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ABSTRACT
The distribution of angles subtended between pairs of galaxies and the line of sight, which
is uniform in real space, is distorted by their peculiar motions, and has been proposed as a
probe of cosmic expansion. We test this idea using N-body simulations of structure formation
in a cold dark matter universe with a cosmological constant and in two variant cosmologies
with different dark energy models. We find that the distortion of the distribution of angles
is sensitive to the nature of dark energy. However, for the first time, our simulations also
reveal dependences of the normalization of the distribution on both redshift and cosmology
that have been neglected in previous work. This introduces systematics that severely limit the
usefulness of the original method. Guided by our simulations, we devise a new, improved test
of the nature of dark energy. We demonstrate that this test does not require prior knowledge
of the background cosmology and that it can even distinguish between models that have the
same baryonic acoustic oscillations and dark matter halo mass functions. Our technique could
be applied to the completed BOSS galaxy redshift survey to constrain the expansion history of
the Universe to better than 2 per cent. The method will also produce different signals for dark
energy and modified gravity cosmologies even when they have identical expansion histories,
through the different peculiar velocities induced in these cases.

Key words: cosmology: theory – dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

One of the primary scientific goals of ongoing and future galaxy
surveys is to determine what is responsible for the accelerating ex-
pansion of the Universe (Schlegel et al. 2007, 2009; Blake et al.
2010; Laureijs et al. 2010; Schlegel et al. 2011). There are two
main considerations which affect current tests of dark energy. First,
the differences between the observables expected from compet-
itive cosmological models are small. Secondly, given the huge
volumes that will be covered by future surveys, it is likely that
systematic errors will dominate the interpretation of the measure-
ments. For both these reasons, it is generally accepted that the
dark energy challenge should be tackled using multiple cosmolog-
ical probes (Albrecht et al. 2006; Peacock et al. 2006). Guided
by numerical simulations, we assess a recently proposed test, a
version of the Alcock–Paczynski test (Alcock & Paczynski 1979),
which uses measurements of galaxy pairs to constrain the cosmo-
logical model. We expand the available probes of dark energy by
setting out an improved version of the test which we show can
distinguish models that otherwise cannot be separated by existing
methods.

�E-mail: elise.jennings@durham.ac.uk

The Alcock–Paczynski test measures the distortion of a spherical
object assuming an incorrect cosmological model is used to compute
distances. The version of this test considered here models the distor-
tion in a spherically symmetric distribution of galaxy pair angles in
redshift space and was first proposed in a form similar to that used
in this paper by Phillipps (1994), who considered the distribution
of angles between quasar pairs. Recently, Marinoni & Buzzi (2010)
introduced an important revision to this test by considering the an-
gle between pairs of galaxies viewed in redshift space. Building on
the work of Marinoni & Buzzi, the method outlined in this paper is
a refined geometrical test of dark energy. The critical feature of our
extension is the use of N-body simulations of different dark energy
models to test the idea that measuring the anisotropic distribution of
galaxy pairs in redshift space is a useful probe of cosmology. This
geometrical test of dark energy will complement and extend cur-
rently used geometrical probes such as measuring the light curves
of Type Ia supernovae (SNe Ia; Riess et al. 1998; Perlmutter et al.
1999; Riess et al. 2011) and applications of the Alcock–Paczynski
test to baryonic acoustic oscillations (BAOs; e.g. Blake et al. 2011).

In a Friedmann–Robertson–Walker universe, pairs of galaxies
should be distributed with random orientations if the fundamental
assumptions of homogeneity and isotropy are correct. This sim-
ple test of cosmology is complicated by two effects: first, we do
not observe galaxies directly in real space but in redshift space,
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where peculiar velocities, distinct from the Hubble flow, displace the
position of a galaxy along the line of sight from its true position. This
introduces a preferred direction, with the result that galaxy pairs are
no longer randomly distributed. Secondly, in order to convert ob-
served angles and redshifts into comoving distances, an observer
needs to assume a cosmological model. An intrinsically spherical
object, such as a cluster of galaxies, or a spherically symmetrical
distribution, such as the distribution of galaxy pairs we consider in
this paper, will appear distorted if measured assuming a cosmology
that does not match the true underlying cosmology of the Universe
(Alcock & Paczynski 1979).

Based on this idea, Phillipps (1994) proposed a test where the
hypothetical sphere proposed by Alcock & Paczynski (1979) is
replaced by randomly oriented quasar pairs. In the absence of pecu-
liar motions, a large sample of quasar pairs should have a uniform
distribution in the cosine of the angle between each pair, if the
correct cosmology is adopted. Marinoni & Buzzi (2010) developed
this test by modelling the effect of the redshift-space distortions
as a Doppler shift in the positions of the galaxies. They applied
this model to galaxy pairs in the Sloan Digital Sky Survey (SDSS)
(Abazajian et al. 2009) at low redshift and the DEEP2 galaxy red-
shift survey (Coil et al. 2004) at z ∼ 1.3. After selecting galaxy pairs
according to a set of constraints discussed in Section 4, Marinoni
& Buzzi were left with a sample of 721 pairs in the seventh data
release of the SDSS at z ∼ 0. Mainly due to the small sample size,
Marinoni & Buzzi were only able to distinguish a � cold dark matter
(�CDM) cosmology from somewhat extreme alternatives, namely
an Einstein–de Sitter universe and an open universe with no dark
energy. We note that these models have already been ruled out by
other tests. This does not, however, imply that the test cannot be used
to yield competitive constraints on dark energy with a larger sample
of pairs. Note that the Alcock–Paczynski test measures a distortion
parameter which is proportional to the angular diameter distance
at the redshift of the object, DA(z), multiplied by the Hubble rate,
H(z). The test we propose in this paper models the distribution of
galaxy pairs in real and redshift space assuming a distant observer
approximation. This assumption removes any dependence on the
angular diameter distance in the distortion parameter. As a result,
this technique allows us to measure the Hubble rate directly.

In this paper, using subhalo pairs in large-volume N-body simu-
lations, we test the method of Marinoni & Buzzi and its potential to
distinguish between cosmologies. First, we focus on the selection
criteria necessary to provide a homogeneous sample of pairs whose
distribution in redshift space agrees with the theoretical model of
Marinoni & Buzzi. With robust selection criteria, we then apply this
test to different simulations to see if these dark energy models can be
distinguished from �CDM. A critical assumption made in the anal-
ysis by Marinoni & Buzzi is that the normalization of a theoretical
model of pair distribution does not evolve with redshift. We show,
using numerical simulations, that this assumption is incorrect. We
also consider the practical difficulties associated with obtaining an
accurate measurement of this normalization parameter observation-
ally. We demonstrate that the test, as originally proposed, suffers
from large systematics which limit its utility. We present an im-
proved methodology which uses N-body simulations and does not
require prior knowledge of the true cosmological model.

Most attention to date has focused on cosmological tests which
require measurements on large scales, such as the rate at which cos-
mic structures grow (Guzzo et al. 2008; Wang 2008), the apparent
location of BAOs (Sánchez et al. 2009; Blake et al. 2010) and the
projected matter density as measured through weak lensing (Massey
et al. 2007). It is important to expand this arsenal of tests. This intro-

duces sensitivity to different systematics, which, alongside results
from other probes, will lead ultimately to a more convincing mea-
surement of the properties of dark energy. Also, it is useful to devise
new tests which are not reliant on measuring the galaxy distribution
on the very largest scales, thereby avoiding the need for an accurate
determination of the mean galaxy density (for another example, see
Nusser, Branchini & Davis 2011). The test proposed in this paper
requires a large volume simply to accumulate a large sample of
galaxy pairs; there is no requirement implied on the accuracy of the
photometry across a survey used for this purpose.

