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ABSTRACT 12 

This paper describes the Permian-Mesozoic stratigraphy of the Kuznetsk Basin, southern 13 

Siberia, which is adjacent to the vast and hydrocarbon-rich West Siberian Basin and on the 14 

edge of the Siberian flood basalts. The basin fill is Permian to Cretaceous in age, and is 15 

dominated by non-marine siliciclastics up to ~7 km thick. Palaeocurrent indicators show 16 

dominant flow to the north/northeast during the Permian to Jurassic. Fourteen lithofacies are 17 

grouped in three facies associations: fluvial channel-belt, overbank and floodplain/floodplain 18 

pond. Coal-bearing Permian siliciclastics are interpreted as meandering river deposits in a 19 

foreland basin, with subsidence generated by thrust-sheet loading from at least three basin 20 

margins. These sediments pass abruptly but conformably upwards into coal-barren sandstones 21 

and conglomerates and siltstones, interpreted as braided river deposits. Two basalt flows 22 

occur within the coal-barren succession. A recently-published, precise Ar-Ar age of 250.3 ± 23 

0.7 Ma for the lower of these basalts, <50 m above the sedimentary transition, suggests that 24 
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the Permian-Triassic boundary occurs just above this flow. We relate the loss of coal-25 

producing flora and the increase in mean sediment grain size to vegetation loss, in turn 26 

triggered by the eruption of the Siberian flood basalts to the north. End-Permian and Lower 27 

Triassic(?) strata are overlain by Lower Jurassic fluvial siliciclastics via a gentle angular 28 

unconformity. Conglomerates punctuate a sandstone-dominated succession that continues in 29 

to the Middle Jurassic. Both the basal unconformity and the rejuvenation in sedimentation 30 

may result from intracontinental thrusting at the basin margins and beyond; this thrusting was 31 

triggered by orogenies at the Eurasian margin. Lower and mid Cretaceous siliciclastics are 32 

poorly exposed and crop out only locally: field relations indicate an angular unconformity at 33 

their base. The end-Permian stratigraphy in the Kuznetsk Basin documents the environmental 34 

crisis at the time of the Siberian flood basalts, and reinforces the link between these eruptions 35 

and climatic and environmental deterioration. The Mesozoic sedimentary record highlights 36 

how episodic deformation influenced sediment supply to the West Siberian Basin, and is an 37 

example of the record of Eurasian assembly and deformation preserved within the continental 38 

interior.  39 

 40 
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 42 

1. Introduction 43 

 This paper concerns the sedimentary fill of the Permian-Cretaceous Kuznetsk Basin 44 

(Kuzbass) in southern Siberia, Russia (Fig. 1). The study has three main implications, beyond 45 

the basin itself. 1) The geology includes examples of sedimentation at the Permian-Triassic 46 

transition, in an area affected by Siberian trap volcanism – itself held responsible for the mass 47 

extinction between the Permian and Triassic (Wignall, 2001 and references therein). 2) 48 

Sediment pulses, folds and unconformities within the Kuznetsk Basin are a record of tectonic 49 
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events during the Permian-Mesozoic evolution that affected a much wider area of Central 50 

Asia. 3). Part of our observations is that north-flowing palaeo-drainage systems in the 51 

Kuznetsk Basin formed part of the sediment transport system for the nearby West Siberian 52 

Basin (area >2 x 10
6
 km

2
) and so give insights into its evolution and likely basin fill. The 53 

West Siberian Basin has economic as well as academic importance, as it is one of the world‟s 54 

main hydrocarbon producing areas (Peterson and Clarke, 1991; Vyssotski et al., 2006). 55 

 Our approach is to describe the regional geology first, then to document the Permian-56 

Mesozoic stratigraphy (mainly from our fieldwork in open cast coal mines, quarries and road 57 

and river sections; other natural exposures are rare) and then to discuss the implications of the 58 

stratigraphy for each of the three lines of study listed above.  59 

 60 

2. Geological background 61 

 62 

2.1. Regional geology 63 

The Kuznetsk Basin has an area of 20,000 km
2
, and is located ~300 km to the south of 64 

the West Siberian Basin, and east of Novosibirsk (Fig. 1).  The basin is bordered on all four 65 

margins by fold and thrust belts and shear zones that deform Palaeozoic rocks and generally 66 

verge towards the basin interior (Fig. 2).  From the north, clockwise, these are the Tom‟-67 

Kolyvan, the Kuznetsk Alatau, the Western Sayan/Gorny Altai and the Salair Range. All four 68 

regions form part of the vast Altaid collage, which is the orogenic belt that constructed much 69 

of the basement of Central Asia during the Palaeozoic (Şengör and Natal‟in, 1996; Buslov et 70 

al., 2004).  Many of the Palaeozoic units are volcanic, volcaniclastic, or immature 71 

siliciclastics derived from these protoliths.  The unexposed and undrilled basement to the 72 

basin presumably consists of similar rocks. In contrast, the Carboniferous succession is 73 

carbonate-dominated, where exposed along much of the Kuznetsk Basin margin.  These 74 
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carbonates form part of a widespread Upper Devonian - Carboniferous platform across 75 

southern Central Asia (e.g. Cook et al., 1995; Gutak et al., 2008): no distinct Kuznetsk Basin 76 

was present at this time. The Carboniferous carbonates pass conformably upwards into an 77 

Upper Carboniferous - Permian non-marine clastic succession. 78 

The exposed fill of the Kuznetsk Basin is mainly Permian in age (Fig. 2), and consists 79 

of up to 5 km of Permian non-marine siliciclastics.  These are notable for the coal seams they 80 

contain: the Kuznetsk Basin is one of Russia‟s main coal-producing areas.  Production is 81 

largely from open cast mines, creating superb exposures of the Permian succession, and, in 82 

places, overlying Mesozoic strata. 83 

Geological maps show the Triassic as everywhere conformable onto the Permian 84 

(Kurtigeshev et al., 2008; Lavrenov et al., 2008), with a mapped thickness in the order of 85 

hundreds of metres, and including at least two basalt units (probably both lavas, several 86 

metres thick, although some Russian geologists believe they are sills).  Recent Ar-Ar 87 

determinations on these basalts (Reichow et al., 2009) give precise ages of 250.3 ± 0.7 Ma and 88 

250.7 ± 0.6 Ma, placing them and the adjacent sediments most likely in the latest Permian: the 89 

Permian-Triassic boundary at the global section and stratotype at Meishan, China, lies 90 

between tuffs dated at 249.25  ± 0.14 Ma and 249.83  ± 0.15 Ma (Renne et al., 1995; Reichow 91 

et al., 2009). This makes it uncertain exactly where the Permian-Triassic boundary lies in the 92 

