk mutant, propose a

model in which specific sterol molecules, distinct from BRs, may

have specific signalling roles required for correct cell patterning.

Studies on fk have shown that a range of novel sterols are

produced in these mutants [24], and various sterol intermediates

accumulate to abnormal levels [22]. Any of these components

might interfere with endogenous sterol-mediated signalling

systems, and so disrupt development [30].

Since sterols are components of cell membranes, it is also

possible that at least some of the developmental defects are the

consequence of aberrant membrane function, such as altered

membrane permeability and/or fluidity. Modified sterol profiles

might also cause aberrant localization or function of important

membrane-bound proteins such as receptors or transport proteins.

Support of this hypothesis comes from the analysis of several sterol

synthesis mutants. Both fkhyd2 and orc show mis-expression of the

DR5::GUS auxin reporter [26,31], and the hyd/fk mutants show

enhanced auxin responses [26]. Inhibition of the auxin influx

carrier AUX1 by 1-naphthoxyacetic acid (1-NOA) failed to block

these responses in hyd mutants. This suggests either that the AUX1

protein is by-passed, perhaps due to an increased membrane

permeability to auxin; or the mutants exhibit an increased activity

of the AUX1 protein that is not inhibited by 1-NOA, perhaps due

to a conformational change. In the hyd mutants, PIN3 localization

showed a proximal shift to the columella initials at day 9 post-

germination, then disappeared, associated with the loss of identity

of the columella in these mutants [26]. In orc, the application of

low concentrations of the AUX1-dependent auxin 2,4-D led to

rescue of trichoblast polarity, suggesting that while auxin influx

does not appear to be defective, auxin response or availability

might be [31]. Rates of polar auxin transport in orc were reduced

significantly compared to wild-type, and although AUX1

positioning was normal in the mutant, the PIN1 and PIN3

proteins were mis-localized. More recently, Men et al. [27] showed

that defective sterol profiles in the cpi1-1 mutant are associated

with defective PIN2 endocytosis and polar localization following

cytokinesis. Furthermore, Pan et al. [32] showed that sterols are

required for auxin-mediated PIN2 endocytosis; and Carland et al.

[29] have found that sterol methyltransferase (smt) mutants of

Arabidopsis exhibit a range of auxin-mediated responses, indepen-

dent of BR function.

A view is therefore emerging to suggest that sterols are required

for correctly regulated auxin signalling, by mediating carrier

protein localization or functionality in the membrane. Further

evidence for altered signalling comes from the observation that the

hyd/fk mutants may be defective in the ethylene response pathway

[26,33]. However, the link between sterols, auxin and ethylene

remains unclear. Recent work shows that, in the root, ethylene can

induce auxin biosynthesis and transport [34,35], and we have

recently developed a mathematical model to describe auxin,

ethylene and cytokinin interactions in the Arabidopsis root [36].

Consistent with this, aspects of defective auxin signalling and

auxin-dependent root cell patterning and growth can be rescued in

the hyd/fk mutants by the inhibition of ethylene signalling [33].

CONSTITUTIVE TRIPLE RESPONSE-1 (CTR1) acts as a

repressor of auxin biosynthesis in Arabidopsis [37]. In the

constitutively ethylene responsive ctr1 mutant, the local distribu-

tion of auxin regulating the establishment of cell polarity is

disrupted, providing further evidence for a link between auxin and

ethylene signal transduction.

To investigate the link between sterols, auxin and ethylene in

vascular development, we studied these relationships in the sterol

biosynthesis mutants hyd1 and fkhyd2. These genes encode adjacent

enzymatic steps in the sterol biosynthetic pathway and their loss of

function mutants have similar phenotypes. We found that defects

in cell division, auxin transport machinery and vascular develop-

ment were evident in the mutants, but those associated with auxin

transport and responses in particular could be rescued to a

significant extent by the inhibition of ethylene signalling.

Results

Abnormal vascular patterning is associated with
abnormal cell division in the hyd/fk mutants

In both hyd1 and fkhyd2 seedling cotyledons, a varied vascular

pattern is apparent as incomplete and isolated sections of xylem

within the defined provascular field (Figs. 1A–H). Xylem ‘islands’

are evident (Figs. 1G,H), indicative of a low level of co-ordination

of cell patterning and differentiation. The main strands also show

variable vessel size and orientation, with cells running parallel with

each other, or contorted into a varied strand morphology not seen

in wild-type plants. Vascular defects in the hypocotyl include

dissociation of the vascular trace above the primary branch point

beneath the SAM, and in some individuals, a duplication of the

entire longitudinal axis (Fig. 1I). No examples of axis duplication

were observed in the wild-type.

Aniline blue staining was carried out to reveal phloem-

associated callose in cotyledons and true leaves. The results

show that, whereas in wild-type seedlings the xylem and phloem

traces are closely aligned (Supplementary Fig. S1A), in the hyd

mutants callose accumulates ectopically, and is variably

associated with xylem traces showing a lack of coordinated

differentiation of the two vascular cell types (Supplementary Figs.

S1D–F).

The mutant seedlings also exhibit ectopic cell division in the shoot

associated with defective vascular patterning, as visualized by the

expression of CYC1At::CDB::GUS; this reporter marks cells entering

mitosis [38]. In wild-type aerial parts, expression of this marker is

confined predominantly to the young leaf primordia and developing

stomata (Figs. 2A–C). In the 3 dpg shoot apices of fkhyd2 (Fig. 2D)

and hyd1 (Fig. 2F), cotyledons show variable patterns and levels of

CYC1At::CDB::GUS expression. Young mutant leaf primordia (as in

Figs. 2E, G) show a spread of division activity across the SAM-

containing region. By 7 dpg, strong reporter expression is retained

around the SAM and in young primordia of both mutants (beyond

the regions that express the gene in wild-type). In cotyledons,

ectopic GUS activity is reduced, but is seen at foci associated with

discontinuities in the xylem strands (Figs. 2G–I).