A novel feature of our analysis is the use of N-body simula-
tions to validate and improve upon the methodology proposed by
Marinoni & Buzzi. Recent work has shown that numerical sim-
ulations of structure formation have an important role to play in
modelling cosmological probes and assessing potential systematic
errors. Angulo et al. (2008) demonstrated that the shape of the power
spectrum of galaxy clustering is substantially different from the
predictions of linear perturbation theory even on very large scales
(see also Smith, Scoccimarro & Sheth 2007; Smith, Scoccimarro
& Sheth 2008; Seo et al. 2008; Jennings et al. 2010). The simula-
tion results led to revised analyses of BAOs, which attempt either
to model the distortions introduced by non-linearities and redshift
space, or to reconstruct the linear theory signal (Seo & Eisenstein
2007; Sánchez, Baugh & Angulo 2008; Montesano, Sánchez &
Phleps 2010; Montesano, Sanchez & Phleps 2011). Similarly, N-
body simulations have demonstrated that the measurement of the
growth factor from redshift-space distortions requires careful mod-
elling (Jennings, Baugh & Pascoli 2011a; Okumura & Jing 2011).
Jennings et al. (2011b) showed that a naı̈ve application of a lin-
ear theory model for the distortion of clustering in redshift space
can lead to a catastrophic misinterpretation of the measured growth
factor. The study in this paper is in a similar spirit; the availability
of N-body simulations to model the pair distribution allows us to
devise an improved cosmological probe.

The outline of this paper is as follows. In Section 2, we review the
theoretical model of Marinoni & Buzzi (2010) for the anisotropic
distribution of pairs and its dependence on cosmology. In Section 3,
we discuss the quintessence dark energy models and the N-body
simulations used in this paper. In Section 4, we list and test the
selection criteria used to select a homogeneous sample of galaxy
pairs from the N-body simulations whose distribution agrees with
the theoretical predictions. In Section 5, we present our results,
comparing the theory with measurements from simulations, for the
two dark energy and the �CDM cosmologies and demonstrate that
a robust test of cosmology can only be achieved by combining
observations with numerical simulations. In Sections 6 and 7, we
present our summary and conclusions.

2 TH E O R E T I C A L BAC K G RO U N D :
T H E D I S T R I BU T I O N O F G A L A X Y PA I R S

Following the derivation and discussion in Marinoni & Buzzi (2010)
(see also the alternative derivation in Phillipps 1994), let us consider
a pair of gravitationally bound galaxies, A and B, at an observed
angular separation, θ , as shown in Fig. 1. In a flat universe, the angle
that galaxy B subtends at galaxy A, as measured from the observer’s
line of sight through A, which we refer to as the tilt angle, t, can be
written as

sin2 t =
[

1 +
(

cot θ − χA

χB sin θ

)2
]−1

, (1)
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Figure 1. An illustration of the actual, t, and observed, τ , angles subtended
between a pair of galaxies, A and B, and the line of sight through A in real
space (black) and in redshift space (red). At the observer’s position, the pair
subtends an angle θ . The comoving line-of-sight separation of the pair is
shown as �r‖ and �r‖,obs in real and redshift space, respectively.

(see Marinoni & Buzzi 2010 for the general expression in a curved
universe). Here χA(B) is the radial comoving distance to galaxy A(B)
which is given by

χ (z) = c

a0

∫ z

0

dz′

H (z′)
, (2)

where a = 1/(1 + z) is the scalefactor of the universe with current
value a0 = 1, c is the speed of light and H = ȧ/a is the Hubble pa-
rameter with current value H0 = 71.5 km s−1 Mpc−1 (Sánchez et al.
2009). In an isotropic and homogeneous universe, the orientation of
pairs of bound galaxies will be randomly distributed, allowing us to
predict the probability distribution for t, F(t), and a measure of the
distribution μ = 〈sin 2t〉. In the absence of peculiar velocities, an
observer calculating the ensemble average of equation (1) should
find a value of μ = 2/3, independent of cosmology, as long as the
correct cosmology is assumed when converting angles and redshifts
to comoving distances for each member of the pair.

Galaxies have velocities in addition to the Hubble flow which
result in inferred positions which appear displaced along the line of
sight. As a result, the true angle t between a pair of gravitationally
bound galaxies will appear as an angle, τ (see Fig. 1). The angle
subtended between the pair of galaxies in redshift space, calculated
according to equation (1), corresponds to a measurement of the
angle τ and not t, and the average over all pairs will no longer be
a random distribution. The result is a skewed distribution whose
mean will differ from the expected value for a uniform distribution
of μ = 2/3. Adopting the correct cosmology to calculate the en-
semble average in equation (1) will then provide a measure of the
mean of the apparent distribution in redshift space after intrinsic
peculiar velocities distort the orientation of the pairs. Marinoni &
Buzzi modelled this distortion as a simple Doppler shift where the
observed line-of-sight separation is related to the actual separation,
to first order in v/c, by

drobs = dr + dv‖
H (z)

(1 + z) , (3)

where drobs and dr are the observed and actual line-of-sight separa-
tions of a pair of galaxies A and B and dv‖ = vA · r̂A − vB · r̂B is
the line-of-sight peculiar velocity difference, where r̂A(B) represent
unit vectors in the direction of each galaxy in the pair. The line-

of-sight comoving separation is dr = dχ , as given in equation (2).
Note this equation is a result of relating the position observed in
redshift space to the actual position in real space as dzobs = dz +
dv‖ (see e.g. Hamilton 1998). In the distant observer approxima-
tion, the separation between galaxies is assumed to be small com-
pared to the distance between them and the observer. Under this
assumption, the observed comoving transverse separation is equal
to the true transverse separation of the pair, dr⊥,obs ≈ dr⊥. If the
redshift difference of the pair �z is a lot less than unity such that
�z ≈ dz, then the observed, τ , and actual tilt, t, of the pair can be
simply related by the observed, �r‖,obs, and the actual line-of-sight
finite separation, �r‖, according to

tan t

tan τ
= �r‖,obs

�r‖
= 1 + (1 + z)

H (z)

�v‖
�r‖

. (4)

The relation given in equation (4) can then be used to transform the
true distribution of galaxy pairs, F(t), into the apparent distribution,
�(τ ). Using conservation of probability, Marinoni & Buzzi derived
the probability distribution function of the apparent angle written
in terms of the true angle as

�(τ )dτ = F (t)dt . (5)

From this, it follows that �(τ ) is given by

�(τ )dτ = 1

2

(1 + σ 2)(1 + tan2 τ )

[1 + (1 + σ 2) tan2 τ ]3/2
| tan τ |dτ , (6)

and the parameter σ depends on the cosmological expansion history
as

σ 2(z,
) = 2

〈
�v‖
�r

〉
1 + z

H (z)
+ α2 H 2

0 (1 + z)2

H 2(z)
. (7)

The normalization parameter α is given by

α = H−1
0

(〈
�v2

‖
�r2

〉)1/2

. (8)

The first moment of the distribution �(τ ), referred to by Marinoni
& Buzzi as the ‘average anisotropy of pairs’ (the AAP function
from now on), is given by

μobs = (1 + σ 2) arctan(σ ) − σ

σ 3
. (9)

In equation (9), the parameter σ depends on the expansion his-
tory in a particular cosmological model, H(z), as given in equa-
tion (7). Marinoni & Buzzi set the first term on the right-hand
side of equation (7) to zero on the assumption that the comoving
separation of pairs and their radial peculiar velocities are uncorre-
lated, 〈�v‖/�r〉 = 0. We shall discuss this assumption further in
Section 4.

The original Alcock–Paczynski test, when applied to a spherical
object, measures a distortion parameter, the ratio of the tangential
and radial distances, which is proportional to DA(z)H(z) and is
unity if the correct cosmological model is assumed and there are no
redshift-space effects, that is, there is no distortion of the spherical
object. The Alcock–Paczynski test applied in this paper compares
the distribution of pair angles in real and redshift space in the
distant observer approximation, dr⊥,obs ≈ dr⊥, which gives rise to
a distortion parameter which is independent of DA. The distortion
is estimated, after modelling redshift-space effects, by comparing
the distribution of the angles t and τ , and only depends on H(z).