Kuzntesk Basin succession, and what thickness of Triassic strata is present below the Jurassic 93 

succession. The uppermost coal seam lies below these basalts, therefore for simplicity we 94 

refer to the rocks previously mapped as Triassic as the end-Permian/Triassic succession, 95 

allowing that the rocks above the basalts probably include some Permian deposits. However, 96 

biostratigraphic frameworks for the Kuznetsk Basin conventionally place the Permian-Triassic 97 

boundary at the top of the coaliferous deposits (Mogutcheva and Krugovykh, 2009), based on 98 

changes in floral, ostracode, conchostracan, bivalve and charohpyte assemblages. 99 
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The Jurassic succession overlies the Permian (and any Triassic, if present) with a 100 

gentle angular unconformity (Fig. 2).  The total succession is nowhere more than ~1000 m 101 

thick, comprising non-marine siliciclastics, mainly of Early Jurassic age. The upper part of the 102 

succession is mapped as Middle Jurassic (Buslov et al., 2007), but the non-marine nature of 103 

the rocks makes precise age determinations difficult. Lower Cretaceous strata are only present 104 

in the southwest of the Kuznetsk Basin and in small, somewhat speculative outliers in the 105 

basin interior.  There are no Late Cretaceous or Paleogene strata preserved in the basin, 106 

consistent with much of Central Asia being a peneplain through this time (Allen et al., 2001).  107 

All the Mesozoic strata are folded to some degree, although nowhere mapped as 108 

faulted. At present the basin is being incised, and lateral shifts in drainage imply gentle, active 109 

deformation, interpreted as a long-distance effect of the India-Asia collision (Allen and 110 

Davies, 2007).  111 

 112 

2.2. Stratigraphy and age determinations 113 

 There is a long history of stratigraphic study and mapping in the Kuznetsk Basin 114 

(Yavorskiy and Butov, 1927; Usov, 1937) that continues to this day (Kurtigeshev et al., 2008; 115 

Lavrenov et al., 2008; Mogutcheva and Krugovykh (2009). Fig. 3 summarises the 116 

stratigraphic units; Fig. 4 is a summary log of the strata. The standard Russian division is the 117 

suite, which is roughly equivalent to the formation of international usage. Suites carry a 118 

connotation of time, as well as lithological equivalence. Two or more suites may be grouped 119 

to form a series.  120 

 The following summary and Fig. 3 are adopted from the review in Buslov et al. 121 

(2007). The Balakhonskaya Series spans the Carboniferous-Permian boundary and is the 122 

oldest suite of the Kuznetsk Basin proper. It is sub-divided in to three suites: Ostrogskaya, 123 

Nizhnebalakhonskaya (Lower Balakhonskaya) and Verkhnebalakhonskaya (Upper 124 
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Balakhonskaya). The Ostrogskaya Suite begins with a thin basal conglomerate, but is 125 

apparently conformable over underlying strata in the basin interior. The unit is thinner towards 126 

the west and east and absent in the north of the basin. The Nizhnebalakhonskaya Suite is the 127 

lowermost coal-producing unit in the basin. In general, the coal-bearing suites begin with 128 

coal-free sucessions which become coal-bearing with thicker seams up-section. The overlying 129 

Verkhnebalakhonskaya Suite is sub-divided in to four sub-suites, from bottom to top 130 

Promezhutochnaya, Ishanovskaya, Kemerovskaya and Usyatskaya. Esaulova (1997) placed 131 

the international Lower-Upper Permian boundary (base of the Ufimian Stage) at the base of 132 

the Usyatskaya Sub-suite, which is slightly different from the scheme used by others (Buslov 133 

et al., 2007). Note that Russian stratigraphic nomenclature includes a formal Middle Permian 134 

division. The Kemerovskaya and Usyatskaya sub-suites include coal seams 20-30 m thick. 135 

The Kolchuginskaya Series overlies the Verkhnebalakhonskaya Suite conformably, and is 136 

taken to represent a second major cycle within the coal-bearing succession. It is sub-divided in 137 

to three suites, the oldest of which, the Kuznetskaya Suite, contains fewer coals and more 138 

coarse siliciclastics than the overlying Il‟inskaya and Yerunakovskaya suites.  139 

Triassic strata are conventionally defined as the Lower-Middle Triassic Abinskaya 140 

Series (sub-divided in to the Mal‟tsevskaya, Sosnovskaya and Yaminskaya suites), with the 141 

Permo-Triassic boundary located at the transition from coal-bearing to coal-barren strata 142 

(Mogutcheva and Krugovykh, 2009). As noted above, a basalt flow within the lower part of 143 

these rocks is most likely to be end-Permian (Reichow et al., 2009), such that the Permian-144 

Triassic boundary must lie at an unknown point higher within the coal-barren succession (Fig. 145 

4). These end-Permian/Triassic strata are also non-marine, making correlation difficult. The 146 

upper unit (Yaminskaya Suite) is placed in the Middle Triassic.  147 

Jurassic strata are grouped as the Tarbaganskaya Series, sub-divided into the 148 

Raspadskaya, Abashevskaya and Osinovskaya suites (Lower Jurassic) and the Tersyukskaya 149 
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Suite (Middle Jurassic, possibly Toarcian and Aalenian; Mogutcheva, 2009). Although 150 

dominated by sandstones and conglomerates, the Jurassic succession also includes coals in all 151 

four suites. Age determinations and regional correlations are done largely on the basis of 152 

palynology (Mogutcheva, 2009). A thin (>50 m) Cretaceous succession is present in the 153 

southwest of the Kuznetsk Basin (Fig. 2), where it directly overlies the Carboniferous and 154 

Devonian rocks. The age range is uncertain; it is mapped as Lower and mid Cretaceous, and 155 

supposed to be marine. As only one, poor-quality, outcrop was observed during fieldwork the 156 

depositional environment is not analysed in any detail in this paper. 157 

 158 

 159 

3. Sedimentology of Permian and Mesozoic strata 160 

 161 

3.1. Facies associations 162 

Fourteen lithofacies have been identified within the Permian-Mesozoic succession of 163 

the Kuznetsk Basin and are summarised in Table 1 (with the majority illustrated in Fig. 5). 164 

Localities are shown on Fig. 2, and latitudes and longitudes for each locality are given in 165 

Table 2. Representative logs are shown in Figs. 6A-F (arranged in ascending stratigraphic 166 

order). The lithofacies form three recurring facies associations, which are interpreted as 167 

representing different fluvial environments.  A summary of the three facies associations is 168 

given below.  169 

3.1.1. Fluvial channel belt facies association 170 

This facies association includes facies with the following lithologies: parallel 171 

laminated sandstone, trough cross-bedded sandstone, planar cross-stratified sandstone, ripple 172 

cross-stratified sandstone, massive sandstone, massive conglomerate and planar cross-173 

stratified conglomerate (respectively Sl, St, Sp, Sr, Sm, Gm and Gp in Table 1). It comprises 174 



8 25/05/2010 

 

planar and trough cross-stratified, very fine to coarse grained sandstones, and clast and matrix 175 

supported conglomerates (Fig. 5F-I). The sandstones generally occur  in sets of 0.5-1 m scale 176 

with either a flat base where they overly coal (due to the resistant nature of peat to erosion 177 

(McCabe, 1984; Collinson, 1996) or a scoured base and pebble lags where the underlying unit 178 

is siliciclastic in origin (Figs. 6A and 6F).  The fluvial systems were channelised. Individual 179 

fluvial sand bodies are commonly stacked and amalgamated, forming laterally extensive, 180 

uniformally thick (up to 20 m) sandstone units.  The conglomerates, commonly clast 181 

supported, contain rounded to subrounded clasts of 0.5-10 cm, maximum 60 cm in diameter.  182 