Sterol Mutant Vascular Pattern
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No expression of CYC1At::CDB::GUS was observed in hypocotyls

of 3–7 dpg wild-type seedlings (Fig. 2J). However, in hyd/fk mutant

hypocotyls there was seen cell division events in the stele of the

upper hypocotyl in the vicinity of branching points in the xylem

vascular strands (Fig. 2K) and in the hypocotyl epidermis at 7 dpg

(Fig. 2L). The ectopic division event highlighted in Fig. 2L is

associated with a cell expanding at an oblique angle to the cell file

orientation in this region, indicative of defects in the control of

axial cell elongation.

hydra mutants exhibit defective AtHB8 gene expression
To investigate the link between defective sterol profiles and the

establishment of vascular patterning in the embryo, expression of

the auxin-regulated proAtHB8:GUS reporter was analysed in the

hyd1 and fkhyd2 mutant backgrounds. The HD-Zip transcription

factor AtHB8 is a positive regulator of vascular cell differentiation;

its promoter is active in cells prior to their adopting vascular

procambial cell fate, as well as in developed strands [14,16]. It is

the earliest known marker of vascular development [39].

Figure 1. Vascular strand defects in hyd/fk mutant seedlings. A: Safranine-stained wild-type cotyledon showing the tissue pattern of vascular
differentiation, 630 magnification. B: Safranine-stained hyd1 cotyledon, with dissociation of the primary vasculature into three traces, 630
magnification. C: Safranine-stained cotyledons from a fkhyd2 seedling, with primary vascular dissociation in one of the cotyledons at the point
indicated by the arrow,630 magnification. D–F: Cleared tissues from the central lamina of the first true leaf of 12 dpg plants of wild-type (d), hyd1 (e),
fkhyd2 (f); bars = 200 mM. G: fkhyd2 cotyledon showing proPIN1::GUS expression to reveal vascular strands and ‘islands’ of vascular tissue (asterisks);
bar = 250 mM. H: Vascular ‘island’ of disconnected xylem cells in fkhyd2 cotyledon (7 dpg) cleared with chloral hydrate; bar = 50 mm. I: Aniline blue-
stained hyd1 seedling (8 dpg) showing duplicated vascular strand in the mutant (arrow) ; bar = 500 mM.
doi:10.1371/journal.pone.0012227.g001
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Fig. 3 shows the expression of proAtHB8:GUS in wild-type and

fkhyd2 mutant embryos. In the wild-type, GUS activity is barely

detectable during the globular-heart stage transition (Fig. 3A), and

then resolving to the procambial traces in the pro-cotyledons,

hypocotyl and root of older embryos (Fig. 3B).

In fkhyd2 mutant embryos (which show a very similar expression

pattern to hyd1 mutant embryos; not shown), a more variable

expression pattern of proAtHB8:GUS activity is seen, associated

with a variable morphology between siblings (Figs. 3C–G).

Analysis at the heart stage transition reveals diffuse GUS activity

throughout the embryo (Fig. 3C), whilst later stages exhibit

variable levels of signal - either relatively low (Fig. 3D, F) or

relatively high (Fig. 3E). More mature embryos may have a

rudimentary procambial trace, although may not demonstrate

normal patterning (Fig. 3G). These observations suggest that the

patterning processes allowing the definition of the procambial

strands have been disrupted in the hyd/fk mutants.

Variability of proAtHB8:GUS activity is also seen in the mutant

seedlings (Fig. 4), reflecting disorganization of vascular strands. In

cotyledons of fkhyd2 in particular, the intensity of proAtHB8:GUS

activity is relatively high compared with wild-type (compare

Fig. 4C with Fig. 4G).

hyd/fk mutants show altered proIAA2:GUS expression
Auxin is a known regulator of vascular patterning, acting in part

at least via ATHB8 [16], and the vascular defects in the hyd/fk

mutants may suggest defects in auxin transport, localization and

response, linked to altered proAtHB8:GUS expression. To investigate

this, we monitored the expression pattern of proIAA2:GUS in the

hyd/fk mutant aerial parts. IAA2 is an early auxin response AUX/IAA

gene, induced strongly and specifically by endogenous auxin

[40,41]. The proIAA2:GUS reporter [42] therefore acts as a marker

for early auxin-induced gene expression and indicates the presence

of active auxins and auxin responses. Previously, we showed that

proIAA2:GUS expression declined in hyd/fk mutant root tips after ca.

18 dpg [33] but had no information on expression in shoots.

In the wild-type shoot, no proIAA2:GUS expression is discernible

in cotyledons (Fig. 5A). As true leaves begin to emerge between 5

and 7 dpg, a stipule signal appears, followed by transient definition

of the leaf vascular traces, prior to differentiation of the xylem

vessels (Fig. 5B). Seedlings of both hyd1 and fkhyd2 at 3 dpg each

show ectopic expression patterns of proIAA2:GUS in shoot tissues.