Using pairs of galaxies in a survey, an observer can measure the
average orientation using equation (1) which should be equal to the
AAP function in equation (9) if the correct cosmology is assumed
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and the observer is able to measure α precisely in order to fully
specify �(τ ). In this paper, we perform this exact test using pairs
of subhaloes in N-body simulations of different cosmologies. In
practice, in a galaxy survey, the parameter α can be determined in
two ways: first, at low redshifts, where the peculiar velocities of the
pair can be measured by combining a redshift-independent distance
measurement, for example, luminosity distances from SNe Ia, the
Tully–Fisher relation or the Dn–σ relation (see e.g. Blakeslee et al.
2000; Borgani et al. 2000; Courteau et al. 2000; da Costa et al.
2000), with the measured redshift of the galaxy. The uncertainties
associated with the redshift-independent luminosity distance mea-
surements are large, ∼10–20 per cent for the Tully–Fisher or Dn–σ

relation, and ∼5–10 per cent for SNe or the surface brightness fluc-
tuation method (Bernardi et al. 2001; Tonry et al. 2001). These
uncertainties on the redshift-independent distance measurements
propagate into larger errors for the peculiar velocities, making it
almost impossible to accurately measure the peculiar velocity of
a single galaxy. The second method to determine α observation-
ally, which we shall assess in this paper after considering the ideal
case of measuring α from the simulations using equation (8), is
to fit to the measured distribution of pairs at each redshift using
equation (6).

One of the key assumptions made by Marinoni & Buzzi is that
the normalization factor α is constant for all redshifts and for dif-
ferent galaxy selections. At z ≈ 0, Marinoni & Buzzi obtained
α = 5.79+0.32

−0.35, using binaries in the SDSS (Abazajian et al. 2009).
Marinoni & Buzzi obtained this value by fitting equation (6) to
the observed distribution at z ≈ 0. We explicitly test this assump-
tion in this paper where it is possible to measure α directly from
the N-body simulations at each redshift. We can also compare the
predictions of the AAP function using the best-fitting value for α ob-
tained at z = 0, instead of normalizing the function at each redshift.
This will allow us to see if the value of α really is independent of
redshift.

3 T R I A L S A M P L E S O F PA I R S FRO M
N U M E R I C A L S I M U L AT I O N S

As a test of the method proposed by Marinoni & Buzzi, which
was outlined in Section 2, we apply it to different cosmologies,
focusing on quintessence models. In Section 3.1, we discuss the
two quintessence dark energy models we take as examples and
highlight the main differences between these and the concordance
cosmological model. In Section 3.2, we describe the simulations
carried out.

3.1 Quintessence dark energy

Numerous quintessence dark energy models have been considered
as an alternative to the concordance cosmology (see e.g. Ratra &
Peebles 1988; Ferreira & Joyce 1998; Copeland, Sami & Tsujikawa
2006; Martin 2008). We focus on two interesting examples
which are representative of a wider class of quintessence mod-
els, scalar fields which evolve in time, which are viable alternative
cosmologies.

One of the models we consider has substantial differences from
�CDM and can be considered as an ‘early’ dark energy model
which features non-negligible amounts of dark energy at high red-
shifts. This quintessence dark energy model features an exponential
term in the scalar field potential which pushes the dark energy equa-
tion of state to w0 = −0.82 today (Brax & Martin 1999). We refer
to this model as the SUGRA model. The second quintessence dark

energy model, which we refer to as INV, has been shown to produce
a similar expansion history and non-linear growth of structure to
those in a �CDM cosmology (Jennings et al. 2010, 2011a) and
will provide a measure of the sensitivity of the test we perform
in this paper. The INV model has an inverse-power-law potential
V(φ) = �β+4/φ for the scalar field φ (Zlatev, Wang & Steinhardt
1999). The values of the constants � and β are fixed by the current
value of the dark energy density (see e.g. Corasaniti & Copeland
2003).

The dark energy equation of state for these quintessence models
can be accurately described over a wide range of redshifts using
four parameters (Corasaniti & Copeland 2003). The variables used
are: w0, the current dark energy equation of state; wm, the value
of w during the matter-dominated era; am, the scalefactor at which
the dark energy equation of state changes from its value during the
matter-dominated era to its present value; and �m, the width of
the transition in the expansion factor. For the SUGRA model, these
parameters are w0 = −0.82, wm = −0.18, am = 0.1 and �m = 0.7.
For the INV model, the values of the parameters are w0 = −0.79,
wm = −0.67, am = 0.29 and �m = 0.4 (Jennings et al. 2010).

The dark energy models have different expansion histories from
�CDM and so when compared to the currently available observa-
tions may favour different best-fitting values of the cosmological pa-
rameters (see Jennings et al. 2010, for a discussion). As our starting
point, we consider a �CDM model with the following cosmological
parameters: 
m = 0.26, 
DE = 0.74, 
b = 0.044, h = 0.715, where
H0 = 100 h km s−1 Mpc−1 and a spectral tilt of ns = 0.96 (Sánchez
et al. 2009). The linear theory rms fluctuation in spheres of radius
8 h−1 Mpc is set to be σ 8 = 0.8. In the simulations discussed in
this paper, the �CDM values for 
m and H0 were used for the INV
dark energy model, while for the SUGRA model, the best-fitting
parameters used were 
m = 0.243 and H0 = 67.73 km s−1 Mpc−1

(see Jennings et al. 2010, for more details). Both these models are
consistent with current observations of SNe Ia light curves (Kowal-
ski et al. 2008), BAOs (Percival et al. 2007; Sánchez et al. 2009)
and the seven-year WMAP measurements of the cosmic microwave
background (Komatsu et al. 2010). A detailed study of both these
models compared to a �CDM cosmology can be found in Jennings
et al. (2010). Note Jennings et al. (2010) showed that the INV model
was indistinguishable from �CDM for several cosmological probes
such as measurements of the halo mass function, BAO peak posi-
tions and growth factor. This model provides us with a significant
test of the discriminatory power of the technique proposed in this
paper. The ratio of the Hubble parameter in each quintessence dark
energy model to that in a �CDM cosmology is shown as a function
of redshift in Fig. 2.

3.2 N-body simulations

The simulations were carried out at the Institute of Computational
Cosmology using a memory efficient version of the TreePM code
GADGET-2, called L-GADGET-2 (Springel 2005). The simulations use
N = 6463 ∼ 269 × 106 particles to represent the dark matter in a
computational box of comoving length 1500 h−1 Mpc. We shall re-
fer to these simulations as the low-resolution runs in Section 5.1. We
chose a comoving softening length of ε = 50 h−1 kpc. The particle
mass in the simulation is 9.02 × 1011 h−1 M
 with a mean inter-
particle separation of r ∼ 2.3 h−1 Mpc. We also consider a higher
resolution simulation of the �CDM cosmology with the same box
size as above but with 10243 dark matter particles, approximately
four times the number of particles used in the lower resolution
simulation.
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Figure 2. The ratio of the Hubble rate in the two quintessence dark energy
models simulated to that in a �CDM cosmology plotted as a function of
redshift. Note the SUGRA quintessence model has a current value for the
Hubble parameter of H0 = 67.73 km s−1 Mpc−1, consistent with observa-
tions (see Section 3.1 for details).

The initial conditions of the particle load were set up with a
glass configuration of particles (White 1994; Baugh, Gaztanaga &
Efstathiou 1995). The particles are perturbed from the glass using
the Zel’dovich approximation which can induce small-scale tran-
sients in the measured power spectrum. These transients die away
after ∼3–10 expansion factors from the starting redshift (Baugh
et al. 1995; Smith et al. 2003). In order to limit the effects of the
initial displacement scheme, we chose a starting redshift of z =
200. The linear theory power spectrum used to generate the initial
conditions was created using the CAMB package of Lewis & Bridle
(2002). The linear theory power spectrum for the two dark energy
models was computed using the parametrized post-Friedmann mod-
ule (Fang, Hu & Lewis 2008) for CAMB which takes into account
the effects of a dynamical dark energy equation of state and dark
energy perturbations (Jennings et al. 2010).