Conglomerate beds can be single or amalgamated events from 1-10 m thick (maximum 20 m 183 

thick) and internally contain foresets (Fig. 5I).   184 

Permian sandstones commonly contain preserved foresets (0.5-1 m) whose scale 185 

suggests initial large dune bedforms in the order of 3-5 m in height (Leclair et al., 1997; 186 

Ashley, 1990).  This indicates channels in the order of 18-50 m deep (Bridge, 2003).  Stacked, 187 

laterally extensive uniformally thick sandstones are interbedded with the coal seams in the 188 

coal-bearing Permian succession (Figs. 5G, 5H and 6B).  The presence of several examples of 189 

large-scale, 6-10 m high, sandstone sets indicates lateral bar migration of large in-channel 190 

barforms, either bank attached or mid channel bars.   191 

End-Permian/Triassic cross-stratified, fine-grained sandstones were deposited in 50-80 192 

cm high foresets (locality S-14; Fig. 6C). These can be estimated to have formed as medium-193 

large scale dune bedforms, 1.5-3 m in height (Leclair et al., 1997; Ashley, 1990) infilling 194 

channels 9-30 m in depth (Bridge, 2003). 195 

Jurassic sandstones were deposited in 15-20 cm high foresets estimated to have 196 

formed small-medium dune barforms 60-80 cm in height (Leclair et al., 1997; Ashley, 1990) 197 

infilling channels in the order of 3.5-8 m deep (Bridge, 2003) to form massive to cross-198 

stratified and parallel laminated sandstone bodies (Fig. 6D).   199 



9 25/05/2010 

 

Evidence for high energy sediment transport and high sediment supply comes from the 200 

large scale dune bedforms, coupled with the substantial clast sizes within this facies 201 

association. These features suggest a mixed and bedload transported material in high energy 202 

braided fluvial (to possible meandering) system across an extensive floodplain. 203 

3.1.2. Overbank facies association 204 

This facies association is composed of massive or parallel laminated to ripple cross 205 

laminated siltstone to fine grained parallel laminated or cross-stratified sandstone (Figs. 6A, 206 

6D and 6G).  Facies Fm, Fl, Fr, Sl and Sp (Table 1) are represented (Fig. 5A-E). Bed sets 207 

commonly show an erosive base with an overall fining upward trend and also record bedform 208 

evolution from massive through parallel laminated to ripple laminated facies. These siltstones 209 

and fine-grained sandstones are interpreted to record deposition within crevasse splays and 210 

crevasse channels, with parallel lamination to ripple lamination within a bed indicating flow 211 

deceleration resulting from flow expansion.  Sandstone deposition also occurs in 30 m wide 212 

crevasse splay channels. Carbonaceous material and wood fragments are found draping ripples 213 

and along laminations. These fine-grained overbank deposits, where interbedded with the 214 

mudstone, carbonaceous mudstone and thin coal layers, indicate distal floodplain 215 

environments (Collinson, 1996).    216 

3.1.3. Floodplain/floodplain pond facies association 217 

This facies association is composed of massive and laminated mudstones (facies C and 218 

Cl), coal (facies D), massive, laminated and ripple cross-stratified siltstones (facies Fm, Fl and 219 

Fr) and tuff (facies T; Table 1). They occur generally as laterally continuous sheets formed 220 

following the decrease in bedform size from ripple scale cross-lamination to the floodplain 221 

mudstone and/or coal facies (Figs. 6B, 6E and 6G). These deposits occur in low energy 222 

settings on the floodplain.   223 

 224 
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3.2. Depositional environments 225 

3.2.1 Coal-bearing Permian strata 226 

All three identified facies associations are present within the coal-bearing Permian 227 

succession. We did not identify any significant differences between outcrops from the five 228 

Permian and Upper Carboniferous suites, although the latter was only studied at one outcrop. 229 

The sedimentology of the coal-bearing Permian sections suggests environments of fluvial 230 

channels, with extensive overbank areas. Mires within these overbank areas allowed peat 231 

deposition.  Fining upward packages (localities S-21 (Fig. 6B) and S-22), are interpreted to 232 

represent channel avulsion, although they could also result from lateral channel migration. 233 

The occurrence of coal facies directly overlain by fluvial sandstones is considered unusual by 234 

McCabe (1984) and suggests extreme, far reaching avulsion. Such large-scale avulsion may be 235 

a characteristic of anastomosing systems (Makaske, 2001). Fielding (1984) noted that 236 

compaction of peat deposits in the Carboniferous Northumberland Basin could produce 237 

“basins” tens of kilometres wide, with sharp contacts with overlying sandstones. The 238 

association of overbank environments and coal deposition indicates stagnant, long-lived, low 239 

relief flood plains. These suggest the overall system had a meandering planform. 240 

3.2.2. End-Permian/Triassic strata 241 

All three facies associations are also present within the end-Permian/Triassic 242 

succession, but significant coal seams are not present; coal is reduced to discontinuous 243 

millimetre-scale laminae. The abrupt sedimentary contact between the Permian coal measures 244 

and overlying sandstones and conglomerates is interpreted to represent the rapid change from 245 

peat formation in a floodplain swamp to deposition from large in-channel barforms following 246 

avulsion with an increase to a high energy bedload, fluvial system (Fig. 7b). The initial sand 247 

grade deposition occurs in foresets with a preserved set thickness of at least 20 m indicating    248 

lateral barform migration. The current geometry of the beds, which appear over steepened 249 
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(Fig. 5G), and „doming‟ above the underlying coal, are due to compaction effects (Fielding, 250 

1984). There appears to be no change in foreset steepness upwards, indicating no preservation 251 

of topsets, therefore suggesting bedforms were at least 20 m in height, with an even deeper 252 

channel.  A cross section through a similar sized bar form, composed of sand grade material at 253 

locality S-14 (Fig. 6C), indicates the main fluvial flow direction was to the northeast. The 254 

width of the channels forming these bars is harder to quantify. The lateral extent of the sand 255 

grade barform is at least 150 m and so the channel width may have been in the order of several 256 

kilometres wide. The enormous lateral scale of the barforms and the fluvial systems in which 257 

they formed suggests a major increase in the rivers‟ capacity at this time, despite a possible 258 

decrease in channel depth in comparison to the underlying coal-bearing Permian sediments. 259 

The dominant coarse grain size of these systems indicates deposition from high velocity flows 260 

over the floodplain and a likely braided planform.  The depositional setting for the finer 261 

sandstones and gravel sediments is within a mixed load system, and within an overbank 262 

setting derived from crevasse splays, crevasse channels and long lived floodplain lake 263 

environments in the fluvial floodplain (Fig. 7c), and indicates these systems were meandering.   264 

