
Abstract
Digital elevation models (DEMs) are prone to error that,
as they can never be entirely eliminated, must be managed
effectively. Thus, it is important to understand the nature
of error and their sources, especially in the context of the
intended use of a DEM. This paper investigates the effects
that can be expected when common DEM errors propagate
through a scaling analysis. The errors investigated include
those associated with perturbation of camera exterior
orientation parameters, focal length, and DEM image coordi-
nates, which were simulated numerically. The role of
detrending was also investigated. Scaling analysis, by way
of the fractal dimension, using a new two-dimensional
approach was carried out on a variety of surfaces before
and after the introduction of error and the application of
detrending. The results reveal some serious procedural
implications on scaling analysis and cast doubt on the
authenticity of some scaling analysis results in the absence
of robust quality assessment and of independent supporting
evidence.

Introduction
Like any measurement, digital elevation models (DEMs) are
prone to error associated with the methods and conditions
of their generation. Although error can never be entirely
eliminated, it can be minimized and must be managed
effectively. Thus, there is always a need to understand how
the presence of error will affect DEM data. However, perhaps
more important is how error will affect information derived
from DEM data on which conclusions are based (Wise, 1998).
This proactive approach to data collection and analysis will
enable users of topographic data to make informed decisions
about how best to quantify, to prevent, to correct or to
accept any errors in a dataset. This has been addressed in
conventional data collection and applications (e.g., Gong
et al., 2000; Huang, 2000; Wolf and Dewitt, 2000). However,
the development of automated digital methods has produced
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a change in the nature of DEM error and in the way topo-
graphic data is applied.

The availability of large, high-resolution datasets has
made possible the description and quantification of surface
characteristics across a large range of scales in a single
dataset. Scaling analysis is a method used to describe how
the elevation change of a surface varies as a function of
scale. It is an important type of analysis, as it can provide
additional information about a surface including the nature
of the physical processes that have acted over time (Butler
et al., 2001). There are many ways this can be accomplished
(see Klinkenberg, 1994; Klinkenberg and Goodchild, 1992),
but all methods involve comparing the change of some
parameter (i.e., elevation) against a change in scale (i.e.,
distance between points on a grid). In many cases, the
scaling characteristics of natural surfaces obey a power law,
which can be quantified by estimating the fractal dimension
(D) (e.g., Butler et al., 2001; Nikora et al., 1998; Robert,
1991; Robert and Richards, 1988). Russ (1994) explains that
a surface with fractal characteristics has irregularities at all
scales, and when magnified reveals more detail showing the
same characteristics as the whole. D is a parameter used to
quantify this phenomenon and is discussed at length in
Mandelbrot (1967), Mandelbrot (1982), and Russ (1994).
In terms of topography, it is potentially important as a
means of estimating river bed roughness (Helmlinger et al.,
1993), which is a key parameter as it influences many river
processes including average flow, turbulence, flow resist-
ance, and sediment transport (Butler et al., 2001; Griffiths,
1989; Hey, 1988). It can also be important for understanding
processes relevant in aquatic habitats (i.e., Nikora et al., 1998)
and in DEM quality assessment exercises (i.e., Carbonneau
et al., 2003). However, the effects of even common errors
on the results of scaling analyses are not well understood.
Since the quality of parameters derived from a DEM depends,
not only on the magnitude of error but also on its structure
(Heuvelink, 1998; Hunter and Goodchild, 1997; Lee et al.,
1992), it is important that the effect of error on scaling
analysis be investigated further.

Aim and Objectives
This research aimed to investigate the effects that can be
expected when common DEM errors propagate through a
scaling analysis. The research objectives were: (a) to use
numerical modeling to simulate common photogrammetric
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errors and to apply these to a variety of surfaces with
known scaling characteristics; (b) to apply scaling analysis
to these surfaces both before and after error was applied
using a new, automated routine that robustly estimates D in
two dimensions across a surface; (c) to determine the nature
of the effect of simulated errors on scaling analysis which
includes the prerequisite routines required to remove surface
trend; and (d) to consider the general implications of the
findings on the application of scaling analysis to DEMs of
natural surfaces. The experiment focused on the effects
of some simple but common error sources encountered
in photogrammetry including error in: (a) positional and
rotational components of the exterior orientation parameters;
(b) sensor focal length; and (c) DEM image coordinates. The
errors were simulated through numerical modeling and
were applied to an artificially generated surface designed
to mimic the scaling characteristics of a natural surface
under controlled conditions. The effect of the simulated
error and of detrending on the outcome of scaling structure
of the surface was ascertained by comparing the results of
the analysis applied under a variety of conditions.

Scaling Analysis and the Fractal Dimension
In terrain modeling, scaling analysis is often used to quan-
tify how the elevation of a surface varies as a function of
scale. When the relationship between horizontal distance
and elevation difference obeys a power law, the surface is
said to be statistically self-similar across the range over
which the power law holds (Mandelbrot, 1982). However,
since scaling in nature is usually different in the horizontal
and vertical directions (Mark and Aronson, 1984), the term
self-affinity is used to describe more accurately the scaling
characteristics of natural surfaces (Goodchild and Mark,
1987; Roy et al., 1987). In addition, self-affinity can also
vary with direction. If this is the case, the surface is said to
be anisotropic while one that is constant with direction is
said to be isotropic (Russ, 1994).