GUS activity, confined to the young root stele in wild-type,

extends part-way into the mutant hypocotyl stele, and appears as a

localized ectopic signal in the cotyledons (Figs. 5C, D). In older

hyd/fk shoot tissues, ectopic expression in the cotyledon occurs in

the vicinity of late-differentiating xylem, vascular islands, and in

regions where the xylem trace shows poor coherence in the strand,

particularly at the hydathodes (Figs. 5E, F). This ectopic

expression was present in most cotyledons, although no signal

was found in radialized cotyledon structures (Fig. 5G). In true

leaves, both hyd/fk mutants show an enhanced proIAA2:GUS

expression in the vascular traces during lamina development

(Figs. 5H, I). While recognizing that histological GUS activity is

only semi-quantitative, these observations suggest that auxin is

poorly localized in the developing vasculature of young leaves,

possibly synthesized but not efficiently exported from these cells,

consistent with aberrant proAtHB8:GUS expression.

hydra/fk mutants show defective polar auxin transport
machinery

The PIN-FORMED (PIN) family of proteins is required for auxin

efflux from cells, and control directionality of auxin flow [43], which

is required for the control of vascular patterning [7]. However, the

interdependence of directional auxin transport with ethylene

signalling and sterols is not well defined. To understand this better,

we investigated whether an inhibition of ethylene signalling

influenced polar auxin transport machinery in the hyd/fk mutants.

Analysis carried out over a developmental time course reveals

that, while wild-type PIN1:GFP and PIN2:GFP localization can

occur correctly in many cells, the mutants show more cell-to-cell

variability than in wild-type, and localization can be very diffuse

(Fig. 6). Poor PIN2:GFP localization was observed (Figs. 6J, K),

associated with defective epidermal development in the mutants

[21]. Similarly, PIN4:GFP, expressed in the columella cells in wild-

type [44], is also poorly expressed in both hyd1 and fkhyd2, though

localization is broadly as in wild-type (i.e. on all cell faces) in the cells

in which expression is detectable (Figs. 6P, Q). The defective PIN

localization analysed here in roots (due to ease of visualization) is

consistent with a predicted requirement for sterols in vesicle

transport and recycling [27,31] and with the observed defective

auxin distribution and meristem and vascular patterning [22,26,33].

Given that the inhibition of ethylene signalling partially rescues

auxin responses and cell patterning in the root in the hyd/fk

mutants [26,33], we investigated the effects of ein2 or silver

treatment, both of which reduce ethylene responses, on PIN:GFP

localization. The ein2 mutation conveys a systemic ethylene

resistance through the elimination of a signalling relay step

between the cytoplasm and the nucleus [45]. Analysis of 3H-IAA

transport in hypocotyls shows ein2 has an enhanced rate of polar

auxin transport compared to wildtype, and has normal PIN

localization (Fig. 6). The expression and localization of PIN1,

PIN2 and PIN4 GFP fusion proteins exhibited the wild-type

pattern both in the single ein2 mutant or following silver treatment

(Figs. 6E, 6I and 6O). Experimentally reduced ethylene responses

in both hyd1 and fkhyd2 mutants led to a more ordered localization

of PIN1:GFP in particular (Figs. 6B–G), with partial rescue for

PIN2:GFP (Figs. 6H–M) but no rescue of PIN4:GFP (Figs. 6N–S),

compared with individual hyd/fk mutants. Consistent with these

observations, ethylene inhibition leads to partial phenotypic rescue

of root development in the hyd/fk mutants [33].

Inhibition of ethylene responses in hyd/fk partially
rescues vascular pattern

To investigate the effect of ethylene signalling on vascular tissue

patterning in the hyd/fk mutants, hyd1 ein2 and fkhyd2 ein2 double

Figure 2. proCYC1At::CDB::GUS expression in hyd/fk seedlings. A: Wild-type hypocotyl-cotyledon junction, 3 dpg; bar = 100 mm. B: Wild-type
leaf primordia, 7 dpg; bar = 100 mm. C: Wild-type cotyledon epidermis, 7dpg; bar = 50 mm. D: fkhyd2 hypocotyl-cotyledon junction, 3 dpg. Arrow
indicates ectopic cell division events in hypocotyl and cotyledon; bar = 100 mm. E: fkhyd2 hypocotyl-cotyledon junction, 7 dpg. Arrows indicate
ectopic cell division events in hypocotyl and cotyledon; bar = 200 mm. F: hyd1 hypocotyl-cotyledon junction, 3 dpg. Arrow indicates ectopic cell
division events in hypocotyl; bar = 100 mm. G; hyd1 hypocotyl-cotyledon junction, 7 dpg. Arrows indicate ectopic cell division events in hypocotyl
and cotyledon; bar = 200 mm. H, I: fkhyd2 cotyledons at 7 dpg, showing expression in proximity to dissociated or disjunct xylem vessels; bar = 50 mm.
J: Wild-type hypocotyl region of a 3 dpg seedling, showing expression restricted to stomatal precursors of the cotyledon epidermis and the
developing first pair of true leaves; bar = 100 mm. K: fkhyd2 hypocotyl (3 dpg) showing expression in association with the hypocotyl stele (arrow);
bar = 100 mm. L: fkhyd2 hypocotyl epidermis (3 dpg) showing mis-oriented ectopic cell division event spanning two longitudinal cell files;
bar = 50 mm.
doi:10.1371/journal.pone.0012227.g002
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Figure 3. proAtHB8:GUS expression is disorganized in fkhyd2 embryos. A: Wild-type globular embryo, showing very low levels of expression;
bar = 50 mm. B: Wild-type older torpedo-stage embryo, showing expression in procambium; bar = 100 mm. C: fkhyd2 globular-stage embryo, showing
stronger expression than wild-type embryos at the same stage (a); bar = 50 mm. D: fkhyd2 heart-stage embryo; bar = 50 mm. E: fkhyd2 torpedo-stage
embryo; bar = 50 mm. F: fkhyd2 early torpedo-stage embryo, showing highly localized expression in cotyledonary tissue; bar = 50 mm. G: fkhyd2 late
torpedo-stage embryo, showing expression in presumptive procambium; bar = 50 mm.
doi:10.1371/journal.pone.0012227.g003
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mutants were analysed. Comparisons were also made with wild-

type and ein2 mutants.

