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Abstract. In social network theory, a simple graph G is called k-role
assignable if there is a surjective mapping that assigns a number from
{1, . . . , k}, called a role, to each vertex of G such that any two vertices
with the same role have the same sets of roles assigned to their neighbors.
The decision problem whether such a mapping exists is called the k-Role
Assignment problem. This problem is known to be NP-complete for any
fixed k ≥ 2. In this paper, we classify the computational complexity of
the k-Role Assignment problem for the class of chordal graphs. We
show that for this class the problem can be solved in linear time for
k = 2, but remains NP-complete for any k ≥ 3. This generalizes earlier
results by Sheng and answers her open problem.

1 Introduction

All graphs considered in this paper are undirected, finite and simple, i.e., without
loops or multiple edges, unless otherwise stated. Given two graphs, say G on
vertices u1, . . . , un and R on vertices 1, . . . , k called roles, an R-role assignment
of G is a vertex mapping r : VG → VR such that the neighborhood relation is
maintained, i.e., the roles of the neighbors of each vertex u in G are exactly the
neighbors of role r(u) in R. Let NG(u) denote the set of neighbors of u in the
graph G and let r(S) = {r(u) | u ∈ S} for any subset S ⊆ VG. The condition
that r is an R-role assignment of G can be formally expressed as

for all u ∈ VG : r(NG(u)) = NR(r(u)).

An R-role assignment r of G is called a k-role assignment of G if |r(VG)| = |VR| =
k. An equivalent definition states that r is a k-role assignment of G if r maps each
vertex of G to a positive integer so that |r(VG)| = k and r(NG(u)) = r(NG(u′))
for any two vertices u and u′ with r(u) = r(u′). See Figure 1 for an example.

Role assignments are introduced by Everett and Borgatti [9], who call them
role colorings. They originate in the theory of social behavior. The role graph R
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Fig. 1. A role graph R and a graph G with an R-role assignment which is also a 3-role
assignment of G (example based on the figure in [24]).

models roles and their relationships, and for a given society we can ask if its indi-
viduals can be assigned roles such that relationships are preserved: each person
playing a particular role has exactly the roles prescribed by the model among
its neighbors. This way one investigates whether large networks of individuals
can be compressed into smaller ones that still give some description of the large
network. As persons of the same social role may be related to each other, the
smaller network can contain loops. In other words, given a simple instance graph
G on n vertices does there exist a possibly non-simple role graph R on k < n
vertices in such a way that G has an R-role assignment? From the computational
complexity point of view it is interesting to know whether the existence of such
an assignment can be decided quickly (in polynomial time). This leads to the
following two decision problems.

R-Role Assignment
Input: a simple graph G.
Question: does G have an R-role assignment?

k-Role Assignment
Input: a simple graph G.
Question: does G have a k-role assignment?

Known results and related work. A graph homomorphism from a graph G
to a graph R is a vertex mapping r : VG → VR satisfying the property that
the edge r(u)r(v) belongs to ER whenever the edge uv belongs to EG. If for
every u ∈ VG the restriction of r to the neighborhood of u, i.e., the mapping
ru : NG(u) → NR(r(u)), is bijective, we say that r is locally bijective [1, 19]. If
for every u ∈ VG the mapping ru is injective, we say that r is locally injective [10,
11]. If for every u ∈ VG the mapping ru is surjective, r is an R-role assignment
of G. In this context, r is also called a locally surjective homomorphism from G
to R.

Locally bijective homomorphisms, also called graph coverings, have appli-
cations in distributed computing [2, 3, 7] and in constructing highly transitive
regular graphs [5]. Locally injective homomorphisms, also called partial graph
coverings, have applications in models of telecommunication [11] and frequency
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assignment [12]. Besides social network theory [9, 21, 23], locally surjective ho-
momorphisms also have applications in distributed computing [8].

The main computational question is whether for every graph R the problem
of deciding if an input graph G has a homomorphism of given local constraint
to the fixed graph R can be classified as either NP-complete or polynomial time
solvable. For locally bijective and injective homomorphisms there are many par-
tial results, see e.g. [11, 19] for both NP-complete and polynomial time solvable
cases, but even conjecturing a classification for these two locally constrained
homomorphisms is problematic. This is not the case for the locally surjective
constraint and its corresponding decision problem R-Role Assignment.