3.2.3. Jurassic and Cretaceous strata 265 

All three facies associations are also present within the Jurassic succession. The 266 

observed sedimentology in the exposed Jurassic sections in the Kuznetsk Basin indicate 267 

deposition from a mainly mixed to bedload-dominated fluvial system.  This system resulted in 268 

the deposition of laterally extensive sheets of conglomerates with channels containing sands, 269 

indicating periods of lower flow velocities, deposited in shallow water depths of several 270 

metres.  Channel abandonment is recorded by the overall fining up of sediment from 271 

conglomerates, through sandstone and siltstones to mudstone and eventually the accumulation 272 

of organic matter now preserved as minor coal (Fig. 6F).  Overbank environments can also be 273 

seen within the Jurassic section with crevasse splay deposited sands interbedded with 274 
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mudstones and coals (Fig. 6G).  The Jurassic section contains the largest clasts (60 cm) and 275 

also the thickest conglomeratic succession (several 10s of metres) of the entire basin 276 

stratigraphy.  This implies that during deposition of the Jurassic strata, river gradients and 277 

stream power were greater than during earlier deposition, in turn implying closer and/or 278 

greater source area relief.  These coarse clastic, higher energy systems are likely to have had a 279 

braided planform (Fig. 7d).  The localised finer grained parts of the stratigraphic interval 280 

indicate a reduction in fluvial energy, either lateral to the main trunk system or by channel 281 

abandonment. 282 

It is not possible to be certain of the relevant facies association(s) for the Cretaceous 283 

strata because of the limited nature of the outcrop in the southwest corner of the basin (Fig. 2). 284 

Mudstones are laminated, brick red in colour and have occasional silty laminations and are 285 

occasionally interbedded with parallel to ripple cross laminated very fine-grained sandstone. 286 

Vertical burrows, 0.5-1 cm in diameter, are formed in the sandstone and infilled with 287 

mudstone.  288 

 289 

3.3. Palaeocurrent analysis 290 

3.3.1. Coal-bearing Permian 291 

Palaeoflow directions derived from the Permian fluvial channel belt deposits show that 292 

the dominant sediment transport direction was to the northwest, northeast and east, depending 293 

on the position within the Kuznetsk Basin (Fig. 8). Rivers flowed towards the interior of the 294 

West Siberian Basin.  This implies a possible source area from the terranes of the Gorny Altai 295 

to the south and maybe some sediment derived from the Salair Range to the west. Within the 296 

overbank facies of Permian age, ripples indicate dominant flow directions to the northeast and 297 

northwest (Fig. 8).  Unidirectional ripples also clearly show palaeoflow to the east (locality S-298 

7). 299 
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3.3.2. End-Permian/Triassic 300 

The end-Permian/Triassic rocks show a palaeoflow to the north and northeast, with a 301 

likely sediment source area in the Gorny Altai, as seen for the coal-bearing Permian (Fig. 8). 302 

Clast compositions of tuff, basalt, chert and limestone are also consistent with derivation from 303 

the Gorny Altai to the south. Palaeoflow directions from the large-scale foresets in the 304 

conglomerates at locality S-16 and the sand grade material at locality S-17 record cross 305 

channel migration of bar margin slipfaces (Best et al., 2003), resulting in the lateral migration 306 

of these large bar forms, to the southeast or east, allowing an assumption that the main fluvial 307 

system trended roughly NE-SW. The end-Permian/Triassic strata contain ripples with a 308 

probable dominant flow to the southwest. 309 

3.3.3. Jurassic 310 

Jurassic palaeocurrent indicators in fluvial channel belt deposits record flow 311 

dominantly towards the northeast or northwest, again indicating a source area to the south of 312 

this region (Fig. 8).  This is confirmed by the clast lithologies, which appear to be derived 313 

from the Gorny Altai, to the south of the Kuznetsk Basin. Within the finer-grained Jurassic 314 

strata, a ripple crest orientation of northwest-southeast and a slight asymmetry, indicates a 315 

dominant flow direction of these low energy currents to the northeast (Fig. 8). We have no 316 

robust dataset for the Cretaceous rocks. 317 

Overall, there are no significant compositional changes in clast-type found in the 318 

Permian, Triassic or Jurassic strata.  The clast compositions suggest that the volcanics, low 319 

grade metasediments and melanges of the Gorny Altai sourced the observed sediments.  This 320 

is in contrast with the modern Tom‟ River through the Kuznetsk Basin, where many granitic 321 

clasts occur, derived from the basement of the Kuznetsk Alatau to the east of the basin.   322 

 323 

4. Deformation  324 
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This section considers the structures, boundaries and sedimentology of the Kuznetsk 325 

Basin strata in terms of what they reveal about the timing and nature of regional deformation. 326 

The >5 km thick Upper Carboniferous-Permian succession of the basin interior appears to 327 

have been deposited without major internal unconformities or syn-sedimentary faulting. The 328 

deposits lie between the fold and thrust belts at the basin margins (Fig. 2). Permian strata at 329 

the western basin margin are folded in to a sub-vertical orientation. Although the movement 330 

history on the marginal thrusts is not well-constrained, it is feasible that they operated during 331 

the Late Carboniferous and Permian to create accommodation space in their forelands – i.e. 332 

the Kuznetsk Basin. This timing is the late stage of assembly of the Altaid orogenic collage, 333 

including the collision of the Tarim Block along its southern margin. There is no evidence of 334 

Early Permian rifting, reported for parts of northwest China (Wartes et al., 2002). 335 

There is no indication of any local tectonism associated with the end-Permian basalts, 336 

such as regional uplift or rifting.  As they are only a few metres thick, it is likely that they 337 

represent the extreme edge of the Siberian flood basalt magmatism, which reaches a thickness 338 

of ~3 km in the northwest of the Siberian Craton near Noril‟sk (~1700 km north of the 339 

Kuznetsk Basin), but only ~50 m at the southeast of the outcrop limit on the craton (~700 km 340 

from the Kuznetsk Basin basalts; Lightfoot et al., 1993; Reichow et al., 2009). Therefore there 341 

is no local evidence for a tectonic event (tilting, faulting, abrupt provenance shifts) at the 342 

Permian-Triassic boundary changing the depositional regime in the Kuznetsk Basin, but an 343 

environmental crisis caused by the Siberian flood basalts is plausible.  344 

The Jurassic succession lies unconformably over the end-Permian and Triassic(?) 345 

rocks.  This implies folding and erosion of the basin interior before the deposition of the 346 

Jurassic strata.  The amount of erosion was in places enough to remove most of the Permian 347 

succession, implying several kilometres of erosion (Fig. 2).  Nowhere is any Late Triassic 348 

mapped, but it is not clear if this reflects later erosion, original non-deposition, or the 349 
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difficulties in dating a non-marine clastic succession. The base of the Jurassic may be either a 350 

disconformity, without a discordance in bedding or an angular unconformity with a 351 

discordance of a few degrees (Fig. 9).  The earliest Jurassic strata are conglomeratic in the 352 

localities studied, indicating that there was considerable relief in the sediment source areas 353 

and high stream power at this time.  Jurassic strata are themselves folded (Fig. 2), so that there 354 

is clearly also deformation that postdates this period.  355 

The timing of the deformation recorded below the base of the Jurassic is constrained to 356 

post-date at least part of the Middle Triassic, which is the age assigned to the youngest 357 

Triassic preserved, and to pre-date at least part of the Early Jurassic, which is the age of the 358 

oldest Jurassic strata.  More precise constraints are not available from the field relations or the 359 

current knowledge of the age of the affected stratigraphy.  The age of the deformation that 360 

post-dated the Jurassic strata is less well constrained.  It is plausibly around the Jurassic-361 

Cretaceous boundary, for two reasons.  First, the sparse Cretaceous outcrops are in a 362 

completely different part of the Kuznetsk Basin to the Jurassic, in the southwest (Fig. 2).  This 363 

may imply a reconfiguration of the basin at or before this time.  Second, to the northeast of the 364 