The xylem traces of cotyledon primary vascular strands in hyd/

fk ein2 mutants are more coherent than observed in hyd/fk single

mutants, and less ‘noise’ is evident within the xylem (Figs. 7A–C,

cf. Fig. 1). Figs. 7D–F show seedlings of ein2 mutants and fkhyd2 ein2

double mutants expressing the proAtHB8:GUS procambial cell

identity reporter. The activity of this transgene in ein2 seedlings

(Fig. 7D) is indistinguishable from wild-type (cf. Figs. 4A–C),

and the patterns of differentiating xylem traces in wild-type and

ein2 show no differences. The hyd 1 ein2 and fkhyd2 ein2 seedlings

(Figs. 7E, F) have greater vascular strand coherence than do fk/hyd

single mutants (cf. Figs. 4D–G).

Introduction of the ein2 mutation into the hyd1 background led

to a decreased frequency of ectopic cell divisions in the shoot at

7 dpg, though not at 3 dpg, as monitored by CYC1At::CDB::GUS

expression (Fig. 8). In contrast to both hyd1 ein2 and ein2 (Figs. 8A–

D), the fkhyd2 ein2 shoot apices show relatively high levels of

CYC1At::CDB::GUS expression at 3 dpg and 7 dpg (Figs. 8E, F).

Furthermore, ectopic cell division events in fkhyd2 ein2 double

mutants were found in similar positions as in fkhyd2 single mutants,

in association with compromised xylem integrity, vascular islands

and in association with late-differentiating xylem (Figs. 8G, H).

Therefore, repression of ethylene signalling in the hyd1 mutants

partially inhibits the ectopic cell divisions seen in the mutant

shoots, but no effect was evident in the more severe fkhyd2 mutant.

The hyd/fk mutants were previously reported to have enhanced

ethylene signalling [26,33]. The auxin-responsive proIAA2:GUS

reporter was used to determine whether ethylene signalling was

responsible for the altered auxin localization or responses in aerial

parts of fkhyd2 ein2 double mutants. Expression of the proIAA2:GUS

auxin-responsive reporter showed similar positional signals in wild-

Figure 4. proAtHB8:GUS expression in hyd/fk seedlings. A: Wild-type cotyledon; bar = 100 mm. B: Wild-type true leaf; bar = 250 mm. C: Vascular
trace in wild-type true leaf (detail from b); bar = 50 mm. D: hyd1 seedling (3 dpg); bar = 50 mm. E: hyd1 seedling (detail from d) showing lack of
procambial and vascular strand coordination at the branch point in the upper hypocotyl; bar = 50 mm. F: fkhyd2 cotyledons 7 dpg; bar = 250 mm. G:
Detail of vascular strand from fkhyd2 leaf (7 dpg), showing stronger expression than in wild-type vascular trace (c); bar = 50 mm.
doi:10.1371/journal.pone.0012227.g004

Sterol Mutant Vascular Pattern
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type and ein2 single mutant seedlings between 3 and 12 dpg

(Figs. 9A, B cf Fig. 5), suggesting that auxin positional localization

functions normally in ein2. The activity of proIAA2:GUS in fkhyd2

ein2 mutant cotyledons (as distinct from the true leaves) appeared

similar to that in fkhyd2 single mutants, and likewise occurred in

association with xylem disjunctures (Fig. 9C). However, fkhyd2 ein2

seedlings showed proIAA2:GUS expression that was more clearly

defined in association with vascular tissues in true leaves (e.g.

Fig. 9D). Similar results were found for hyd1 ein2 seedlings (data

not shown). These results suggest that poor auxin localization in

post-embryonic aerial parts of the hyd/fk mutants is in part

dependent on ethylene defects, i.e. apparent in leaves but not the

embryonically derived cotyledons. EIN2 is not strongly expressed

in the embryo [5], and might not therefore be expected to rescue

these embryonically derived structures.

Discussion

Vascular tissue development is regulated by complex interactions

between multiple signalling pathways, and the nature of the

interactions is far from clear, though progress is being made in

defining the mechanisms involved [3]. A role for sterols as essential

components of vascular patterning is evident from biosynthesis

mutant phenotypes, but the molecular basis of their actions is not well

understood. We have investigated sterol-hormone interactions

through the analysis of double mutants in sterol synthesis and

ethylene responses, and monitored effects on PIN proteins and auxin-

regulated genes, including a key gene, AtHB8, which is an auxin-

regulated transcription factor required for vascular development.

The hyd1 and fkhyd2 sterol mutants are similarly defective in

several aspects of development. Vascular coordination is poor

throughout the mutant seedling and originates from patterning

problems at the point of procambial coordination. Embryonically

derived tissues such as cotyledons generally showed more defective

vascular patterning than did true leaves. Disjunct and dissociated

xylem vessels were seen typically in association with persistent

ectopic cell division activity. These phenotypes are distinct from

BR mutants which are dwarfed and less severely affected in

cellular patterning and histogenesis; though the BR signalling

pathway is required for wild-type vascular differentiation [46–48].