Dark matter haloes were identified in the simulation outputs using
a Friends-of-Friends (FoF) percolation algorithm with a linking
length of b = 0.2 times the mean interparticle separation (Davis
et al. 1985). The SUBFIND algorithm (Springel et al. 2001) was
then run on these halo catalogues to identify self-bound subhaloes
at each redshift. Note that the subhaloes are not necessarily bound
to the main FoF halo. In this paper, pairs of subhaloes within a
common FoF halo are used as a proxy for pairs of galaxies. The
minimum number of particles per halo and subhalo is 10 and we
select only haloes that have at least two subhaloes (i.e. a minimum
of 20 particles in the FoF group). In Fig. 6 (shown later), we show
that our results are not affected by our choice of minimum FoF halo
mass. The position of each subhalo in redshift space is computed by
perturbing its comoving position in real space using the line-of-sight
centre-of-mass velocity of the subhalo relative to an observer placed
at the origin of the box. At a given redshift z̃ > 0, the observer is
still assumed to be at the origin of the box at z = 0 which requires
us to add the comoving distance from z = 0 to z̃ to the subhalo
positions. In Section 4, we discuss the selection criteria for subhalo

pairs in relation to the radius R200 of the parent halo where the mean
density is 200 times the critical value.

4 C A L I B R AT I N G T H E M E T H O D U S I N G
SI MULATI ONS

From the N-body simulations we know which pairs of subhaloes
are in the same FoF halo. However, this does not guarantee that
these objects are gravitationally bound to the FoF halo. There are
too many haloes in our simulations to check explicitly for binding,
so we will use proxies instead. This will allow us to make contact
with the observational selection applied by Marinoni & Buzzi and
to see how their cuts translate into cuts in simulation quantities. We
investigate these selection criteria and provide robust selection cuts
which are independent of cosmology and redshift.

In particular, we address the following question: how do we
construct a sample of pairs that match the theoretical expectation
for the AAP function, in the most favourable case in which we
know the correct cosmology? Using information output from the
simulations about the subhaloes selected and the properties of the
parent halo (e.g. the FoF algorithm returns R200), we can quantify
the definition of a close pair in a rigorous way. If we had selected
only bound pairs, we would expect good agreement with the AAP
function, provided that we know the correct cosmological model.
As a first approach to identify suitable pairs, we shall select sub-
haloes which are within R200 of the main halo, that is, �r⊥,max =
R200, with no other restrictions on velocity or distance from a near-
est neighbour. As this information is not available to an observer,
our second approach will be to translate these selection criteria
into observable quantities such as the angle θ between a pair of
subhaloes.

Marinoni & Buzzi used the following selection criteria to pick
their sample of pairs: (1) a maximum line-of-sight velocity differ-
ence of the pair, �V = 700 km s−1, to avoid projection of neigh-
bouring systems; (2) a maximum comoving transverse separation of
�r⊥,max = 0.7 Mpc h−1; (3) a minimum comoving transverse sepa-
ration �r⊥,min = 20 kpc h−1; and (4) a minimum comoving distance
from the centre of the galaxy pair to another galaxy. The latter two
conditions avoid selecting pairs which may be in the process of
merging or which are interacting with another galaxy. The value for
the maximum velocity difference was chosen such that the relative
increase �N/N in the sample size was <1 per cent when the veloc-
ity cut was increased by 100 km s−1, while the maximum comoving
transverse separation was chosen to be equal to the distance from
Andromeda to the Milky Way.

Fig. 3 shows the measured distributions of the orientation of sub-
halo pairs in real and redshift space in the low-resolution �CDM
simulation at z = 0. The starting point is the sample of subhalo pairs
within a common FoF halo, without any further selection. This is
shown in real space by the black histogram in Fig. 3. Note that
for the lower resolution �CDM simulation there are approximately
65 000 subhalo pairs at z = 0. The real-space distribution of the tilt
follows the expected random distribution and is uniform in cos (τ ).
The distribution of all subhalo pairs in redshift space is shown in
red which is clearly skewed. The mean of this distribution differs
from the prediction of the AAP function by ∼40 per cent. Apply-
ing the final set of cuts to this overall sample as outlined below
leaves approximately 19 000 pairs, and produces the blue hashed
region which is skewed towards smaller angles and agrees with the
predictions of the AAP function given in equation (9) to within
0.5 per cent. We discuss the selection cuts that give rise to this blue
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Figure 3. The distribution of the cosine of the apparent inclination angle,
cos (τ ), of pairs of subhaloes in a �CDM simulation at z = 0. The distribution
of cos (τ ) for all the subhalo pairs in redshift (real) space is shown in red
(black). Subhalo pairs that are selected according to the criteria discussed
in Section 4 are shown as the blue hashed boxes. Selecting pairs with only
a cut in θmax gives rise to the distribution shown in orange. Selecting pairs
with only a cut in �vmax gives rise to the distribution shown in green.

hashed region below. A comparison of the red and blue histograms
in Fig. 3 shows that in redshift space if no selection cuts are made
to isolate bound pairs the distribution is clearly randomized by
outliers.

In an attempt to isolate subhaloes that are gravitationally bound
to their parent FoF halo and hence to test if their orientations in
redshift space are distributed according to the predictions of the
AAP function, we first select pairs of subhaloes within R200 and
exclude all other pairs. We find that this sample of pairs has a non-
negligible correlation between �v‖ and �r such that 〈�v‖/�r〉 �=
0. As a result, we use the full expression in equation (7) for the
parameter σ . This gives an AAP function which is in remarkably
good agreement with the measured mean of the distribution, the
ensemble average of equation (1), at z = 0 in a �CDM simulation, to
better than a per cent. This agreement diminishes at higher redshifts,
with the AAP function and the measured mean differing by 10–20
per cent over the redshift range z = 0.25–1.

It is possible to remove subhalo pairs which have 〈�v‖/�r〉 �=
0 by selecting pairs according to an upper limit in the line-of-sight
peculiar velocity difference, �vmax. The velocity difference of pairs
of galaxies is related to the common gravitational potential of the
pair which, in most cases, is weakly correlated with their separation.
However, we find that pairs with large velocity differences have non-
zero correlations; for example, in the �CDM simulation at z = 0,
using all subhalo pairs with �v > 950 km s−1 we find 〈�v‖/�r〉 =
8.5 h km s−1 Mpc−1. Observationally, these subhaloes would not be
detected as the apparent tilt between the pair is approximately zero,
due to their large peculiar velocity difference, and as a result the
pair would lie along the same line of sight. In Fig. 4, we plot the
distribution of the line-of-sight peculiar velocity difference �v in
the left-hand panel, for all subhaloes in the lower resolution �CDM
simulation. The grey shaded region corresponds to the selection cut
in �v. Once we remove any correlated pairs from the sample, and
impose the restriction that �r⊥,max = R200, we find that the measured
mean and the predicted AAP function agree extremely well in the
redshift range z = 0–2. We present these results in more detail in

Figure 4. Left-hand panel: the distribution of the line-of-sight peculiar velocity difference, �v‖, for all pairs of subhaloes in the lower resolution �CDM
simulation at z = 0. Pairs to the left-hand side of the grey shaded region represent those subhaloes that have been selected (95 per cent of the distribution).
Lower right-hand panel: the comoving transverse separation in redshift space, �r⊥, of pairs of subhaloes in the lower resolution �CDM simulation at z = 0
plotted as a fraction of R200. The selected subhaloes are shown as the red hashed region, while those not selected are shown in blue. Upper right-hand panel:
the distribution of the radius, R200, for each parent halo is shown as the green hashed region.
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the following section. Note the first term in the expression for σ ,
equation (7), is now negligible as we have removed any correlated
pairs.