Kuznetsk Basin, on the southern side of the West Siberian Basin, there is a minor angular 365 

unconformity mapped between Jurassic and Early Cretaceous strata.  As Cretaceous strata are 366 

themselves tilted at up to 50
o
 in the southwest of the Kuznetsk Basin, there has clearly been 367 

deformation after this time too, although this is not discernible as a discrete phase in the 368 

structure of the Triassic and Jurassic outliers.  This later deformation event may have taken 369 

place in the Late Cretaceous, as much of Central Asia was reduced to a peneplain at the end of 370 

this period (Allen et al., 2001).  It could be Cenozoic, although the Kuznetsk Basin is not 371 

seismically active. There is geomorphologic evidence for subtle young or active deformation, 372 

in the form of systematic lateral shifts of drainage (Allen and Davies, 2007). 373 
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End-Permian and Triassic(?) and Jurassic strata within the basin interior are preserved 374 

in three major outliers and a small number of adjacent outliers.  The central and southern 375 

outliers are very open synclines, with half wavelengths in the order of 10s of kilometres (Fig. 376 

2).  They are associated with smaller, parasitic, folds on wavelengths of the order of 377 

kilometres to hundreds of metres.  Dips associated with Jurassic strata on these local 378 

structures reach ~ 40
o
.  379 

The largest Mesozoic outlier lies in the centre of the Kuznetsk Basin and is aligned 380 

roughly northwest-southeast, i.e. roughly parallel to the main axis of the basin, and to the 381 

thrusts of the Salair Range.  The second largest outlier is in the south, and is aligned roughly 382 

northeast-southwest, sub-parallel to the structural trends in the Permian and older rocks to its 383 

south, at the basin margin.  The third outlier was not studied during our fieldwork, and lies at 384 

the intersection of the Salair and Tom‟ Kolyvan ranges to the north of the study area, trending 385 

roughly east-west.  Unlike the other two, it is not synformal, but all strata appear to be tilted to 386 

the north, beginning with strata mapped as Upper Triassic (an age not found further south), 387 

which lie unconformably over folded older rocks.   388 

The “bullseye” appearance of the Mesozoic synclines in map view resembles folds 389 

produced by Type 1-2 refolding, i.e. the basins of dome-and-basin refolds (Ramsay and 390 

Huber, 1987), but there is no positive evidence that this has taken place, in the form of 391 

overprinting of structures.  It is also plausible that the present structural patterns result from 392 

synchronous or near-synchronous compression from more than one basin margin, in the 393 

manner of the active tectonics of the South Caspian Basin (Jackson et al., 2002). 394 

 395 

5. Discussion 396 

 397 

5.1. End-Permian environments 398 
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Deposition in the Kuznetsk Basin spanned the Permian-Triassic transition and 399 

included basalts of the Siberian Traps large igneous province. Therefore the basin fill provides 400 

a record of terrestrial environmental changes during the greatest global mass extinction event, 401 

in a region affected by the magmatism commonly interpreted as the cause of the 402 

environmental and biotic crisis (Wignall, 2001). The top of the Permian coal measures is 403 

marked by an abrupt transition to coal-barren, sand dominated large scale foresets of a 404 

laterally accreting barform, before being overlain by conglomeratic beds interpreted as the 405 

deposits of a high energy bedload fluvial system. Features include downlap geometries on to 406 

the underlying coals, but are likely sedimentary/compaction in origin, and not an angular 407 

unconformity or other indication of tectonic activity.  408 

The disappearance of coals some 50 m below the lowest basalt (dated at 250.3 ± 0.7 409 

Ma by Reichow et al., 2009) indicates that the environmental crisis in the Kuznetsk Basin 410 

occurred slightly before the first flood basalt magmatism affected this area. Given that many 411 

precise age determinations for the Siberian Traps are slightly older than the Kuznetsk basalts 412 

(Reichow et al., 2009) it is still feasible that the Siberian Trap magmatism caused the global 413 

environmental crisis and mass extinction. This is in keeping with the type Permo-Triassic 414 

boundary section at Meishan, China, where the extinction peaked at the top of Bed 24 (Jin et 415 

al., 2000), below the biostratigraphical Permo-Triassic boundary at the base of Bed 27c 416 

(defined by the first appearance of the conodont Hindeodus parvus; Nicoll et al., 2002). 417 

The nature of the crisis is similar to other terrestrial regions at the time, including the 418 

Urals foreland (Newell et al., 1999; Benton, 2008) and the Bowen Basin, Australia 419 

(Michaelsen, 2002): catastrophic loss of vegetation and a presumed increase in aridity 420 

(reflected in the disappearance of coal measures), followed by an increase in sediment grade 421 

(presumably erosion was enhanced by the widespread loss of vegetation). The energy of the 422 

depositional systems fluctuated above this environmental crisis, but the extensive vegetation 423 
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cover did not return until the Jurassic, based on the record of coal seams. The Kuznetsk Basin 424 

succession is therefore consistent with the global Early-Middle Triassic coal gap (Retallack et 425 

al., 1996), given that there are no coal seams in the end-Permian-Triassic strata, which are 426 

supposed to extend up to the Middle Triassic (Mogutcheva and Krugovykh, 2009). It is more 427 

extreme than other areas where Middle Triassic coal is recorded. As no Upper Triassic strata 428 

are reported from the Kuznetsk Basin it is not known whether coal-forming conditions 429 

recovered in the Late Triassic.  430 

 431 

5.2. Implications for Central Asian tectonics 432 

The Permian-Triassic succession in the Kuznetsk Basin shows no evidence for the 433 

extensional faulting that created the West Siberian Basin.  It may be that the southern margin 434 

of the Kuznetsk Basin was beyond the rifting limit. The Triassic is relatively thin (300-460 m) 435 

in the Kuznetsk Basin, and suggests lower subsidence rates than during the Permian. This is 436 

consistent with a regional switch-off of compressional tectonics during the end-Permian 437 

rifting of the West Siberian Basin and the eruption of the Siberian Traps (Allen et al., 2006). 438 

Compressional deformation affected all of the Permian-Triassic sediments within the 439 

Kuznetsk Basin, indicated by folding of the end-Permian/Triassics deposits and the angular 440 

unconformity at the base of the Jurassic succession. The Late Triassic-Early Jurassic was a 441 

time of regional deformation across much of Central Asia, associated with the Palaeo-Tethyan 442 

collision of Gondwana-derived microcontinents with the southern margin of Asia. This has 443 

left a widespread record of angular unconformities, fold-and-thrust belts and exhumation 444 

(Hendrix et al., 1992; Allen and Vincent, 1997; Vincent and Allen, 2001; De Grave et al., 445 

2007). An unconformity is also present at the base of the Jurassic section in the Mariinsk-446 

Krasnoyarsk region to the east of the Kuznetsk Basin (Le Heron et al., 2008).  447 
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It is likely that the deformation below the basal Jurassic unconformity in the Kuznetsk 448 

Basin represents part of this regional tectonics, and the overlying Jurassic strata relate to 449 

rejuvenation of marginal thrust belts, and a resultant flexural loading. The Jurassic strata 450 

initially dominantly contain conglomeratic beds, but no further unconformities or laterally 451 

extensive sedimentary pulses. The succession generally fines upwards, with the reappearance 452 

of coal measures, possibly at the end of the Early Jurassic or in the Middle Jurassic. This 453 

pattern differs from other Central Asian basins such as Junggar, where there are several 454 

unconformities and sedimentary pulses within the Jurassic (Hendrix et al., 1992; Vincent and 455 