There is a growing body of evidence that correct sterol profiles

are necessary for the controlled integration of plant hormone

Figure 5. proIAA2:GUS expression is disorganized in hyd/fk seedlings. A: Wild-type seedling (3 dpg), showing absence of expression; bar =
200 mm. B: Wild-type seedling (12 dpg), showing expression in stipules and low levels in vascular traces; bar = 200 mm. C, D: hyd1 (c) and fkhyd2 (d)
seedlings (3 dpg), showing ectopic expression in the cotyledon and hypocotyl developing vasculature; bar = 200 mm. E, F: hyd1 (e) and fkhyd2 (f)
seedlings (12 dpg), showing ectopic expression in the cotyledon developing vasculature; bar = 200 mm. G: fkhyd2 seedling (12 dpg), showing lack of
proIAA2:GUS expression in the vasculature of the radialized leaf (arrow); bar = 200 mm. H, I: proIAA2:GUS expression associated with disjunct and
dissociated xylem from hyd1 cotyledons (12 dpg); bar = 50 mm.
doi:10.1371/journal.pone.0012227.g005
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signalling. We have shown previously that the hyd1 and fkhyd2

mutants exhibit defects in both auxin and ethylene signalling

[26,33]. The pharmacological or genetic inhibition of ethylene

signalling can restore to a significant degree the cellular

organization and activity of the root meristems and, as we now

show here, vascular tissues. Ethylene signalling inhibition also led

to a restoration of auxin-mediated gene expression patterns and

the localization of PIN1 and PIN2, though not the consistently

poor production of PIN4. This supports the concept of cross-talk

between sterols, ethylene and auxin.

Carland et al. [25] showed that the cvp1 mutant, defective in the

enzyme sterol methyltransferase 2 (SMT2), has misshapen and

misaligned vascular cells, as well as abnormal organ expansion and

elongation. The authors proposed that SMT2 may be required to

establish a polarizing signal necessary for wild-type vascular

patterning. In support of this, the same group recently found that

smt mutants exhibited defects in auxin responses and localization

[29]. Previously we found that the hyd mutants show defective

PIN3 localization in the root tip [26], and Willemsen et al. [31]

found that the orc allele of SMT1 exhibits defective PIN1 and PIN3

localization. In addition, abnormal expression of the proIAA2:GUS

reporter was found in the roots of hyd1 and fkhyd2 seedlings [33].

Since root meristem function depends on controlled auxin

distribution and auxin-mediated gene expression [49,50], these

observations suggest that the mis-direction and hence mis-

localization of auxin at the root apex of sterol mutants can

account for their previously reported defective root meristem

function [21,26,31,33]. These data implicate a role for sterols in

regulating cell polarity and auxin distribution. In support of this

view, Grebe et al. [51] have evidence that sterol and PIN2

recycling share a common endosomal pathway, and that PIN2

localization, and auxin-mediated inhibition of PIN2 endocytosis is

inhibited in mutants with defective sterol profiles [27]. Pan et al.

have also shown that the fk mutant has defective PIN2 recycling

[32].

In this paper we show that the hyd1 and fkhyd2 mutants show cell-

to-cell variability in the localization of PINS 1, 2 and 4, and this

can be partially rescued by the inhibition of ethylene signalling.

PIN1 is known to have a major role in shoot auxin translocation in

addition to auxin transport into the root tip [8,52]. We show

defects in proIAA2:GUS expression in the mutant aerial tissues,

indicating an altered patterning of auxin distribution and/or

responses. One interpretation of the persistence of ectopic

proIAA2:GUS activity in the vicinity of discontinuities in the

vascular xylem is that auxin transport is compromised by a lack of

coherence between vessel elements, allowing a local and ectopic

accumulation of auxin. It is also possible that incorrect auxin

localization, due to abnormal PIN protein function, in turn causes

defective vascular patterning. Evidence in favour of this latter

hypothesis is supported further by the misexpression of proAtHB8:

GUS. This transcription factor is auxin-regulated, and is a positive

regulator of vascular differentiation in Arabidopsis [14–16]. Here

we show that the proAtHB8:GUS marker is very poorly localized in

the hyd mutants, particularly in embryos where longitudinal

procambial traces are established which define the plant body, and

also in cotyledons and true leaves of establishment-stage seedlings.

Correct vascular patterning is also a product of the coordination

of cell expansion and cell division. These processes are severely

disrupted in hyd1 and fkhyd2 and other sterol mutants, though a

number of genes affect vascular strand development [19,20].

Similarly, the sterol-deficient cvp1 has reduced axial cell expansion

[25], and Schrick et al. [53] have shown that sterol mutants exhibit

Figure 6. PIN localization is defective in hyd/fk seedlings. A: Polar auxin transport assays in wild-type and ein2 hypocotyls. Bars represent
standard errors, n = 8. B–G: PIN1:GFP localization (arrows) in roots of wild-type (B), hyd1 (C), fkhyd2 (D), ein2 (E), hyd1 ein2 (F) and fkhyd2 ein2 (G). Wild-
type localization is predominantly at the basal end of the cells, but is less clearly localized in hyd1 and fkhyd2. Bars = B–F, 50 mM; G, 25 mM. H–M:
PIN2:GFP localization in roots of wild-type (H), ein2 (I), hyd1 (J), fkhyd2 (K), hyd1 ein2 (L) and fkhyd2 treated with 10 mM silver thiosulphate (M). Bars =
50 mM. N–R: PIN4:GFP localization in roots of wild-type (N), ein2 (O), hyd1 (P), fkhyd2 (Q), hyd1 ein2 (R) and fkhyd2 ein2 (S). Bars = 20 mM.
doi:10.1371/journal.pone.0012227.g006
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cell wall stubs, indicative of defective cytokinesis. These authors

proposed that sterols are required for cellulose biosynthesis and

cell wall construction; one possible mechanism might be via a role

for sitosterol as an initiating factor in cellulose biosynthesis [54].