As R200 is not an observable quantity, the next step is to see
if this cut can be translated into a cut in θ , the observed angular
separation of the pair. In Fig. 4, we plot the distribution of the
comoving transverse separation �r⊥ as a fraction of R200 in the
lower right-hand panel, for all subhaloes in the lower resolution
�CDM simulation. The comoving transverse separation �r⊥ as a
fraction of R200 for the subhaloes that are selected by θ < θmax is
shown as the red hashed region, while the distribution of those not
selected is shown in blue. In the upper right-hand panel in Fig. 4,
the distribution of R200 for the parent haloes is plotted in green.
Selecting pairs according to θmax gives rise to a sample containing
most of the subhalo pairs which have �r⊥ < R200, with only a small
number of pairs with �r⊥ > R200 that happen to lie at an angle θ <

θmax.
We find the following selection rules give rise to a population of

pairs whose measured moment matches the predictions of the AAP
function extremely well, provided the correct cosmological model
is assumed (see Section 5.1):

(i) The upper limit of the line-of-sight velocity difference should
correspond to retaining 95 per cent of the total distribution of pairs
in the sample (grey shaded region in the left-hand panel of Fig. 4).

(ii) The maximum observed separation of a pair, θmax, should
correspond to retaining 50–60 per cent of the distribution for all
pairs.

Subhalo pairs in redshift space chosen according to the two selec-
tion criteria given above give rise to the blue hashed region shown
in Fig. 3. For this �CDM simulation at z = 0, this corresponds to
approximately 19 000 pairs with �v < 950 km s−1 (95 per cent of
the distribution) and θ < 6.5 × 10−4 rad (50 per cent of the distri-
bution). Note these specific values quoted for �v and θ are only for
illustration. The selection criteria presented in the two points above
should be applied to the parent sample of galaxy pairs when imple-
menting this test. If we select pairs by restricting �v only, we retain
38 000 subhalo pairs and then the difference between the measured
mean and the corresponding AAP function is approximately 30 per
cent. This distribution is shown in green in Fig. 3. Selecting pairs
with θ < θmax and no restriction on �v, that is, including correlated
pairs with 〈�v‖/�r〉 �= 0, results in a mean that differs from the
corresponding AAP function by less than 1 per cent, provided the
full expression for σ in equation (1) is used (shown in orange in
Fig. 3). Note if the full expression is not used, then the difference
is 4 per cent. We find that the measured moment is most sensitive
to the first two selection criteria chosen by Marinoni & Buzzi and
relatively insensitive to the minimum comoving separation of the
pair and the comoving distance from the nearest neighbour. Note
this is partly because we only consider pairs of subhaloes from the
same halo.

In Fig. 5, we plot the measured mean of each of the distribu-
tions shown in Fig. 3 as a function of redshift. The red dot–dashed
line shows the mean of the distribution of all subhalo pairs in
redshift space with no cuts. By restricting the sample, using ei-
ther a cut in �v or a cut inθ , we obtain the mean shown as the
green triple-dot–dashed line and orange dotted line, respectively.
Selecting subhalo pairs according to the two selection cuts dis-
cussed above results in a measured mean (blue dashed line) which
is in very good agreement with the predictions of the correspond-
ing AAP function (solid black line) when we measure α directly
from the simulation. Note each distribution has its own associ-

Figure 5. The sample means of the anisotropic distributions of pair tilt
angles shown in Fig. 3 for subhaloes in the low-resolution �CDM simula-
tion, as a function of redshift. The mean of the distribution of all pairs in
redshift space (no selection cuts) is shown as the red dot–dashed line. The
measured mean for pairs selected with only a cut in �v (θ ) is shown as the
green triple-dot–dashed (orange dotted) line. Once we impose a cut in both
�v and θ , the measured mean of the distribution (blue dashed line) agrees
with the corresponding predicted AAP function (solid black line). The light
green shaded region shows the uncertainty on this prediction because we
have measured α from the simulation which has a finite number of pairs.
The AAP function plotted here was found assuming a �CDM cosmology
for H(z). The error bars on the data points are estimated from a jack knife
sampling of the subhalo pairs using 100 subsamples of the data.

ated AAP function, with a normalization set by the pairs in each
sample.

The error bars in Fig. 5 have been calculated by jackknife sam-
pling the subhalo pairs by grouping the data into 100 sets containing
equal numbers of subhaloes, and then successively removing one set
at a time, calculating the sample mean for the remaining haloes and
computing the variance amongst the measured means (see Norberg
et al. 2009, for a discussion of the reliability of the jackknife tech-
nique). We have verified that these errors change the AAP function
by less than 1 per cent if we vary the sample size to 25 or 50 subsam-
ples at a given redshift. The error on the AAP function, shown as
the green shaded region in Fig. 5, was found using a similar method
to find the variance in α at each redshift splitting the pairs in the
simulations into 100 subsamples. The errors on both 〈sin 2τ 〉 and
the AAP function increase with increasing redshift as the number
of pairs decreases. This happens because of the fixed resolution of
the simulation, which means that we resolve a progressively smaller
fraction of the subhalo population with increasing redshift. A sim-
ilar drop in the number of pairs would happen in a flux-limited
galaxy survey.

We have tested the stability of the method by comparing sim-
ulations of different resolution. The sample mean, 〈sin 2τ 〉 (equa-
tion 1), of the distribution of subhalo pairs in redshift space in the
two �CDM simulations, higher and lower resolution, is shown in
Fig. 6 at different redshifts. The mean for the lower resolution sim-
ulation is shown as the blue squares in Fig. 6. The AAP function
using the measured value for α at each redshift is shown as the
solid black line as in Fig. 5. The sample mean from the higher
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Figure 6. The sample means of the anisotropic distributions of pairs of
subhaloes measured in the low- and high-resolution �CDM simulations are
shown as the blue squares and purple circles, respectively. The AAP function
given in equation (9) using the value for α measured from the simulation
at each redshift is shown as the light-green and the blue shaded regions for
the low- and high-resolution simulations, respectively. The means measured
using pairs of subhaloes from the high-resolution simulation that have a
parent halo mass of M ≥ 9 × 1012 h−1 M
 and M ≥ 1 × 1014 h−1 M
 are
shown as the red stars and orange crosses, respectively. Note that for the
measured mean of subhaloes within a parent halo of M ≥ 1 × 1014 h−1 M

at z = 2, there are only 49 pairs and we used 10 subsamples to find the
jackknife errors.

resolution simulation is shown as the purple circles with the corre-
sponding AAP function shown as the solid light blue line. In both
the lower and higher resolution simulations, the measured distri-
bution of pairs shows excellent agreement with the predictions of
the AAP function assuming a �CDM cosmology, and also agrees
with each other in shape and amplitude within the error bars. The
difference between the AAP functions for the higher resolution
simulation (blue shading) and for the lower resolution simulation
(solid black line) in Fig. 6 is also due to the difference in resolution
between the two simulations. If we select only subhaloes from the
higher resolution simulation that have a halo mass of M ≥ 9 ×
1012 h−1 M
, which corresponds to the minimum halo mass se-
lected by the FoF algorithm in the lower resolution simulation, we
obtain the red stars with errors bars plotted in Fig. 6. These points
are almost coincident with the corresponding measurement from
the lower resolution simulation (blue squares), agreeing to better
than 1σ .

We also make contact with an observational galaxy sample in
Fig. 6. If we select subhaloes from main haloes which have a mass
of M ≥ 1 × 1014 h−1 M
, then we obtain the mean plotted as the
orange crosses in Fig. 6. Again these results are consistent with
the means for the lower resolution simulation at each redshift. This
mass corresponds to the minimum halo mass expected to contain
two or more luminous red galaxies (LRGs) on average (Almeida
et al. 2008). This subhalo selection is relevant for a spectroscopic
redshift survey such as the SDSS-III BOSS (Schlegel et al. 2007)
which will target LRGs in the redshift range z < 0.7. Without
applying any selection cuts, we find approximately 27 000 subhalo

pairs at z = 0 which share a common halo of M ≥ 1 × 1014 h−1 M
;
at z = 0.25 and 0.5, the number of subhalo pairs is approximately
18 000 and 11 000, respectively. From the first semester of BOSS
data, White et al. (2011) estimate that the cumulative probability
that a galaxy in their sample is hosted by a halo of mass M ≥ 1 ×
1014 h−1 M
 is about 5 per cent. If we extend this probability to
the full sample of LRGs expected by the BOSS with space density
n̄ = 3 × 10−4 h3 Mpc−3, then this corresponds to approximately
13 000 pairs of LRGs in the redshift range z = 0.5–0.6. This is
similar to the number of pairs we obtain from the higher resolution
simulation restricting to haloes with M ≥ 1 × 1014 h−1 M
 at z =
0.5, shown by the orange crosses in Fig. 6.