Hobson (1972) explained that for a parameter to be
useful for the quantification of morphology, it must be
conceptually descriptive, easily measurable, and applicable
over a range of scales. An approach that meets these require-
ments in the presence of self-affinity is based on fractal
geometry and the estimation of the fractal dimension (D)
(Mandelbrot, 1967). In practice, self-affinity has been found
to exist over a range of different scales which can yield
overlapping fractal bands (Biham et al., 1998). These are
often called mixed fractals or multifractals. However, as
Russ (1994) points out, these term can have different mean-
ings including where several geomorphological processes
have operated: (a) over discrete bands allowing distinct
bands of scale-invariance to be differentiated (Suzuki, 1984);
and (b) with overlapping bands, sometimes where one fractal
surface has been superimposed on another, to produce a
spectrum of D values (Weissel et al., 1994). Although, some
uncertainly remains over the most suitable terminology to
describe these phenomena, for the purposes of this research,
mixed fractal will be used to refer to (a), where several
fractal bands can be identified.

In the context of natural surfaces, it is important that a
method for estimating D is chosen that: (a) produces robust
estimates of D; (b) is suitable for self-affine data; (c) detects
both isotropy and anisotropy; (d) is robust when applied to
non-Gaussian and non-stationary data; and (e) recognizes
the existence of mixed fractals. Butler (1999) conducted a
comprehensive review of the various methods of estimating
D with respect to this criteria and found that the semi-
variogram method emerged as the most suitable for achieving
these objectives. It has been used in a variety of applications

in the natural sciences (e.g., Burrough, 1981; Butler et al.,
2001; Helmlinger et al., 1993; Klinkenberg and Goodchild,
1992; Mark and Aronson, 1984; Oliver and Webster, 1986;
Robert, 1988; Robert, 1991; Roy et al., 1987) particularly
for describing the spatial variation within a dataset in terms
of magnitude, scale, and general form (Oliver and Webster,
1986). Although research has cautioned against using
this approach for estimating D for very rough surfaces (i.e.,
where D 3), this condition is rare in natural surfaces
(Tate, 1998). Research has also demonstrated that the varia-
tion in estimates of D is largely a function of the method
used (Klinkenberg and Goodchild, 1992). These uncertain-
ties, like those found by Wen and Sinding-Larsen (1997),
become irrelevant when calculating relative estimates of
D. Russ (1994) emphasizes that it is often more important
to determine the differences between surfaces using the
same method. Therefore, the semi-variogram method of
estimating D was deemed the most suitable for use in this
research.

The Semi-variogram
Originally, the semi-variogram was developed for mining
purposes (David, 1977; Journel and Huijbregts, 1978) to
express the semi-variance (�) between the elevation of point
pairs as a function of the horizontal distance or lag (�)
between them. In practice, the semi-variance of a surface
is expressed at each lag in a semi-variogram. Using a DEM
on a regular grid, it is computed by summing the difference
in elevations between all pixel pairs with a given pixel
spacing to produce one observation of semi-variance. This
is reported for all combinations of lag in x and y (�x, �y).
Since the precision of semi-variance calculated using few
observations is poor, this is carried out only for lags up
to half the series width called the distance of reliability
(Journel and Huijbregts, 1978). For a surface Z(x,y) with
dimensions 2N by 2M, the two-dimensional semi-variogram
�(�x, �y) is calculated according to:

(1)

It yields a value of � for each combination of (�x, �y) up to �x �
N � �x and �y � M � �y (i.e., the distance of reliability).
Since:

(2)

(3)

if �(�x, �y) is evaluated for all �N � �x � N and �M � �y � M,
then it is possible to plot a semi-variogram surface with �x �
0, �y � 0 at the center. Here, the 2D semi-variogram reveals
the dependence of scaling characteristics on direction, i.e.,
whether the surface is anisotropic.

Provided the elevation increments used to determine
�(�x, �y) are normally distributed, the presence of linear
segments along each direction indicate self-affine scaling
from which a value for D can be calculated (see Burrough,
1983; Robert, 1988; Xu et al., 1993). In this case, the slope
of the semi-variogram is twice the Hausdorff-Besicovitch
dimension (H) and;

(4)

such that 2 � D � 3. As D increases, the surface becomes
increasingly rough until it completely fills a three dimen-
sional space at D � 3. Conversely, as D decreases, the

D � 3 � H

g(�tx,ty) � g(tx,�ty),

g(tx,ty) � g(�tx,�ty)   and

[Z(xi � tx,yj � ty) � Z(xi,yj)]
2.

g(tx,ty) �
1

2(N � tx)(M � ty)
  a    

N�tx

i�1
a

M�ty

j�1

68 J a n ua r y 2007 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

���

07-04-087  12/11/06  3:28 PM  Page 68



surface becomes increasingly smooth becoming a Euclidean
surface at D � 2.