The hyd mutants exhibit ectopic lignin and callose accumulation

(Fig. S1), showing a dissociation between cell patterning and

wall biochemistry. It is also possible that defects in phragmoplast

formation in these mutants contributes to, or is associated with, the

observed defective PIN protein localization.

The role of sterol interactions with ethylene signalling and auxin is

intriguing. The hyd mutants show enhanced ethylene responses, as

well as defects in auxin responses [26,33]. Recent work provides

evidence that ethylene can induce auxin biosynthesis and transport in

the root, a basis for crosstalk mechanisms [34–36,55]. In addition,

enhanced ethylene responses in the root tip can lead not only to

reduced root cell elongation, but also to ectopic divisions of the

quiescent centre cells [56]. Similarly, ethylene can promote aberrant

divisions in the shoot [57]. Given that we have demonstrated partial

rescue by ein2 of auxin-mediated gene expression and vascular

patterning in the hyd mutants, it is possible that sterol-mediated

ethylene signalling defects, perhaps as a result of a (currently obscure)

sterol dependence of ethylene signalling components [28], results in

defective auxin signalling or distribution (via PIN mislocalization).

This in turn could lead to the vascular patterning defects.

In a second model, it is possible that the defective ethylene

responses of hyd/fk mutants are due to aberrant auxin responses.

Auxin itself reinforces PIN localization [58] and can promote

ethylene biosynthesis [59], possibly promoting complex feedback

effects in the absence of correct sterol profiles. Evidence arguing

against this is that the hyd mutants do not obviously over-produce

ethylene, although the root phenotype of hyd1 at least can be

partially rescued by treatment with the ethylene synthesis inhibitor

aminoethoxyvinylglycine [26]. It is therefore possible that the

failure of the auxin distribution system in sterol mutants contribute

to the observed aberrant ethylene responses, and suppression of

the latter by ein2 in turn ameiorates the auxin transport defects.

Finally, it remains possible that certain sterols are also required

as ligands for START domain-containing transcription factors

such as PHABULOSA, REVOLUTA, PHAVOLUTA and,

indeed, ATHB8 [28,53,60], and so have a post-translational role

in the function of these proteins in leaf development and vascular

differentiation.

Figure 7. Vascular strand coherence is improved by the ein2 mutation in the hyd/fk mutants. A–C: Cleared tissues from the central lamina
of the first true leaf of 12 dpg plants of ein2 (A), hyd1 ein2 (B) and fkhyd2 ein2 (C); bars = 200 mm. D–F: proAtHB8:GUS expression in ein2 and hyd/fk ein2
mutants. D: ein2 true leaves of a 10 dpg seedling; bar = 100 mm. E: hyd1 ein2 first true leaf of a 10 dpg seedling; bar = 250 mm. F: fkhyd2 ein2 first true
leaf from 10 dpg seedling; bar = 200 mm.
doi:10.1371/journal.pone.0012227.g007
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It is clear that the phenotypic effects of defective sterol profiles

affect multiple signalling pathways that impinge on each other. It

would therefore not be appropriate to consider the link between

sterol biosynthesis and vascular differentiation as a linear pathway,

but rather as a network of interdependent components, the

relationships between which we are beginning to unravel. Given

the prevalence of feedback loops between auxin, PINs and

ethylene [34–36], and the implication of sterols as a component in

this network, each of the above-mentioned interactions may

contribute to the observed complex mutant phenotypes. To date

there is no evidence that individual sterols, as distinct from

brassinosteroids, act as novel hormone-like molecules. Instead,

their main role in development may be via the regulation of cross-

talk between established growth regulators such as the auxins and

ethylene, through which they modulate the temporal and spatial

expression of key regulatory genes.

Materials and Methods

Plant material
The hyd1 and fkhyd2 mutants were identified in a screen of

transgenic lines as described previously [21,26]. hyd1 ein2-1 and

fkhyd2 ein2-1 crosses generated previously as described [33]. For in

vitro growth studies, A. thaliana seeds were stratified and surface

sterilized and plated on growth medium (half-strength Murashige

and Skoog medium (1/2 MS10; Sigma), 1% sucrose, 3.25 g/l

Phytagel agar; Sigma) as described [21].