The errors on the AAP function as measured by Marinoni &
Buzzi, α = 5.79+0.32

−0.35, are substantially larger than ours due to the
uncertainty in fitting for the parameter α at z = 0 with a smaller
number of pairs. Our higher resolution simulation has approxi-
mately four times more subhalo pairs than the lower resolution
simulation, after making the selection cuts discussed in Section 4,
which gives rise to error bars which are approximately 50 per cent
smaller in the higher resolution run (see Fig. 6). The sample of pairs
used by Marinoni & Buzzi is approximately 25 times smaller than
the sample from our lower resolution simulation. We have verified
that by applying the Marinoni & Buzzi selection cuts to our parent
sample of subhalo pairs in the lower resolution simulation gives
α = 5.69, which is consistent with the value for α obtained by
these authors. However, we find that the measured mean for this
simulation sample does not agree with the AAP function within the
error bars. (If our sample were of the same size as that used by
Marinoni & Buzzi, our errors would be significantly larger and the
two would agree in this case.) This demonstrates the need for the
robust resolution-independent selection criteria we have presented
here.

5 A PPLI CATI ON: A N EW TEST

In this section, we use the selection criteria outlined in Section 4
to test the predictions of the AAP function, equation (9), using
the distribution of subhalo pair angles measured in N-body simu-
lations. The accuracy of this test relies on two key variables: the
cosmological expansion history assumed, H(z), and the normaliza-
tion parameter, α = H−1

0 (〈�v2
‖〉/〈�r2〉)1/2. We consider the impact

of uncertainties in each of these variables in turn. In Section 5.1,
we present the measured anisotropic distribution of the orientation
of pairs, selected according to the prescription set out in Section 4,
and its first moment at different redshifts together with the predicted
distribution using the AAP function in a �CDM cosmology and in
two quintessence dark energy cosmologies. In order to test the abil-
ity of the theoretical model to distinguish different cosmologies, we
will assume perfect knowledge of the correct H(z) and α in the first
instance. We then consider how an observer would measure α and
the impact this has on the results, again assuming the correct H(z).
We relax the assumptions further in Section 5.2 where an incorrect
cosmological expansion history is used to analyse the data. This
is done by measuring the distribution of subhaloes in the INV and
SUGRA dark energy simulations assuming a �CDM cosmology to
infer distances from the pair. We will show that the method, as im-
plemented in Marinoni & Buzzi (2010), fails to exclude the wrong
cosmology. Consequently, we propose a new method, which uses
the theoretical model discussed so far but which exploits additional
information about α from the numerical simulations. In Section 5.3,
we show that this method can be successfully applied to test dark
energy.
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5.1 Testing the method: theory versus observations

First of all, we test how the approach discussed in Section 2 can
distinguish different cosmologies. We put ourselves in the idealized
situation of an observer who knows the correct cosmological model
to compute distances and is able to measure peculiar velocities
precisely to find α at each redshift. In Fig. 7, the mean of the
redshift-space distributions of subhalo pairs for �CDM and the
two quintessence dark energy models are plotted as a function of
redshift. The results for �CDM are the same as those shown in
Fig. 6 for the lower resolution simulation. The measured sample
mean for the INV dark energy model is shown as the red-orange
circles with error bars, while the results for the SUGRA model are
shown as the green-grey triangles. The predicted AAP function for
each of these models, using the correct expansion history and the
value for α measured at each redshift, is shown as the solid red
line for the INV model and as the solid green line for the SUGRA
model. The uncertainties on the AAP function are plotted as the
red shaded region for the INV model. The errors for the SUGRA
model are similar but are not plotted in Fig. 7 for clarity. The
errors shown on both models for the measured mean and the AAP
function were found using an identical jackknife sampling method
to that used for the �CDM result. It is clear from Fig. 7 that the
measured mean for the three simulations agrees with the respective
AAP function, provided the correct expansion history is known and
that the parameter α can be determined at each z. As these results
show, the measurements in a �CDM or a dynamical dark energy
model agree very well with the predictions, if the correct cosmology
is used to analyse the data. For the two quintessence models, the
deviations from �CDM are due to the different expansion histories

Figure 7. The first moment of the anisotropic distribution of pairs of sub-
haloes measured in a �CDM cosmology and two quintessence dark energy
simulations as a function of redshift. Measurements for the �CDM, INV and
SUGRA cosmologies are shown as the blue squares, red circles and green
triangles, respectively. The AAP function using the measured value for α

at each redshift for each cosmological model is shown as the solid black,
red and green lines for �CDM, SUGRA and INV, respectively. The shaded
bands show the uncertainty on the AAP function for each cosmology. Note
that the error bars for the AAP function for SUGRA are similar to those for
the INV model and are not shown for clarity.

(see Fig. 2). This is a consistency check which confirms that the
method works.

In reality, in a galaxy survey, it is not possible to measure the
parameter α accurately at high redshifts because of the difficulties
associated with measuring galaxy peculiar velocities to sufficient
precision. We shall now degrade the status of the idealized observer
mentioned above and consider a more realistic observer who still
knows the correct cosmological model but who is unable to mea-
sure α directly at any redshift other than z = 0. Using the measured
distribution of pairs at z = 0, we fit the distribution given in equa-
tion (6) to set α and test the accuracy of the AAP function using this
α(z = 0) value at each redshift, as suggested by Marinoni & Buzzi.
If α does not evolve with redshift, we would expect this approach
to result in accurate agreement between the measured mean and the
AAP function.

In Fig. 8, the measured distribution of the angle τ , in radians, for
�CDM is shown as the red hashed region with error bars. Note the
y-axis shows the fraction of the total number of pairs per bin. The
distribution (equation 6) with the best-fitting value αFIT = 5.67 ±
0.1 (with 1σ errors) is plotted as the purple dashed line. The grey
dotted lines show the distribution adopting α + 1σ and α − 1σ . Note
the error we obtain for α, 0.1, is much smaller than that obtained
by Marinoni & Buzzi (0.3) due to the difference in sample size and
the different methods used to estimate the errors. This value for α

agrees with the measured value from the simulations of α = 5.56.
In Fig. 9, the AAP function assuming a �CDM cosmology and
using this αFIT(z = 0) value at each redshift is shown as the black
dashed line with error bars. The mismatch between this curve and
the simulation results clearly indicates that α evolves with redshift,
invalidating one of the main assumptions made in the analysis of
Marinoni & Buzzi. Note that the black dashed line in Fig. 9 is
much smoother than the shaded green band for the AAP function

Figure 8. The fractional distribution of the angle τ in radians of pairs of
subhaloes measured in �CDM at z = 0. The error bars on each bin are cal-
culated by jackknife sampling after dividing the catalogue of subhalo pairs
into 100 subsamples and calculating the variance amongst the distributions
measured after successively removing one subsample at a time. The purple
dashed line shows the distribution in equation (6), with the best-fitting value
of the normalization parameter αFIT = 5.67 ± 0.1. The grey dotted lines
show the 1σ error on the best-fitting distribution.
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Figure 9. The first moment of the anisotropic distribution of pairs of sub-
haloes measured in a �CDM simulation (blue-yellow squares) as shown in
Fig. 7. The AAP function using the z = 0 best-fitting value for α at each
redshift (see Fig. 8) is shown as the dashed black line with error bars. If
we fit for α using the measured distribution at each redshift, then we obtain
the red dashed line prediction for the AAP function assuming a �CDM
cosmology. The error bars on the black dashed and red dot–dashed lines are
the 1σ errors obtained by fitting for α.

in �CDM where the value of α is measured directly from the
simulation at each redshift. Using the z = 0 value for α produces
an AAP function which is systematically and significantly below
the measured results for a �CDM cosmology for z > 0. Applying
this measure of α as proposed by Marinoni & Buzzi could lead to
a spurious detection of deviations from �CDM. It is clear from
Fig. 9 that the method proposed by Marinoni & Buzzi contains a
serious systematic error which is apparent when applied to a large
sample of pairs. Marinoni & Buzzi considered a smaller sample
than in the simulations where the statistical errors dominated this
systematic.