An important consideration when estimating D is the
presence of first-order, non-stationarity or trend in the data.
Trend is often present in elevation data since the roughness
of a surface is usually superimposed on another surface whose
scale is larger than the scale of the scene under investigation
(Mandelbrot, 1967). Therefore, data are typically detrended
by fitting a polynomial to the data and subtracting it from the
surface. Opposing opinions exist on this issue since there is
no clear distinction between removing trend and removing
important roughness information. While some research has
suggested that trend removal is customary to produce reliable
estimates of D (Cressie and Hawkins, 1980), Armstrong (1986)
has shown that it is not recommended as, in the case of soil
transect data, removing trend does not impact upon the
outcome of the semi-variogram. Thus, the effects of surface
detrending on the outcome of scaling analysis were also
investigated in this research.

Methodology
The work carried out for this research is discussed below
in three sections: (a) artificial surface generation; (b) error
simulation; and (c) scaling analysis and the estimation of D.

Artificial Surface Generation
In this experiment, errors were modeled numerically and
applied to a surface under controlled conditions. In order
to be able to control surface roughness for future experi-
ments, the simulated errors were applied to an artificial
surface whose roughness could be predetermined. This
surface was designed to have similar fractal characteristics
to a real surface whist having been generated independently
of photogrammetric methods. In order to produce a realistic
surface, a photogrammetrically generated DEM was used
as the foundation for modeling. The data chosen for this
purpose were collected in Glen Affric, Scotland and are
discussed in more detail in Lane et al., (2000). The spatial
characteristics of the photogrammetrically-acquired DEM (i.e.,
scale, coordinate system, and relief) were adopted for the
artificial surface. The block bundle adjustment parameters
from the Glen Affric project, including the standard error of
their estimates, were also used in the error simulation.

The artificial surface was generated following Russ
(1994), which was based on fractal Brownian motion (fBM)
using a variation of recursive midpoint displacement. The
algorithm provides two user-defined parameters to control
the characteristics of the resulting surface. The first (R)
determines the spacing of the new set of points after each
iteration where 0 � R � 1. The second (	) controls the rough-
ness of the surface in terms of D according to D � 3 � 	. For
this experiment the default value of 0.5 was used for both R
and 	 since:

1. Standard midpoint displacement (at R � 0.5) is known to
be a simple, straightforward, and computationally efficient
method for approximating fBM and overcomes the problem of
non-stationarity (Peitgen and Saupe, 1988); and

2. At 	 � 0.5, the influences of persistence (positive correla-
tion, where elevation changes between points are more likely
to have the same sign, 	 � 0.5) and antipersistence (negative
correlation, where elevation changes between points are
more likely to have opposite signs, 	 � 0.5) between data
points could be minimized (Robert and Richards, 1988).

To investigate the role of trend in scaling analysis
applications, two additional surfaces were required: one
surface with first-order trend; and one surface with second-
order trend. To do this, first- and second-order polynomials
were fitted to the Glen Affric DEM to produce two realistic

trend surfaces using the POLY2FIT algorithm of MATLAB,
Version 6.5. Both first- and second-order trend were included
in this experiment since the boundary between trend and
surface features relevant to roughness is not well defined
(Butler et al., 2001). Thus, three artificial surfaces were
used as the starting point of this experiment: the trend-free
artificial surface; the surface with first-order trend; and the
surface with second-order trend.

Error Simulation
In this stage of the experiment, errors were simulated numeri-
cally and applied to the three artificial surfaces described
above. As noted previously, this investigation simulated
elevation errors associated with: (a) uncertainty in camera
position and orientation estimates; (b) uncertainty in the
camera focal length; and (c) the performance of the stereo-
matching algorithm in low texture areas. Although many
sources of error are encountered in the photogrammetric
process, these errors represent problems common to all
digital photogrammetric applications. However, they are
nonetheless quite different in nature. Whereas (a) is a general
problem, (b) is common with semi-calibrated cameras or
cameras with out-of-date calibration certificates, and (c) is
frequently encountered when using automated DEM genera-
tion methods and poor imagery with a high signal-to-noise
(SNR) ratio (i.e., low contrast).

In order to simulate the photogrammetric errors numeri-
cally, a program was developed to generate a set of image
coordinates by working in reverse through the basic form
of the collinearity equations, starting with a set of object-
space coordinates that describe a surface. This required an
input DEM, a set of exterior orientation parameters, and the
corresponding camera focal length. These parameters could
then be perturbed systematically under an approximated
Gaussian distribution according to the standard error of their
estimation (as determined in the Glen Affric project). In the
case of simulating errors caused by automated data extrac-
tion routines in low SNR areas, the perturbation was applied
directly to the image-space coordinates with sensor param-
eters left unchanged. Using perturbed values, new ground
coordinates could be produced to give a new DEM containing
the simulated error.