Histology
Epidermal cell morphology was revealed by agarose impressions

and scanning electron microscopy. To produce agarose impres-

sions, tissue samples were floated on molten 6% (w/v) agarose on

the surface of a microscope slide, which was allowed to set before the

plant material was removed. The agarose was examined under a

light microscope using DIC optics. Leaf material was prepared for

visualization of xylem vessels and cleared epidermal cells using

standard light microscopy after [61]. To visualize xylem strands,

tissues were stained for 5 min with safranin-O (1% w/v in 95%

ethanol) and dipped momentarily into 95% ethanol to wash out

excess stain, before mounting in 25% (w/v) chloral hydrate. To

visualize callose in sieve tube elements in seedlings, aniline blue was

used according to [61]. Samples were fixed for 1 hour in 3:1

ethanol:acetic acid, cleared overnight in 25% chloral hydrate, and

dehydrated through an ethanol series (30%, 50%, 70% v/v for

1 hour each before 96% overnight). After dehydration, leaf tissues

were mounted on microscope slides in 50% v/v glycerol prior to

microscopy. For visualization of procambial tissue in whole-mount

embryos, developing siliques were harvested from plants heterozy-

gous for hyd/fk mutations, and carrying the proAtHB8::GUS

transgene, the testa punctured with a fine tungsten histology needle,

and the embryos vacuum-infiltrated with X-Gluc in buffer. GUS-

positive embryos were dissected from their seed coat, and mounted

in a clearing mixture of 8:2:1 (w:v:v) chloral hydrate:glycerol:water

prior to microscopy. The CYC1At::CDB::GUS line was fixed in 90%

acetone for 15 min on ice prior to incubation, as described [62], to

Figure 8. Inhibition of ethylene signalling in hyd/fk mutants leads to partial rescue of cell division patterning. A–H:
proCYC1At::CDB::GUS expression in ein2 mutants and hyd/fk ein2 double mutants. A, B: ein2 seedlings at 3 dpg (A) and 7 dpg (A); bars = 100 mm
(A), 200 mm (B). C, D: hyd1 ein2 double mutant seedlings at 3 dpg (C) and 7 dpg (D); bars = 200 mm. E, F: fkhyd2 ein2 double mutant seedlings at 3 dpg
(E) and 7 dpg (F); bars = 200 mm (E), 250 mm (F). G, H: Detail of fkhyd2 ein2 double mutant cotyledons at 7 dpg, showing that ectopic cell division
activity persists in the vicinity of dissociated and disjunct xylem vessels; bars = 50 mm.
doi:10.1371/journal.pone.0012227.g008
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halt cells in the process of dividing. Tissue localization of GUS

enzyme activity was performed as described [21].

Microscopy
For light microscopy, seedlings and embryos were viewed under

a Zeiss Axioskop (Carl Zeiss Ltd, Herts, UK). Images were

captured as digital images on a Photometrics COOLSNAPTMcf

colour digital camera (Roper Scientific Inc, Trenton, New Jersey,

USA) using OpenLab3.1.1 software (Improvision, Coventry, UK).

Images were processed in Photoshop 5.0 (Adobe Systems Inc.,

Mountain View, CA). For GFP analysis, fresh seedlings were

mounted in dH2O under a large (32624 mm) zero-thickness

coverslip, and examined using either Zeiss LSM510 or Leica SP5

microscopes, argon laser excitation at 488nm and emission filter at

505–530 nm. Images were captured digitally using the integral

LSM software. Scanning electron microscopy was carried out as

described previously [21].

Polar auxin transport assays
The polar transport of [3H]-IAA (GEH, Amersham, UK) was

measured in hypocotyl segments essentially according to [52] and

as modified by [63].

Supporting Information

Figure S1 Correlation between xylem and phloem traces. Merged

bright-field and aniline-blue stained UV fluorescence images showing

the correspondence between xylem and phloem-associated callose

(blue fluorescence) in cotyledons and true leaves. A: Wild-type

cotyledon; bar = 100 mm. B–D: Vascular traces from hyd1 cotyledon

(B) and true leaf tissues (C, D). Substantial ectopic callose deposition is

found, variably associated with xylem traces; bars = 100 mm.

Found at: doi:10.1371/journal.pone.0012227.s001 (3.70 MB TIF)
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mutants. A, B: ein2 seedling at 3 dpg (a) and 12 dpg (b); bars = 200 mm. C,D: fkhyd2 ein2 seedling at 3 dpg (C) and 12 dpg (D) showing similar pattern
but reduced intensity of expression compared to fkhyd2 single mutants (see Figs. 5D, G, F); bars = 200 mm.
doi:10.1371/journal.pone.0012227.g009

Sterol Mutant Vascular Pattern

PLoS ONE | www.plosone.org 12 August 2010 | Volume 5 | Issue 8 | e12227



References

1. Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through

the phloem. J Exp Bot 59: 85–92.

2. Aloni R (2001) Foliar and axial aspects of vascular differentiation - hypotheses

and evidence. J Plant Growth Reg 20: 22–34.

3. Dengler NG (2001) Regulation of vascular development. J Plant Growth Regul

20: 1–13.

4. De Smet I, Jürgens G (2007) Patterning the axis in plants - auxin in control. Curr

Opin Genet Devel 17: 337–343.

5. Spencer MWB, Casson SA, Lindsey K (2007) Transcriptional profiling of the

Arabidopsis embryo. Plant Physiol 143: 924–940.

6. Sachs T (2000) Integrating cellular and organismal aspects of vascular

differentiation. Plant Cell Physiol 41: 641–656.

7. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular

patterning by polar auxin transport. Genes Devel 20: 1015–1027.

8. Gälweiler L, Changhui G, Muller A, Wisman E, Mendgen K, et al. (1998)

Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue.

Science 282: 2226–2230.

9. Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to

auxin transport inhibition. Development 126: 2979–2991.

10. Berleth T, Jürgens G (1993) The role of the monopteros gene in organising the

basal body region of the Arabidopsis embryo. Development 118: 575–587.

11. Przemeck GKH, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on

the role of the Arabidopsis gene MONOPTEROS in vascular development and

plant cell axialization. Planta 200: 229–237.

12. Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a

transcription factor mediating embryo axis formation and vascular development.

EMBO J 17: 1405–1411.

13. Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, et al.

(2004) Overlapping and non-redundant functions of the Arabidopsis auxin

response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOT-

YL4. Development 131: 1089–1100.