It is clear from Fig. 9 that α does evolve with redshift and that we
can improve on the estimates of this parameter by fitting equation (6)
to the measured distribution at each redshift. In Fig. 9, the AAP
function in a �CDM cosmology using the best-fitting values for
α measured at each redshift is shown as the red dot–dashed line
with error bars. The jackknife errors on α are estimated using 100
subsamples for the distributions at z = 0–1 and using 50 subsamples
for z = 1.5 and 2 as there are fewer pairs at these higher redshifts.
This approach to measuring α gives much better agreement with
the mean measured from the simulations, shown as the blue-yellow
data points in Fig. 9. Note this method of extracting α assumes that
the correct cosmology is �CDM.

5.2 The test assuming a particular cosmology

In this section, we are no longer idealized observers who know the
correct cosmology, so the only possible choice is to assume the
same cosmology in the data fitting and in the theoretical prediction
of the galaxy distribution. Specifically, we will assume �CDM, for
simplicity, in order to set the expansion history H(z) in equation (8)
and to compute the comoving distances in equation (1), as well as
to extract the parameter α. In order to find the parameter α, we must

fit to the observed distribution of the orientations of pairs which
has been found also by assuming a �CDM cosmology. Assuming
that the true cosmological model chosen by nature is a dynamical
dark energy model, for instance, the INV or SUGRA cosmology,
we will check if the wrong cosmology, �CDM in our case, can be
excluded or not, and consequently if the method is applicable to
future galaxy surveys. For this analysis, we take subhalo pairs in
the INV and SUGRA simulations, and at each redshift we rescale
the comoving distances to match those which would be computed
by an observer assuming a �CDM cosmology.

The ensemble average of equation (1) for each subhalo pair in
the INV (SUGRA) simulation is plotted in Fig. 10 as the red circles
(green triangles), with error bars. If we fit for α at each redshift,
we obtain the purple dot–dashed line in Fig. 10 for the INV model.
Although we have assumed, incorrectly, a �CDM cosmology, we
find that the AAP function agrees with the measured sample mean
for the INV model at each redshift. In Fig. 10, a similar analysis
is presented for the SUGRA model. The measured mean for this
dark energy model, assuming a �CDM cosmology to compute
comoving distances, is shown as the green triangles. The AAP
function using the best-fitting value for α at each redshift and a
�CDM expansion history is shown as the grey dashed line. Again,
theory and observations agree when we would expect them not to
as we have used the wrong cosmology in the AAP function and to
compute distances. Our results show that the AAP function, using
either a fixed value of α(z = 0) or a best-fitting value at each
redshift, is not an accurate model with which to test for dynamical
dark energy models if the correct cosmological model is unknown
and that further input from numerical simulations is needed to arrive
at a viable test.

Figure 10. The measured mean of the anisotropic distribution of pairs of
subhaloes in the INV dark energy simulation assuming a �CDM cosmol-
ogy to find the comoving distance from each pair member (red circles).
The purple dot–dashed line shows the predicted AAP function, assuming a
�CDM cosmology, and using the best-fitting α found at each redshift. The
measured mean for the SUGRA model, assuming a �CDM cosmology, is
shown as the green triangles and the predicted AAP function, assuming a
�CDM cosmology, and using the best-fitting α found at each redshift, is
shown as the grey dashed line.
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5.3 A blueprint for probing dark energy

From the previous section it is clear that the cosmological test
proposed by Marinoni & Buzzi relies heavily on measuring the pa-
rameter α accurately at each redshift. The assumption that α does
not vary with redshift is incorrect and could falsely rule out �CDM
if this test is misapplied to pairs of galaxies in future surveys. The
value of α also depends on the cosmological model. For example,
at z = 0, the values for the �CDM, SUGRA and INV cosmologies
are α = 5.56, 6.32 and 5.32 respectively, with a typical error of 0.1.
The difficulty is not just a problem of measuring α accurately but
stems from the fact that the cosmology assumed affects both the
data and the theoretical prediction in a way which cannot be dis-
entangled. The accuracy and predictive power of the AAP function
can be restored if instead of measuring α from observations, we
employ N-body simulations which contain a comparable number
of subhalo pairs to the number of galaxy pairs in the survey under
consideration. It is clear that independent information about α is
necessary and numerical simulations play an important role in pro-
viding these predictions in a given cosmology. We propose a new
approach to measuring dark energy, where observational measure-
ments of the mean of the anisotropic distribution of pairs and pre-
dictions of the AAP function from numerical simulations are com-
bined. The new method we propose to test a given cosmology is as
follows:

(i) An observer assumes the cosmology to obtain the comoving
distances needed to calculate the ensemble average of equation (1)
for a sample of pairs of galaxies, selected using the criteria given in
Section 4, at different redshifts.

(ii) Using an N-body simulation of the same assumed cosmology
and with a comparable number density of pairs and volume to the
galaxy survey, the observer can then construct a similar catalogue
of pairs according to Section 4 and find the value of α at each
redshift.

(iii) This gives rise to a prediction for the AAP function which
can be compared with the means measured from the galaxy survey
at each redshift, and the assumed cosmology can be verified or
excluded.

Note if the AAP function measured from the simulation and the
measured mean of the galaxy pair sample analysed assuming the
same cosmology disagree, then a suite of N-body simulations of
different cosmologies would need to be run. The AAP function
from each simulation should then be compared to the measured
mean, computed assuming the cosmology used in the simulation.
This test is realistic, given current computing resources. In Fig. 11,
we use the INV and SUGRA simulations to illustrate this method.
In the upper and lower panels, we show the measured means for the
INV and SUGRA dark energy simulations, respectively, which are
treated here as the ‘observed’ pair sample. In this example, we are
testing a �CDM cosmology and use it to compute the distances in
each case, as in Fig. 10, together with the predicted AAP function
from an N-body simulation of �CDM where α is measured directly
from the simulation (green shaded region). It is clear that for z < 1
the INV model and the SUGRA model can be distinguished from
the AAP function predicted in a �CDM cosmology. This result
shows that if a SUGRA or INV model is the correct cosmology for
the Universe, then �CDM can be ruled out. If there is a mismatch
between the measurement from the observed pair sample and the
simulation-calibrated AAP prediction as in Fig. 11, then a new
simulation with a different expansion history is required until an
acceptable match is found.

Figure 11. Upper panel: the measured mean of the anisotropic distribu-
tion of pairs of subhaloes in the INV dark energy simulation assuming a
�CDM cosmology to find the comoving distance from each pair member
(red circles). The predicted AAP function for a �CDM cosmology, using
the value of α measured directly from the lower resolution N-body simula-
tion, is shown as the solid black line. Lower panel: same as the upper panel
but for the SUGRA quintessence model assuming a �CDM cosmology to
determine comoving distances (green triangles).

6 SU M M A RY

The distribution of the orientation of pairs of galaxies is uniform in
real space in a homogeneous and isotropic universe. However, in
redshift space, two effects lead to the inferred distribution becoming
skewed. First, an observer has to assume a cosmology to convert po-
sitions on the sky and redshifts into distances. A mismatch between
the assumed and underlying cosmologies introduces an error in the
radial distance from a galaxy. Secondly, peculiar motions intro-
duce distortions which break the connection between the measured
redshift and the actual distance. Both effects result in an apparent
displacement of galaxies along the line of sight.