For each type of error, the parameters were perturbed
randomly and repeated over several iterations (approximately
35) to achieve a sample of error surfaces that were representa-
tive in terms of magnitude and orientation under the speci-
fied standard errors. This produced about 105 surfaces in
total. Since: (a) the scaling analysis routine is computationally
intensive; and (b) the investigation did not call for detailed
characterization of error, only two examples of each error
type were selected to carry forward to the scaling analysis.
The first was selected to represent relatively small errors (i.e.,
�1 standard deviation). The second was selected to represent
relatively large errors (i.e., approximately 2 standard devia-
tions). Overall, the above procedure resulted in 21 surfaces to
which scaling analysis was applied. They included:

1. The original artificial surface;
2. The original artificial surface to which first-order trend was

added;
3. The original artificial surface to which second-order trend

was added; and
4. The two sample surfaces (i.e., one representing small errors

and the other representing large errors) for each of the three
types of errors that were modeled, and applied to each of
(1), (2) and (3).

Table 1 lists these 21 surfaces and gives relevant details for each.
The effect of detrending on scaling analysis was

assessed by applying first- or second-order detrending
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routines to all the surfaces to which both trend and error
had been added. The scaling analysis was then applied.
The detrending was carried out by fitting first- and second-
order polynomials to the trended error surfaces, again using
the POLY2FIT algorithm and subtracting them from each
surface. The effects of both first- and second-order detrend-
ing were assessed because trend can exist over several
orders of magnitude. Higher-order detrending was not
applied because as the order of the detrending polynomial
increases, the risk of removing important surface informa-
tion also increases. Table 2 lists the 12 additional surfaces
that were subject to scaling analysis for assessing the effects
of detrending.

Scaling Analysis and the Estimation of D
The final step of the experiment was to produce 2D semi-
variogram surfaces from which D could be estimated for
all 33 DEMs produced in the preceding section. From these,
estimates of the surfaces’ fractal dimension could be derived.
This was carried out using a program written explicitly
for this experiment called 2DSVAR that calculates the
semi-variance between elevations for lags in all directions
according to Equation 1. The program produces a semi-
variogram surface with lag in the x and y directions repre-
sented on the horizontal axes and semi-variance represented
on the vertical axis.

The approach used to conduct the fractal analysis was
developed in Carbonneau (2003). The routine extracts 1D
profiles from a 2D semi-variogram, converts them to binary
images and uses simple image processing techniques to
detect linear segments. The output is a 2D semi-variogram
and a fractal map with semi-variance and D plotted by
direction, respectively. The image processing approach to

determining D from the 2D semi-variogram begins by apply-
ing simple convolution filtering to binary images generated
from semi-variogram profiles in order to detect any linear
segments in the profiles. To illustrate, the following kernel
(K45) can detect lines with an orientation of 45°:

(5)

Consider two 3 
 3 binary matrices (L45 and L90) that
represent two binary images (one with a 45° line and the
other with a vertical line, respectively). These are given as:

(6)

(7)

Convolving L45 and L90 with K45 gives:

(8)

This shows how convolving a line detection kernel (K�)
with a binary image will yield a predictable maximum
where a line of orientation � is present. We refer to this
value as the detection threshold.

When using small 3 
 3 kernels like L45 and L90, only
lines with orientations of 0°, 45°, and 90° can be detected.
However, for the purpose of detecting linear sections in
a semi-variogram profile, a higher angular resolution is
required. Thus, the size of the convolution kernel was
increased. This improves the angular resolution whilst
simultaneously increasing the computational requirements
of the convolution. Experimentation revealed that a kernel
size of 50 
 50 produced an angular resolution of 1° with
manageable computational demands. In the 50 
 50 line
detection kernel, pixels on the line that corresponded to an
angle of � were set to 49 while the remainder of the matrix
cells are set to �1 to conform to the kernel of zero-sum
convention. When a 50 
 50 binary image containing a line
of orientation � is convolved with K� the result is 2450. The
difference in convolution maxima for angles � and � � 1° is
at least 1225 which allows for a reliable capacity for resolv-
ing angles � and � � 1°.

The line detection kernels were applied to the 1D semi-
variograms by converting them into binary images where
those on the profile were represented by a 1 and those that
were not were represented by a 0. The pixel dimensions of
the binary profile image were dictated by the size of the
kernel. Since a kernel window of 50 
 50 pixels was chosen,
the linear sections in the semi-variogram image detected by
this kernel will have a minimum length of 50 pixels. Thus,
the minimum length detectable by the kernel will depend on
the resolution of the image. Since the reliability of linear
sections will decrease as the length of the section decreases,
the author found that a minimal length of one-half order of
magnitude could be reliably achieved. Thus, the image size
of the semi-variogram was set to 200 
 200 pixels which
produced the correct image resolution. Additionally, a buffer
zone of zeros 50 pixels in width was added around the
perimeter of the input images to insure that edge effects
associated to the convolution process would not influence
the results. However, round-off errors from the digitization
produced minor imperfections in linear sections. These

K45 � L45 � 6   and   K45 � L90 � 0.