Allen, 2001; Greene et al., 2005), related to the further Tethyan orogenies at the evolving 456 

Eurasian continental margin.  457 

Folding of the Jurassic strata (Fig. 2) have taken place in the Late Jurassic or Early 458 

Cretaceous, because Upper Jurassic strata are not known from the basin. De Grave et al. 459 

(2007) produced fission track data for extensive uplift in Central Asia in the time range 140-460 

100 Ma, i.e. Late Jurassic to mid Cretaceous. 461 

Thin Cretaceous deposits may represent a short-lived record of transgression during 462 

some part of this period. The 50
o 
bedding dip in one outcrop in the study area indicates 463 

tectonism post-dating deposition, but there are no good time constraints. 464 

 465 

5.3. Implications for the West Siberian Basin 466 

The Kuznetsk Basin is ~300 km from the southern edge of the West Siberian Basin, so 467 

that its evolution can shed light on this major hydrocarbon province, in particular in the 468 

identification of sediment transport pathways. The sediments during and immediately after the 469 

end-Permian environmental crisis are composed of coarse clastic conglomerates deposited 470 

from high stream power bedload systems. These systems had higher stream power when 471 

compared to the rest of the Permian, and sediment is likely to have been bypassed into the 472 
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West Siberian Basin interior, at the very time rifting was underway. The rest of the end-473 

Permian and Triassic(?) is finer-grained fluvial and overbank deposits from lower energy 474 

systems, with less chance of these later sediments being exported to the West Siberian Basin 475 

interior.  476 

The basal Jurassic unconformity represents sediment erosion (of the Triassic and 477 

Permian strata) and its possible transfer into the West Siberian Basin.  The deformation 478 

associated with this feature presumably led to the uplift of the hinterland (Gorny Altai) and a 479 

renewed pulse of coarse clastic sediment input into the Kuznetsk Basin by shallow, high 480 

stream power, fluvial systems. This implies a likely pulse of Early Jurassic siliciclastics into 481 

the West Siberian Basin from the south. These sediments are unlikely to make good 482 

hydrocarbon reservoir sandstones: Altaid lithologies are commonly slates, other low grade 483 

metamorphics and basic volcanics.   484 

The fining-up nature of the Jurassic succession implies that it would have been a 485 

decreasing source of sediment for the West Siberian Basin over time. The thin, fine-grained 486 

Cretaceous succession in the Kuznetsk Basin suggests no uplift in the surrounding hinterland, 487 

in contrast to the southeast flank of the West Siberian Basin (Le Heron et al., 2008).  This 488 

tallies with the  ~800-1000 m thick main Neocomian reservoir unit of the West Siberian Basin 489 

prograding in to the basin interior from the east and west, with little sediment input from the 490 

south (Peterson and Clarke, 1991). 491 

 492 

6. Conclusions 493 

Permian and Mesozoic sediments within the Kuznetsk Basin are non-marine 494 

siliciclastics deposited in fluvial environments. They are grouped in three facies associations: 495 

i) fluvial channel belt ii) overbank and iii) floodplain/floodplain pond. The latter association 496 

includes extensive coal deposits, particularly in the 5 km thick Permian succession. Permian 497 
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sedimentation is interpreted as a response to thrust-sheet loading from the basin margins. An 498 

environmental crisis at the end of the Permian led to the loss of the vegetation that produced 499 

the coal seams, and is interpreted as part of the global biotic catastrophy near the Permian-500 

Triassic boundary. Sediments immediately above the coals are thicker and coarser 501 

siliciclastics, probably produced when source areas were rapidly eroded once they had lost 502 

their vegetation cover. Basalt flows within the basin are part of the Siberian Traps, and occur 503 

just above the environmental change. A precise Ar-Ar age from the lower flow of 250.3 ± 0.7 504 

Ma (Reichow et al., 2009) indicates that the adjacent sediments are Late Permian, and that the 505 

Permian-Triassic boundary lies some way above this flow, and therefore slightly later than the 506 

environmental change.  507 

A gentle angular unconformity at the base of the Jurassic succession plausibly 508 

correlates with Late Triassic-Early Jurassic deformation recorded from elsewhere in Central 509 

Asia, related to Palaeo-Tethyan closure and continental collision at the southern Eurasian 510 

margin. Overlying Jurassic strata are themselves folded, but the timing and nature of this 511 

event is more obscure. The Cretaceous is represented by thin, poorly-exposed strata, that are 512 

difficult to place in a regional context. There is a marked contrast between the Cretaceous 513 

evolution of the Kuznetsk Basin and the Mariinsk-Krasnoyarsk region to the east and the West 514 

Siberian Basin to the north (Le Heron et al., 2008). Both of the latter areas are marked by a 515 

resurgence of sedimentation in the Early Cretaceous. Some deformation postdates the 516 

Cretaceous deposits in the Kuznetsk Basin: they are at least locally tilted at 50
o
, while the 517 

modern basin has lateral drainage shifts indicative of subtle, long wavelength deformation at 518 

the edge of the India-Asia collision (Allen and Davies, 2007). 519 
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Figure captions 668 

Fig. 1. a) Location map of the Kuznetsk Basin, showing its proximity to the West Siberian 669 

Basin to the north. Shaded digital topopgraphy from the GTOPO30 dataset. b) Structural 670 

framework of the Kuznetsk Basin, showing its proximity to marginal fold and thrust belts, and 671 

location south of the main West Siberian Basin. Fault locations adapted from Zonenshain et 672 

al. (1988) and Allen et al. (2006). 673 

Fig. 2. Geology map of the Kuznetsk Basin (Buslov et al., 2007; Kurtigeshev et al., 2008; 674 

Lavrenov et al., 2008).  675 

Fig. 3. Stratigraphic table for the Kuznetsk Basin. From Buslov et al. (2007) and earlier 676 

sources, e.g. Yavorskiy and Butov (1927). 677 

Fig. 4. Summary log for the Kuznetsk Basin. From Buslov et al. (2007) and our field 678 

observations. 679 

Fig. 5. Examples of sedimentary facies from the Permian, end-Permian/Triassic and Jurassic 680 

of the Kuznetsk Basin. (A) The base of the outcrop is dominated by dark grey massive (C) to 681 

laminated mudstones (Cl) grading to carbonaceous rich laminated mudstones (Cl) with 682 

millimetre thick coal beds above (D), before further grey mudstones are deposited on top. 683 

Notebook for scale. Locality S-7; Jurassic. (B) Interbedded mudstone and carbonaceous 684 

mudstone (Cl), siltstone (F, Fl) and very fine grained massive and parallel laminated 685 

sandstones (Sm, Sl) are interpreted as alluvial overbank deposits. The bedding dip is structural 686 

in origin. Locality S-7; Jurassic. (C) Laterally continuous massive mudstone (C) layers 687 

commonly occur within the thick coal (D) units.  The truck (circled) is ~4 m high. Locality S-688 

16; Permian. (D) Parallel laminated siltstone (Fl) and very fine grained sandstones (Sl) occur 689 

with black organic fragments highlighting the lamination surfaces. Pencil top is ~2.5 cm. 690 