Roberts and Sheng [23] have shown that the k-Role Assignment problem
is already NP-complete for k = 2. Fiala and Paulusma [13] have shown that
the k-Role Assignment problem is also NP-complete for any fixed k ≥ 3 and
classify the computational complexity of the R-Role Assignment problem. Let
R be a fixed role graph without multiple edges but possibly with loops. Then the
R-Role Assignment problem is solvable in polynomial time if and only if one
of the following three cases holds: either R has no edge, or one of its components
consists of a single vertex incident with a loop, or R is simple and bipartite
and has at least one component isomorphic to an edge. In all other cases the
R-Role Assignment problem is NP-complete, even for the class of bipartite
graphs [13]. If the instance graphs are trees, then the R-Role Assignment
problem becomes polynomial time solvable for any fixed role graph R [14].

A graph is chordal if it does not contain an induced cycle of length at least 4.
Chordal graphs are also called triangulated graphs. This class contains various
subclasses such as trees, split graphs and indifference graphs (graphs whose ver-
tices can be assigned some real values such that two vertices are adjacent if and
only if their assigned values are sufficiently close). Due to their nice properties,
chordal graphs form an intensively studied graph class both within structural
graph theory and within algorithmic graph theory. Sheng [24] presented an el-
egant greedy algorithm that solves the 2-Role Assignment problem in linear
time on chordal graphs with at most one vertex of degree 1. She also character-
ized all indifference graphs that have a 2-role assignment.
Our results and paper organization. In Section 2, we present a linear time
algorithm for the 2-Role Assignment problem on chordal graphs. This settles
an open problem of Sheng [24]. Unlike the greedy algorithm of Sheng [24], which
uses a perfect elimination scheme of a chordal graph with at most one vertex of
degree 1, our algorithm works for any chordal graph G by using a dynamic pro-
gramming procedure on a clique tree decomposition of G. Section 3 contains our
second result. Here we prove that, for any fixed k ≥ 3, the k-Role Assignment
problem is NP-complete for chordal graphs. Section 4 contains the conclusions
and mentions some open problems.

2 Computing a 2-role assignment in linear time

In this section, we prove the following result.
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Theorem 1. The 2-Role Assignment problem can be solved in linear time
for the class of chordal graphs.

We will start by discussing the different 2-role assignments. Following the
notation of Sheng [24], the six different role graphs on two vertices are:

R1 := ({1, 2}, ∅)
R2 := ({1, 2}, {22})
R3 := ({1, 2}, {11, 22})
R4 := ({1, 2}, {12})
R5 := ({1, 2}, {12, 22})
R6 := ({1, 2}, {11, 12, 22})

These six role graphs are depicted in Figure 2.

1 2 1 2 1 2

1 2 1 2 1 2

R1 : R2 : R3 :

R4 : R5 : R6 :

Fig. 2. The six different role graphs on two vertices.

Let G be a chordal graph. If G contains at most one vertex, then G has no
2-role assignment. Suppose |VG| ≥ 2. If G only contains isolated vertices, then G
has an R1-role assignment. If G contains at least one isolated vertex and at least
one component with at least two vertices, then G has an R2-role assignment.
If G is disconnected but does not have isolated vertices, then G has an R3-role
assignment. Now assume that G is connected and has at least two vertices. If
G is bipartite, then G has an R4-role assignment. If G is not bipartite, then G
has a 2-role assignment if and only if G has an R5-role assignment or an R6-role
assignment.

We claim that we only have to check whether G has an R5-role assignment.
This is immediately clear if G has a vertex of degree 1, as such a vertex must
be mapped to a role of degree 1 and R6 does not have such a role. If G does not
have any degree 1 vertices, we use the following result by Sheng [24].

Theorem 2 ([24]). Let G be a chordal graph with at most one vertex of degree
1 and no isolated vertices. Then G has an R5-role assignment.