L90 � �0  1  0
0  1  0
0  1  0�.

L45 � �0  0  1
0  1  0
1  0  0�   and

K45 � � � 1 �1   2
�1   2 �1

2 �1  �1 �.
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TABLE 1. DETAILS OF THE ERROR SIMULATION SURFACES. ERROR VALUES

GIVEN ARE (†)THE ROOT MEAN SQUARE VALUES FOR THE POSITIONAL/
ORIENTATION ERRORS AND (‡)THE STANDARD DEVIATION OF ERROR

Trend

Error Type None First-Order Second-Order

None t0 t1 t2
Small EO (0.212 m/0.0315o)† t0eoS t1eoS t2eoS
Large EO (0.593 m/0.0724o)† t0eoL t1eoL t2eoL
Small FL (3.706 
 10�5 m) t0flS t1flS t2flS
Large FL (7.933 
 10�5 m) t0flL t1flL t2flL
Small RE (0.071 m)‡ t0reS t1reS t2reS
Large RE (0.357 m)† t0reL t1reL t2reL

(EO � exterior orientation; FL � focal length; RE � random elevation).

TABLE 2. DETRENDED SURFACES USED IN THE FRACTAL ANALYSIS

Error Detrended Order of
Surface ID Surface ID Detrending

t1eoS t1eoSd1 First
t1eoL t1eoLd1 First
t1flS t1flSd1 First
t1flL t1flLd1 First
t1reS t1reSd1 First
t1reL t1reLd1 First
t2eoS t2eoSd2 Second
t2eoL t2eoLd2 Second
t2flS t2flSd2 Second
t2flL t2flLd2 Second
t2reS t2reSd2 Second
t2reL t2reLd2 Second
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imperfections meant that not all positive pixels in the detec-
tion kernel fell within the linear sections, which caused the
line detection to fail. To combat this, morphological dilation
was applied to the binary images. However, as dilation caused
the alteration of the predicted detection threshold, it was
necessary to recalculate this value.

Applying morphological dilation to L45 gives:

(9)

which, when convolved with K45, gives:

(10)

In the dilated image, each off-diagonal value has reduced
the convolution result by 1. Thus, to predict the detection
threshold in a dilated image, the off-diagonal pixels must be
counted. This can be accomplished using an identity convolu-
tion filter. Convolving DL45 with a 3 
 3 identity matrix gives:

(11)

Since there are nine pixels in total and three along the
diagonal in DL45, Equation 11 reveals that four pixels are
off the diagonal. Thus, the detection condition for linear
sections can be generalized as:

(12)

where K is the line detection kernel, DL is the dilated binary
line image, SK is the size of the detection kernel in pixels,
and ISK is an identity matrix of size SK. Equation 12 yields
an exact threshold value for each SK 
 SK area. Each point
that satisfied the condition represented a detected linear
section of length SK. Thus, linear sections of length I pixels,
where I � SK, will have I – SK pixels that satisfy the condi-
tion. To identify linear sections or varying orientations, the
convolution is repeated with detection kernels for angles
ranging from 0° to 90°, in increments of 1°. However, since
the morphological dilation of the binary semi-variogram
profile images added an element of uncertainty to the profile
and thus a slight tolerance to curvature, statistical testing
was required. Linear regression was used to test the linearity
of identified bands and an f-test was applied to test the
significance of any discrepancies.

One of the benefits of the routine was that no a priori
knowledge was required about the number of linear segments
present, their location within the profile, or their slope. This
allowed fractal characteristics such as multifractals and
anisotropy to be identified reliably, without confusion with
those zones with unreliable fractal structure due to insuffi-
cient observations of semi-variance (zones of unreliability).
An example of the program’s output is given in Figure 1
which shows the results for the artificial surface used here
(t0). The undulation of the edges of both the semi-variogram
and fractal maps is a product of the DEM’s rectangular shape
and the gridded sampling pattern. While the analysis itself
was carried out using color semi-variogram and fractal maps,
grayscale figures have been used for the purposes of publica-
tion. Additionally, as the directional semi-variogram plots are
not discussed further in this paper, they have been omitted
from the remaining figures in the text.

Results
Figure 2 shows the DEM that was generated for this experi-
ment (Figure 2a) and the photogrammetrically-generated DEM

K � DL � (SK)2 � ISK � DL

DL45 � I3 � 7.

K45 � DL45 � 2.

DL45 � �0  1  1
1  1  1
1  1  0�

upon which it was modeled (Figure 2b). As the software
generates surfaces with zero mean (i.e., no first-order trend),
the measured DEM was detrended so the DEMs could be
compared. Figure 2 shows how these surfaces would have
different values of D with the artificial surfaces being some-
what rougher (i.e., with a higher value of D). However, this
was unavoidable due to the decision to generate the surface
using 	 � 0.5 to minimize the influences of strong persist-
ence and antipersistence. The two trend surfaces that were
generated from the Glen Affric data to assess the role of
trend are given in Figure 3. These surfaces were added to
the artificial DEM in Figure 2a to give the two DEMs in
Figure 4. The three resulting DEMs were the starting point
of the experiment presented in this paper.