Locality S-7; Permian. (E) Ripple foresets within the siltstones (Fr) and very fine grained 691 

sandstones (Sr), with foresets highlighted by organic fragments, some ripples are possibly 692 
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climbing.  Pencil is ~9 cm. Locality S-7; Permian. (F) Planar and trough cross-stratified 693 

sandstones (Sp, St) contain varying amounts of rounded to well rounded pebbles, 0.2-6 cm in 694 

length, aligned along foresets and along scoured channel bases. Set thickness is 0.5-1m. 695 

Locality S-21; Permian. (G) Apparent downlap of  a 30 m thick section of interbedded 696 

sandstones (Sl, Sr) and mudstones (C, Cl) onto the underlying coal unit (D). Person (circled) 697 

for scale. This apparent geometry is likely to be due to over-steepening of the overlying beds 698 

during compaction of peat into coal. Locality S-14; Permian. (H) Abrupt basal contact of a 20 699 

m thick amalgamated fluvial sand body (Sm, Sp, St) overlying a thick, uniform coal deposit 700 

(D).  Locality S-21; Permian. (I) Clast supported conglomerate (Gm), with rounded to 701 

subrounded clasts usually 0.5-10 cm in length, maximum clast size is 30 cm.  Hammer is 30 702 

cm.  Locality S-6; Jurassic. (J) Green coloured laminated mudstone (Cl) containing white 703 

layers of tuff (T) overlain by a 2 m thick brown weathered basalt layer. Locality S-4; end-704 

Permian/Triassic. (K) 20 m high large scale foresets composed of well rounded clast 705 

conglomerate (Gp) deposited with a sharp, non-erosive loaded contact onto the underlying 706 

coal horizon (D).  The truck (circled) is ~ 4 m high. Locality S-16; Permian and end-707 

Permian/Triassic. 708 

Fig. 6. Measured sedimentary logs constructed from seven separate localities where the facies 709 

were identified for the Permian, Triassic and Jurassic in the Kuznetsk region.  The logs consist 710 

of a lithological column, a grainsize/sedimentary structures column, arrows which indicate 711 

any measured palaeocurrents and the identified facies for each section.  Detailed facies 712 

descriptions are in Table 1.  Note the vertical scale varies significantly from log to log.  713 

Localities are shown on Fig. 2. 714 

Fig. 7. Palaeogeographic illustrations for the interpreted depositional systems of the Kuznetsk 715 

Basin during the Permian to Jurassic. The Permian contained mixed to bedload dominated 716 

fluvial systems, possibly meandering with extensive overbank environments where peat 717 
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accumulation occurred in low-lying and/or raised mires. The end-Permian/Early Triassic 718 

environments underwent a rapid change to bedload dominated, probably braided systems 719 

following the climatic crisis resulting in increased runoff due to lack of vegetation. The later 720 

end-Permian/Triassic environment indicates a wide fluvial plain containing mixed load fluvial 721 

systems, probably meandering, with overbank deposits and lakes. The Jurassic environment 722 

contained bedload dominated, possibly braided fluvial systems. The thick conglomeratic 723 

succession suggests greater uplift of the Altai/more proximal position of the encroaching 724 

thrust sheets than at any other time in the Mesozoic. Coals show the re-colonisation of the 725 

floodplain and surrounding areas following the climatic crisis. 726 

Fig. 8. Palaeocurrent measurements from the Kuznetsk Basin. There is no correction for any 727 

later tectonic tilt. 728 

Fig. 9. Field evidence for deformation within the Kuznetsk Basin from locality S-24: angular 729 

unconformity at the base of the Jurassic succession. Arrows highlight a fracture set within the 730 

Permian strata that predates the unconformity.  731 

 732 



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164031&guid=b93b1ab2-8b9a-4132-85df-c15e529c0053&scheme=1


Figure 2
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164032&guid=bd9417a6-fc17-426c-87c7-796b4becdd41&scheme=1


Figure3
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164033&guid=7809417b-2fe7-4f45-927e-5feed82b97a2&scheme=1


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164034&guid=b55631a9-5ba0-4f6b-b51c-e0753d409d78&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164035&guid=e0801f01-5af5-451d-9edb-104f99a12ca5&scheme=1


Figure 6A-D
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164029&guid=b5e62869-7756-4846-92ca-11e99f6f8254&scheme=1


Figure 6E-G
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164030&guid=4189a6db-5759-4e21-9040-59e948d4f92e&scheme=1


Figure 7
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164036&guid=fccb1d83-d5dc-4dc4-bb50-45e345e35e86&scheme=1


Figure 8
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164037&guid=e7a1b3ee-e4df-4edc-aabf-a4bf79dede38&scheme=1


Figure 9
Click here to download high resolution image

http://ees.elsevier.com/palaeo/download.aspx?id=164038&guid=d2d1a1b4-1364-4976-be8d-5e9bc1cc7921&scheme=1


Table 1: Facies divisions for the Kuznetsk Basin 
 

Lithology Code Sedimentary structures Bioturbation/ palaeoflow  Occurrence Interpretation 

Massive Mudstone C Structureless. 
Colouration varies from red-brown, 
grey, black. 

 1-2 cm thick mudstone beds occur 
between coal seams, both laterally 
continuous for ~100m.  
Grey msts grade upwards over 5 cm 
to become black and carbonaceous 
with coal layers above. 

Suspension fallout from standing bodies of water 
following overbank flows or from channel 
abandonment.  

Laminated 
mudstone 

Cl Mudstone with cm-scale parallel 
laminations, well-cemented to 
friable.  Friable mudstone contains 
carbonaceous material on 
laminations. Can consist of paper 
laminations. Colouration varies from 
red-brown, grey, black, green. 

Green paper laminated 
mudstones occur with 
monospecific bivalve casts and 
mm thick tuffaceous layers. 

 Suspension fallout from standing bodies of water 
following overbank flows or from channel 
abandonment.  
Carbonaceous material within the mudstone is 
preferentially aligned along surfaces during deposition, 
making it laminated. 
The well-laminated green mudstones with monospeific 
bivalves suggest deposition within sediment starved, 
environmentally stressed lacustrine environment. 

Coal D Structureless and blocky, range in 
thickness from1-2cm up to a max 
thickness of 20m. Large seams are 
laterally continuous for 100m.  

No evidence of rootlets or soil 
formation, therefore coal may 
have formed  from transported 
organic material.  

1-2 cm thick coal layers occur within 
mudstones. 
Thicker coal seams (>2m) contain 
~40 cm thick, laterally continuous, 
mudstones.   

Vegetated floodplain areas, some of which were 
waterlogged (high water table), reducing conditions in 
floating, low lying or raised mires.  Mires are 
periodically inundated with mudladen floodwater (part 
of a distal crevasse splay). 

Massive Siltstone,  
 

Fm Structureless siltstone. 
Beds laterally continuous up to 50m, 
commonly erosive at base.   

 Interbedded with mudstone, 
carbonaceous mudstone and thin 
coal layers. Often fines upwards into 
mud-prone intervals. 

Deposition by crevasse splay sheetfloods and minor 
crevasse channel environment in a distal floodplain 
environment.   