14. Baima S, Nobill F, Sessa G, Luccetti S, Ruberti I, et al. (1995) The expression of

the AtHB8 homeobox gene is restricted to provascular cells in Arabidopsis

thaliana. Development 121: 4171–4182.

15. Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, et al. (2001) The

Arabidopsis ATHB8 HD-zip protein acts as a differentiation-promoting

transcription factor of the vascular meristems. Plant Physiol 126: 643–655.

16. Donner TJ, Sherr I, Scarpella E (2009) Regulation of procambial cell state

acquisition by auxin signaling in Arabidopsis. Development 136: 3235–3246.

17. McHale NA, Koning RE (2004) MicroRNA-directed cleavage of Nicotiana

sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of

apical meristems. Plant Cell 16: 1730–1740.

18. Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, et al. (2005) Class III

homeodomain-leucine zipper gene family members have overlapping, antago-

nistic, and distinct roles in Arabidopsis development. Plant Cell 17: 61–76.

19. Koizumi K, Sugiyama M, Fukuda H (2000) A series of novel mutants of

Arabidopsis thaliana that are defective in the formation of continuous vascular

network: calling the auxin signal flow canalization hypothesis into question.

Development 127: 3107–3204.

20. Petricka JJ, Clay NK, Nelson TM (2008) Vein patterning screens and the

defectively organized tributaries mutants in Arabidopsis thaliana. Plant J 56:

251–263.

21. Topping JF, May VJ, Muskett PR, Lindsey K (1997) Mutations in the HYDRA

genes of Arabidopsis perturb cell shape and disrupt embryonic and seedling

morphogenesis. Development 124: 4415–4424.

22. Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, et al. (2000) FACKEL is a

sterol C-14 reductase required for organised cell expansion in Arabidopsis

embryogenesis. Genes Devel 14: 1471–1484.

23. Schrick K, Mayer U, Martin G, Bellini C, Kuhnt C, et al. (2002) Interactions

between sterol biosynthesis genes in embryonic development of Arabidopsis.

Plant J 31: 61–73.

24. Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, et al. (2000) A critical role of

sterols in embryonic patterning and meristem programming revealed by the

fackel mutants of Arabidopsis thaliana. Genes Devel 14: 1485–1497.

25. Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The

identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell

14: 2045–2058.

26. Souter M, Topping J, Pullen M, Friml J, Palme K, et al. (2002) hydra mutants of

Arabidopsis are defective in sterol profiles and auxin and ethylene signalling. Plant

Cell 14: 1017–1031.

27. Men S, Boutte Y, Ikeda Y, Li X, Palme K, et al. (2008) Sterol-dependent

endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier

polarity. Nature Cell Biol 10: 237–244.

28. Lindsey K, Pullen ML, Topping JF (2003) Importance of plant sterols in pattern

formation and hormone signalling. Trends Plant Sci 8: 521–525.

29. Carland F, Fujioka S, Nelson T (2010) The sterol methyltransferases SMT1,

SMT2, and SMT3 influence Arabidopsis development through nonbrassinos-

teroid products. Plant Physiol 153: 741–756.

30. Clouse, D S (2000) Plant development: a role for sterols in embryogenesis.

Current Biol 10: R601–R604.

31. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, et al. (2003) Cell
polarity and PIN protein positioning in Arabidopsis require STEROL

METHYLTRANSFERASE1 function. Plant Cell 15: 612–625.

32. Pan J, Fujioka S, Peng J, Chen J, Li G, et al. (2009) The E3 ubiquitin ligase
SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of

endocytosis, recycling and plamsa membrane accumulation of the auxin efflux

transporter PIN2 in Arabidopsis thaliana. Plant Cell 21: 568–580.

33. Souter MA, Pullen ML, Topping JF, Zhang X, Lindsey K (2004) Rescue of
defective auxin-mediated gene expression and root meristem function by

inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis.

Planta 219: 773–783.

34. Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, et al. (2007)
Ethylene regulates root growth through effects on auxin biosynthesis and

transport-dependent auxin distribution. Plant Cell 19: 2197–2212.

35. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, et al.

(2007) Ethylene regulates auxin biosynthesis in Arabidopsis seedlings to enhance
inhibition of root elongation. Plant Cell 19: 2186–2196.

36. Liu J, Mehdi S, Topping J, Tarkowski P, Lindsey K (2010) Modelling and

experimental analysis of hormonal crosstalk in Arabidopsis. Molec Systems Biol 6: 373.

37. Ikeda Y, Men SZ, Fischer U, Stepanova AN, Alonso JM, et al. (2009) Local

auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis.

Nature Cell Biol 11: 731–738.

38. Hauser M-T, Bauer E (2000) Histochemical analysis of root meristem activity in
Arabidopsis thaliana using a cyclin:GUS (b-glucuronidase) marker line. Plant Soil

226: 1–10.

39. Scarpella E, Francis P, Berleth Y (2004) Stage-specific markers define early steps

of procambium development in Arabidopsis leaves and correlate termination of
vein formation with mesophyll differentiation. Development 131: 3445–3455.

40. Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early

auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251: 533–549.

41. Abel SN, Ballas N, Wong LM, Theologis A (1996) DNA elements responsive to

auxin. Bioessays 18: 647–654.

42. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, et al. (2001) Localization

of the auxin permease AUX1 suggests two functionally distinct hormone
transport pathways operate in the Arabidopsis root apex. Genes Devel 15:

2648–2653.

43. Popanov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin

efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:
170–177.
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