The output of the numerical error modeling can be
observed by plotting the error surfaces that were generated
in 3D. The error surfaces shown in Figure 5 and described in
Table 3 represent the sample of error surfaces that were
carried forward to the scaling analysis stage of the experi-
ment. The plots on the left side (Figure 5a, 5c, and 5e)
represent typically small errors (i.e., �1 standard deviation)
while those on the right side (Figure 5b, 5d, and 5f) repre-
sent larger errors (i.e., approximately 2 standard deviations).
The simulation produced two types of errors: systematic
errors corresponding to error in exterior orientation and focal
length that could be described with a first-order polynomial
(Figure 5a through 5d); and random error corresponding to
random image coordinate errors that could be described
stochastically (Figure 5e and 5f). An important observation
at this stage is the non-linear relationship between the
magnitude of the exterior orientation parameter perturbation
and the resultant surface error. Whereas the small exterior
orientation errors resulted in surface elevation errors that
averaged 0.523 m, the large errors, roughly double that of
the smaller error, resulted in surface elevations errors that
averaged �6.019 m. This type of relationship was not seen
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Figure 1. An example of the directional semi-variogram
and fractal map produced using the original artificial
surface used in this experiment. Note that the directional
semi-variogram is included here to show the relationship
between the directional semi-variogram and the fractal
map. It will not be included in subsequent figures.

07-04-087  12/11/06  3:28 PM  Page 71



with the focal length or random elevation errors, and shows
that small additional degradation of exterior orientation error
may propagate through to much larger scale surface errors.

The directional semi-variogram and the fractal map of
the original trend- and error-free surface (t0) (Figure 1) show
that the artificial surface is largely isotropic, more clearly in
Figure 1b than in Figure 1a, with D varying only slightly
with direction between about 2.58 and 2.65. The discrep-
ancy between the value of D here and the value of 2.50 as
predicted by the assignment 	 � 0.5 is not surprising since
the estimation of D is highly dependent on both the method
used to make the estimation as well as the method used to
generate the fractal surfaces (Russ, 1994). However, for
comparing relative changes between the fractal characteris-
tics of a surface, the absolute determination of D is not
necessary. The fractal map also clearly shows what will be
referred to as the zone of unreliability. This is an area along
the bottom of the map (large lags) where the estimates of D
may be unreliable due largely to the comparatively small
number of observations used in the calculations. In this
case, this zone is distinct from the surface’s main fractal
structure which enables confidence to be placed in the
results from the stable part of the fractal map.

As expected, the introduction of systematic errors to the
original surface had minimal effect on the scaling character-

istics of the surface. This suggests that scaling characteristics
will be insensitive to photogrammetric errors where the
errors generated produce trend-like elevation errors. In
strong contrast, the random elevation errors proved to have
a considerable effect on the fractal characteristics of the
surface even when the error was relatively small. Figure 6
gives the semi-variograms and fractal maps of the original
surface after the addition of the random errors. Where the
error was relatively small (Figure 6a), the surface saw an
overall increase in roughness and the surface became more
anisotropic. Also, multifractal bands appeared in the fractal
map where only singular bands had previously been identi-
fied. Overall, the fractal structure began to disintegrate at
both high and low lags and the zone of unreliability became
larger and less well defined. Where the error was somewhat
larger (Figure 6b), the fractal structure of the surface com-
pletely disintegrated leaving no trace of the fractal structure
of the original surface.

Figure 7 gives the fractal maps of the original surface
after the addition of the first- and second-order trend shown
in Figure 3. Contrary to the results suggested above, these
results illustrate that the interpretation of a surface’s scaling
characteristics are highly sensitive to trend but only when
the slope is of comparable scale to the relief of the surface.
This is potentially important for surfaces of low relief (e.g.,
floodplains) where even the systematic errors like those in
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Figure 2. (a) The artificial fractal surface that formed
the basis of this experiment; and (b) the detrended
Glen Affric field site surface model.

Figure 3. (a) First-order; and (b) second-order trend
surfaces derived from the Glen Affric DEM.
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Figure 5a through 5d could significantly affect the outcome
of a scaling analysis. Comparison of these maps with that of
the original surface reveals that surface trend causes: (a) a
substantial decrease in roughness of the surface with the
greatest effect occurring in the direction of maximum slope;
(b) the degradation of the fractal structure at high and low
lags; (c) an increase in the extent of the zone of unreliability
accompanied by a decrease in its distinctness from the main
fractal structure; (d) an increase in surface anisotropy; and
(e) the appearance of mixed fractal bands. This was true for
both first- and second-order trend. However, with the latter,
portions of the fractal map disappeared completely. This
suggested that the power law structure of the semi-variogram
surfaces was lost over the entire range of lags. A similar
result was found when the random errors were added to the
surfaces with trend.