Laminated siltstone Fl Parallel laminated siltstone. 
Carbonaceous material and wood 
fragments drape laminations. 

 Interbedded with mudstone, 
carbonaceous mudstone and thin 
coal layers. Grades from bed 
parallel lamination to ripple 
lamination upwards in a bed. 

Deposition by crevasse splay sheetfloods and minor 
crevasse channels in a distal floodplain environment.  
Parallel lamination indicate decreasing flow velocities 
due to flow expansion and deceleration away from the 
main fluvial system.   

Ripple cross-
stratified siltstone 

Fr Uni-directional ripple cross 
laminated siltstone with rare 
climbing ripples. Carbonaceous 
material and wood fragments drape 
ripple foresets. 

Ripples NW-SE, NE-SW, 
dominated to the NE and NW. 

Interbedded with mudstone, 
carbonaceous mudstone and thin 
coal layers. Occur at the top of 
parallel bedded siltstone intervals. 

Deposition by crevasse splay sheetfloods and minor 
crevasse channels in a distal floodplain environment.  
Ripple lamination also indicate decreasing flow 
velocities due to flow expansion and deceleration 
away from the main fluvial system.   

Parallel laminated 
sandstone 
 
 

Sl Unidirectional low angle planar 
cross-stratified sandstone. 
Carbonaceous material and wood 
fragments drape foresets. 

Unidirectional flow to east.  
 

Interbedded with mudstone, 
carbonaceous mudstone and thin 
coal layers. 

Deposition by crevasse splay sheetfloods and minor 
crevasse channel environment in a distal floodplain 
environment.  Low angle cross-stratification indicate 
decreasing flow velocities due to flow expansion and 
deceleration away from the main fluvial system. 
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Table 1 (continued): Facies divisions for the Kuznetsk Basin 
 

Planar cross 
stratified 
sandstone 

Sp Uni-directional, planar cross 
stratified, v.fine to coarse grained 
sandstone with normal grading.  
Cross-set preservation thickness of 
varies from 0.15-1m up to 6-10 m. 
(Cm scale coal clasts occur along 
forests. 

0.5-1 m high forsets (Permian?- 
Loc.S21) & indicate palaeoflow 
to North.  Similar scale forsets 
at Loc.S18 show palaeoflow to 
the East. Larger 6-10m forsets 
show palaeoflow to the NW 
(Permian?- Loc. S21 & S22).   
15-20 cm high sets at S14  
show palaeoflow to N-NE. 

Mudstone intervals, cm in thickness, 
are interbedded with this facies.  
 

Intra channel setting of mixed and bedload transported 
material, possibly within a meandering system.  Large 
in-channel bar forms are preserved. 

Trough cross 
bedded sandstone 

St Uni-directional, trough cross-
stratified fine to medium? grained 
sandstone with common rounded to 
well rounded pebble grade material 
(0.2-6 cm in length) forming lags. 
Silicified and carbonised wood upto 
1m in length and 20cm in diameter 
occur at the base of channels and 
flakes of carbonised material occur 
along laminations.  Cm scale 
angular coal clasts at base of beds. 

Palaeoflow measurements from 
wood aligned in channels 
indicate a flow northwest - 
southeast and northeast – 
southwest (S-6). 

Pebbles are composed of Quartz, 
granite, black chert, limestone and 
sandstone, pink rhyolite, green tuff.   

 

Intra channel setting of mixed and bedload transported 
material, possibly within a meandering system.   

Ripple cross 
stratified 
sandstone 

Sr Uni-directional, ripple cross 
stratified, fine to medium grained 
sandstone.  

Jurassic - Palaeocurrent 
indicators to the northeast or 
northwest. Cm scale ripples 
(Loc. S11, S13) show 
palaeoflow to the NE and NW 
respectively. 

. Intra channel to overbank setting of mixed and 
bedload transported material, possibly within a 
meandering system.  

Massive 
Sandstones 

Sm Structureless fine-coarse grained 
sandstone, forming beds up to 5 m 
in thickness. 

  Intra channel setting of mixed and bedload transported 
material, possibly within a meandering system. 

Massive 
Conglomerate 

Gm Massive, matrix to clast supported 
conglomerate with clasts from 
gravel to cobble in size. 

 Up to 10 m thick intervals from 
multiple events. 

Fluvial intra channels setting with bedload transported 
material in a high energy system. 

Planar cross-
stratified 
conglomerate 

Gp Uni-directional, planar cross-
stratified coarse, matrix to clast 
supported conglomerate composed 
of well-rounded –sub rounded, poor 
to well sorted gravel to cobble 
clasts.  Rare angular clasts occur.  
Sets are up to 20 m high (Loc. S16) 
and clasts range in size from 0.5- 10 
cm, max 60cm in length.  

Palaeoflow to SE, E at Loc. 
S16. foresets are seen to 
abrupty down lap onto coal 
seams below (Loc 16). 

Clasts are grey sandstone, red and 
black chert, siltstone, mudstone, 
rhyolite and possibly Basite. 
Some indication of clast imbrication.  
Within the conglomerates, 
decimetre to metre scale channels 
are infilled with fine to coarse-
grained sandstone and are often 
incised by later events filled with 
conglomerate deposits. 

Fluvial intra channel setting with bedload transported 
material in a high energy system. 

Tuff T White, very fine grained sediment, 
occurs as mm to cm thick laterally 
continuous horizons.  

 Tuff layers are interbedded with well 
laminated green mudstones.  Tuff 
horizons increase in thickness up 
section (Loc. S4) until a basaltic 
lava occurs. 

Formed by fall out from volcanic eruptions. Likely to be 
deposited and preserved in a lacustrine environment 
where reworking did not occur. 

 



 



Locality Latitude (decimal 
degrees north) 

Longitude (decimal 
degrees east) 

Stratigraphy 

S-1 53.79 83.54 modern river 
S-2 54.35 86.10 Carboniferous/Permian 
S-3 54.42 86.83 modern river 
S-4 54.41 86.86 Triassic 
S-5 53.79 87.58 Permian/Jurassic 
S-6 53.80 87.62 Jurassic  
S-7 53.80 87.58 Permian/Jurassic  
S-8 53.76 87.78 Jurassic  
S-9 54.39 87.54 Triassic 
S-10 54.39 87.53 Permian/Triassic - basalt 
S-11 53.70 87.00 Permian 
S-12 53.71 86.97 Permian 
S-13 53.71 86.96 Permian 
S-14 54.42 86.81 Permian/Triassic 
S-15 54.26 87.09 Triassic 
S-16 54.45 86.78 Permian/Triassic 
S-17 54.46 86.77 Permian/Triassic 
S-18 54.34 86.08 Permian 
S-19 54.43 87.55 Jurassic  
S-20 54.46 87.52 Jurassic  
S-21 53.64 87.88 Permian 
S-22 53.62 87.81 Permian 
S-23 53.61 87.73 Permian 
S-24 53.83 88.18 Permian/Jurassic 
S-25 53.71 88.12 Permian 
S-26 53.64 88.24 modern river 
S-27 53.28 86.97 Cretaceous 
S-28 52.42 85.10 modern river 
S-29 52.53 85.23 modern river 

 
Table 2: Locality information for this study. Some of these localities are in 
active open-cast coal mines, such that the outcrop appearance may have 
changed since this study was carried out. 
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