Marinoni & Buzzi (2010) proposed that the distortion of the
distribution of the angle subtended between galaxy pairs as viewed
in redshift space can be modelled by a simple Doppler shift in the
galaxy positions. This procedure gives rise to a theoretical prediction
for the distribution in redshift space, which is referred to as the AAP
function. We have tested the accuracy of this model using subhalo
pairs identified in N-body simulations of cosmologies with different
dark energy models.

The AAP function depends on two variables: the ‘normaliza-
tion’ parameter α = H−1

0 (〈�v2
‖/�r2〉)1/2 and the expansion history,

H(z), which depends on the cosmology. In this paper, we present
the AAP function normalized in three different ways: (i) using the
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relation α = H−1
0 (〈�v2

‖/�r2〉)1/2, we can measure α directly from
the simulation at each redshift; (ii) we can measure α at z = 0 by
fitting to the measured distribution and then assume that α does not
evolve with redshift, and apply the z = 0 normalization to specify
the mean of the distribution of pairs at different redshifts (as sug-
gested by Marinoni & Buzzi); and (iii) we can apply case (ii) but
fitting for α at each redshift using the measured distribution and
not just at z = 0. When we measure α directly (case i), we obtain
excellent agreement between measurements of the mean from the
simulation and the predictions of the AAP function. If instead we
retain the best-fitting z = 0 value, α(z = 0), at each redshift (case ii),
we do not find a good match between the theory and the simulation
measurements. This demonstrates that simply fitting for α at z =
0 and assuming it does not evolve with redshift is not accurate. In
fact such an approach would incorrectly rule out the cosmology
used in the simulation. If we fit for α at each redshift using the
simulation (case iii), then we again recover an excellent match be-
tween the theory and simulation results. We use a large sample of
subhalo pairs which do not necessarily reside in fully relaxed and
virialized haloes that have detached from the Hubble flow. This is
demonstrated by the fact that we measure a different value for α in
different cosmologies (see Section 5).

Note that each of the above cases considers idealized observers
who know the correct cosmology to compute distances and H(z).
The measured mean of the distribution of pair angles (equation 1)
depends on the cosmological model assumed to convert the position
on the sky and redshift to comoving distance. The AAP function
also depends on cosmology through H(z). As a result, the measured
mean and the AAP function will not agree if the wrong cosmology
is assumed (the Alcock–Paczynski effect). Using two quintessence
dark energy simulations (labelled INV and SUGRA), we have tested
if the AAP function reproduces the measured mean of the distribu-
tion when, in the first instance, we know the correct cosmology (the
‘perfect’ observer case), and in the second instance, when we instead
assume �CDM (i.e. the ‘real’ observer who has no prior knowl-
edge of the underlying cosmology). The two dark energy models
we consider have an evolving equation of state which is compatible
with current observations of the cosmic microwave background,
BAO and SN Ia distances. We find that, for a perfect observer who
knows H(z) and α exactly, the AAP function and the measured
means are in very good agreement for both the SUGRA and the
INV models.

Consider now performing the same exercise using the SUGRA
and INV simulations, as a real observer who does not know the un-
derlying cosmology and so assumes a �CDM cosmology, and who
uses the best-fitting value for α at each redshift. We might expect that
the theory should not match the measured mean for the dynamical
dark energy models. However, we find that, by fitting for α using the
observed distribution in the simulations, we instead recover a model
which incorrectly matches the observations extremely well for both
dark energy cosmologies, even though we have assumed a �CDM
model. The consequences are that, in a universe with evolving dark
energy, we would find that a �CDM model incorrectly matches the
observations, invalidating the methodology.

In this paper, we have proposed a new formulation of the test of
Marinoni & Buzzi in which the distribution of galaxy pairs can be
analysed without prior knowledge of the cosmology. The measured
distribution of angles should be compared with predictions for the
AAP function using a reference N-body simulation to directly mea-
sure α. We have shown that the subhalo pairs in two quintessence
dark energy simulations, which are treated as the ‘observed’ pair
sample in this instance, produce a different measured distribution

from that predicted in a �CDM simulation even when analysed
after assuming (incorrectly) a �CDM cosmology. In the new test,
the AAP function is normalized with reference to a simulation with
the same cosmology as assumed to analyse the observations. The
predicted AAP function and measurement will only agree if the
assumed cosmology matches the true cosmology. If this is not the
case, then a new reference simulation must be generated with a re-
vised expansion history, to see if an improved match to the observed
distribution of galaxy pair angles can be obtained. We find that, by
measuring the mean of the distribution as a function of redshift, we
should be able to detect deviations from a �CDM expansion history
at the level of 2 per cent in a box of volume ∼3 h−3 Gpc3. This new
test complements the constraints on the present value of Hubble’s
parameter provided by observations of SNe Ia which constrain H0

to ∼3 per cent (Riess et al. 2011), and improves on constraints of
H(z) at higher redshifts which are accurate to about ∼10 per cent.

7 C O N C L U S I O N S

Distinguishing between competing scenarios for the accelerating
expansion of the universe is a major challenge for both observational
and theoretical cosmologists. The expansion history and distance–
redshift relations are remarkably close between viable models which
satisfy the currently available constraints. A convincing determina-
tion of the nature of dark energy will require a combination of probes
for two reasons (Albrecht et al. 2006). First, the small differences
in the expected signals from a given probe mean that systematic ef-
fects become important. Applying different probes will allow us to
see whether or not a measured signal is robust to systematics. Sec-
ondly, some existing tests cannot distinguish between some classes
of dark energy model. New probes are therefore needed to break
such degeneracies.

We have tested one such example of a new probe, the distribution
of angles subtended between pairs of galaxies. This distribution is
distorted by the peculiar motions of galaxies and also by the choice
of cosmology adopted to transform observed positions into comov-
ing distances. The origins of this test can arguably be traced back to
Alcock & Paczynski (1979), and it was refined by Phillipps (1994).
Marinoni & Buzzi (2010) applied the test to the angle between pairs
of galaxies and crucially included redshift-space distortions.

We have used numerical simulations of structure formation to
assess the performance of the test. The mean of the distribution
of pair angles varies with redshift and, furthermore, is measurably
different between cosmologies. A comparison between a theoretical
model for the pair-angle distribution and the measurements from the
simulations shows that the test, as originally proposed, is limited.
The theoretical calculation requires a parameter to be specified to
normalize the distribution of pair angles. Our simulations show that
this parameter is redshift- and cosmology-dependent.

It is possible to estimate the normalization of the pair-angle distri-
bution observationally, at redshifts z > 0, if the peculiar velocities of
galaxies can be measured. For example, it was recently argued that
accurate mean pairwise velocities of pairs of SNe Ia can be obtained
by combining photometry from a survey such as the Pan-STARRS
(Kaiser et al. 2010) or the Large Synoptic Survey Telescope (Abell
et al. 2009) with follow-up spectroscopy (Bhattacharya et al. 2011).
At present, the accuracy of measurements of the peculiar velocity
field is not adequate to distinguish between the models compared
in this paper.

Our proposed methodology avoids this problem by using an N-
body simulation with a similar number of pairs to the observational
sample to normalize the distribution of angles. This secures the
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crucial step of setting the normalization of the theoretical distribu-
tion at each redshift. The detailed selection of the N-body sample
of subhalo pairs is not important, avoiding the need to combine
the simulation with a galaxy formation model. Furthermore, we
have demonstrated that it is not necessary to have a knowledge of
the true underlying background cosmology for the successful ap-
plication of the test.

The new method we have proposed is a powerful complement and
extension to existing probes of dark energy. This is demonstrated
by the ability of the pair distribution to distinguish between cos-
mologies that cannot be separated through the appearance of BAOs
or through the halo mass function. The technique can be applied
already to ongoing surveys, such the SDSS-III BOSS (Schlegel
et al. 2007), and should yield competitive constraints. The method
should also produce distinct signals for dark energy and modified
gravity models which have identical expansion histories, through
the different peculiar motions induced.
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