The effects of detrending on the scaling characteristics
of the different surfaces are revealed in Figure 8 and
Figure 9, which give the results of the surfaces containing
systematic error, and Figure 10 and Figure 11, which give
the results of the surfaces with random error. Comparison
of these results with the fractal map of the original surface
in Figure 1 showed how first- and second-order detrending
tended to remove the effects caused by these errors though
the degree of removal depended largely on the nature of

the error itself. In the case of systematic errors, first-order
detrending made some progress towards restoring the
original fractal structure from the effects of both trend and
error, though remnants still existed at high and low lags
(Figure 8). This suggests that the presence of error, though
having minimal effect on the scaling characteristics of the
surface, will play some role in prohibiting the removal of
the first-order trend, or the scaling characteristics would
have been restored to its pre-trend state. However, this
role will depend on the relative orientation of the error
surface to the surface itself. When second-order detrending
was applied, the resulting fractal maps were identical to
those for the original surface (Figure 9). In other words,
the second-order detrending removed all traces of the
effects of both the second-order trend and the error. This
highlights the benefits of detrending a DEM with a second-
order polynomial prior to conducting any kind of scaling
analysis.

In the case of the random elevation errors, as expected
the effect of detrending on the surface’s fractal structure was
minimal since the errors that were introduced cannot be
described using a polynomial. Comparing Figure 10 and
Figure 1 revealed that, in the presence of small random
errors, the first-order detrending routine made some progress
towards restoring the fractal structure of the surface. How-
ever, as detrending will highlight high-frequency informa-
tion in a data set, the random errors caused the emergence
of several mixed fractal bands and one area where the fractal
structure disappeared completely. Additionally, the surface
maintained a higher value of D than the original surface.
Notice also how the zone of unreliability merged with the
main fractal structure of the surface making it more different
to identify. With the large random errors, the first-order
detrending had no effect.

Finally, Figure 11 shows the fractal maps of the same
two surfaces after second-order detrending. This time the
second-order polynomial was even more successful at
restoring the fractal structure of the surface in the pres-
ence of the small random errors and the zone of unrelia-
bility even became distinct. However, mixed fractal bands
were still present and the surface still showed a higher
value of D as compared to the original surface. With the
large random errors, the second-order detrending again
had no effect.

Discussion
The numerical modeling of the selected photogrammetric
errors produced both systematic errors caused by the random
perturbation of the exterior orientation parameters and the
focal length, and random errors caused by the perturbation
of the image coordinates. Although the systematic errors
had little effect on the scaling characteristics of the sur-
face, the non-linear nature of the relationship between
the magnitude of the parameter uncertainty and the resultant
magnitude of the error surface is noteworthy for photogram-
metry in general. In photogrammetric data collection, the
elements of interior and exterior orientation are adjusted
during the bundle adjustment and constrained by the uncer-
tainty of their estimation which is typically a user-defined
parameter. Understandably, the over- or under-estimation
of these values can have an important influence on the
results of the adjustment. Overestimating the uncertainty
under-constrains the model producing a better fit statisti-
cally but at the possible expense of accuracy. Underestimat-
ing the uncertainty has the opposite effect. However, the
non-linear relationship demonstrated between the magnitude
of parameter uncertainty and the magnitude of the conse-
quent error surface suggests that the consequences on data
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Figure 4. The artificial surface after incorporating: (a)
the first-order; and (b) the second-order trend surfaces
from Figure 3.
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Figure 5. Plots of the error surfaces caused by the exterior orientation errors in (a) and (b); the focal
length errors in (c) and (d); and the random elevation errors in (e) and (f). The plots in the left hand
column represent a sample of typically small errors (i.e., �1 standard deviation) while those in the
right hand column represent larger errors (i.e., approximately 2 standard deviations).
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quality of under-constraining a model may be greater than
over-constraining a model.

In strong contrast to the systematic errors, the surface’s
fractal structure was understandably highly sensitive to
random errors. Even where errors were relatively small, the
fractal structure of the surface quickly disintegrated, thus
minimizing the reliable information obtainable from the
scaling analysis. Of even greater concern is the fact that
these random errors caused changes in the fractal structure
of the surface that mimicked characteristics that have been
found to occur in nature. For example, the anisotropy and
mixed fractal bands seen in Figure 6 could easily be inter-
preted as artifacts of natural processes rather than the result
of errors. Therefore, it is of paramount importance that a
priori evidence for the existence of such features exist before
reaching such conclusions (i.e., Butler et al., 2001). These
results also raise questions about the interpretability of
scaling analysis in the absence of robust quality assessment
and highlight the importance of assessing either the theoretical

or the measured non-systematic error in a surface. This
paper has presented a useful means for achieving this
through numerical error simulation.

As well as revealing information about how random
errors affect the results of scaling analysis, these results also
have important methodological implications for how a
scaling analysis should be conducted and interpreted. First,
the results have shown that the presence of surface trend
has a considerable effect on the outcome of scaling analysis
(Figure 7). This lends support to the argument that the
detrending is required in order to derive reliable estimates
of D (Cressie and Hawkins, 1980) and opposes Armstrong
(1986)’s position that it may not be necessary. Unfortunately,
the effects go beyond simply causing a change in the overall
representation of the roughness of the surface. As was
found with random elevation errors, trend produced the
same artifacts that are thought to be produced by natural
processes such as anisotropy and mixed fractal bands. This
brings the credibility of scaling analysis as a whole into
question where the role of trend has not been thoroughly
addressed, since the cause of the scaling properties observed
in the semi-variogram may be uncertain. The strong influ-
ence of trend on scaling analysis shows that, although the
distinction between trend and important surface features is
not well defined, it is important that the goals and limita-
tions of scaling analysis are well defined.

In terms of detrending, the results have shown that the
success of detrending at removing the scaling effects of
trend depends largely on the nature of error in the DEM.
While first-order detrending failed to remove the effects of
trend in the presence of systematic error common in pho-
togrammetric data, second-order detrending did effectively
remove the effects of both, irrespective of the magnitude of
the error. However, in the presence of random errors, the
ability of detrending to remove the effects of trend was
limited. Even with only small random errors the detrending
could not completely remove the effects of trend on the
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TABLE 3. SUMMARY STATISTICS OF THE ERROR SURFACES WITH SMALL

ERRORS REPRESENTING DEVIATIONS BELOW 1 STANDARD DEVIATION AND

LARGE ERRORS REPRESENTING DEVIATIONS AROUND 2 STANDARD DEVIATIONS

Error Minimum Maximum Mean Standard
Surface (m) (m) (m) Deviation (m)

EOS (Figure 5a) 0.505 0.540 0.523 n/a
EOL (Figure 5b) �6.322 �5.725 �6.019 n/a
FLS (Figure 5c) �0.108 �0.106 �0.107 n/a
FLL (Figure 5d) 0.228 0.231 0.229 n/a
RES (Figure 5e) �0.122 0.122 0.003 0.071
REL (Figure 5f) �0.610 0.609 0.002 0.357

(EO � exterior orientation; FL � focal length; RE � random elevation).

Figure 6. Fractal maps of the original surface after the
introduction of random elevation errors of: (a) small;
and (b) large magnitude.

Figure 7. Fractal maps of original surface with: (a) first-
order trend; and (b) second-order trend.
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unreliable since their presence can inhibit the complete
removal of surface trend.

A final point worth discussing is the performance of the 2D
semi-variogram and fractal map method that was used in this
research for estimating D. This research has shown that the
approach proved to be a useful method for carrying out scaling
analysis. While simple to implement, the resultant estimates of

surface’s scaling properties though some improvement was
seen. With large errors, the detrending had no effect. While
the importance of applying second-order detrending prior to
scaling analysis is clear, an important weakness of scaling
analysis has been highlighted. Even when non-systematic
errors are sufficiently small to have minimal effect on the
scaling structure of the surface, the results may be still be
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Figure 8. Fractal map of first-order trended surface containing: (a) small; and (b) large exterior orienta-
tion errors; and (c) small; (d) and large focal length errors after first-order detrending.

Figure 9. Fractal map of second-order trended surface containing: (a) small; and (b) large exterior
orientation errors; and (c) small; (d) and large focal length errors after second-order detrending.
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D were reliable having passed though statistical significance
testing and the graphical 2D output enabled easy identification
of important scaling features such as anisotropy and multifractals

and also of the scales across which the estimates of D were
reliable. These characteristics are especially important for
scaling analysis carried out on natural surfaces.

Conclusion
This paper has presented the results of an investigation
into the effects that can be expected when common DEM
error, including those associated with perturbation of the
camera exterior orientation, focal length and DEM image
coordinates, propagate through a scaling analysis. Included
in this investigation was the role of detrending, which was
deemed important since the role of trend and detrending in
scaling analysis is not yet established in the literature. The
paper demonstrated both the importance of error analysis,
especially when employing novel methods of data process-
ing and the value of the two dimensional scaling algorithm.
The results showed that uncertainty in exterior orientation
parameters and focal length caused systematic errors, which
had little influence on the scaling characteristics of the
surface. The effect of these errors was easily removed using
second-order detrending. However, random errors had a
strong influence on the scaling characteristics of the surface,
and their presence interfered with the successful removal of
the effects of trend even when they were relatively small. Of
particular concern was the similarity of the artifacts caused
by random elevation errors and trend to those believed to
be associated with real fractal characteristics (i.e., mixed
fractals and anisotropy). This finding cast doubt on the
authenticity of the results of scaling analysis that show
mixed fractal and anisotropy when based upon automati-
cally-generated digital elevation models in the absence of
other evidence (theoretical or empirical) to suggest their
existence. Thus, before scaling analysis applications can be
used to make any conclusions about a surface, a robust
quality assessment is required to determine whether the
results reflect the characteristics of error or of the surface
itself. While this paper has demonstrated the importance of
an investigation such as this, there is a clear need to expand
this type of research into other types of DEM errors, surface
characteristics, data sources, and methods of analysis.
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