We will now present a linear time algorithm that decides whether a chordal
graph G has an R5-role assignment and if so outputs an R5-role assignment of G.
From the above, it is clear that this suffices to prove Theorem 1. Our algorithm
is to be viewed as being independent from the linear time algorithm of Sheng [24]
for computing an R5-role assignment of a chordal graph with at most one vertex
of degree one and no isolated vertices. Before presenting our algorithm we first
make some basic observations on chordal graphs.
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2.1 On chordal graphs

Let G = (V,E) be a chordal graph. A clique in G is a subset K ⊆ V such that
G[K] is a complete graph, where G[K] denotes the subgraph of G induced by
K. A clique in G is maximal if it is not properly contained in any other clique
in G. Let K denote the set of maximal cliques of G. The clique graph C(G) of
G has as its vertex set K, and two vertices of C(G) are adjacent if and only if
the intersection of the corresponding maximal cliques is non-empty. Moreover,
every edge K1K2 of C(G) is given a weight equal to |K1 ∩K2|. Chordal graphs
can be represented using so-called clique trees, and many different definitions
and characterizations of clique trees have appeared in the literature (see for
example [6]). We use a characterization due to Bernstein and Goodman [4]: a
tree T with vertex set K is a clique tree of G if and only if T is a maximum
weight spanning tree of C(G). See Figure 3 for an example of a chordal graph
G and a clique tree of G.
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Fig. 3. A chordal graph G (left) and a clique tree T of G.

We refer to a set K ∈ K as a bag of T . We define the notions root bag, parent
bag, child bag and leaf bag of a clique tree similar to the notions root, parent,
child and leaf of a “normal” tree. If the bag Kr ∈ K is the root bag of a clique
tree T of G, then we say that T is rooted at Kr. A descendant of a bag K is a
bag K∗ such that K lies on the (unique) path from K∗ to the root bag Kr in
T . Every bag K 6= Kr of a clique tree T has exactly one parent bag K ′ in T .
We say that a vertex v ∈ K is given to the parent bag K ′ if v ∈ K ∩K ′, i.e., if v
is both in the child bag K and in the parent bag K ′. We say that vertex v ∈ K
stays behind if v ∈ K \K ′, i.e., if v is in the child bag K but not in the parent
bag K ′. The characterization of a clique tree given above immediately implies
the following observation.

Observation 1 Let G be a connected chordal graph with at least two maximal
cliques. Let T = (K, E) be a clique tree of G rooted at Kr. At least one vertex
of any bag K 6= Kr of T is given to the parent bag of K and at least one vertex
stays behind. Moreover, |K| ≥ 2 for all K ∈ K.

It is well-known that a connected graph is chordal if and only if it has a
clique tree [18]. We will make use of the following results.
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Theorem 3 ([20]). Let G = (V,E) be a chordal graph. Then
∑

K∈K |K| =
O(|V |+ |E|).

Theorem 4 ([6, 15]). A clique tree of a connected chordal graph G = (V,E)
can be constructed in O(|V |+ |E|) time.

2.2 An outline of our algorithm

Our algorithm for solving the R5-Role Assignment problem on chordal graphs
takes as input a chordal graph G = (V,E), and either outputs an R5-role assign-
ment of G, or outputs NO if such a role assignment does not exist. If the graph
G is disconnected, then the algorithm described below is executed on each of
the connected components of G. In that case, the algorithm outputs an R5-role
assignment of G if and only if it found an R5-role assignment of every connected
component of G, and outputs NO otherwise. We assume from now on that the
input graph G is connected.

The algorithm starts by computing a clique tree T of G, and then executes
two phases. . In Phase 1, the algorithm assigns a label to every vertex, and decides
whether or not G is R5-role assignable. If so, then the labels of the vertices are
used in Phase 2 to determine which role must be assigned to each vertex in order
to obtain an R5-role assignment of G.

Phase 1. Decide whether or not G has an R5-role assignment
In Phase 1, the algorithm processes the bags of T in a “bottom-up” manner,
starting with the leaf bags of T , and processing a bag K only after all its child
bags have been processed. When processing bag K, the algorithm computes
a label LK(v) for each vertex v ∈ K; this label LK(v) will be referred to as
the K-label of v. Initially, each vertex v ∈ K is assigned a label LK(v) = 0.
Thereafter, our algorithm updates the labels of the vertices of this bag in order
to maintain information about the possible roles that these vertices can get in
a possible R5-role assignment of G, as well as information about the possible
roles of their neighbors. To this end, it uses the labels defined in Table 1. This
updating process first generates a new label for v in K based on the labels that
v has in the child bags of K; thereafter it updates all labels in K based on the
different labels that are now present in K.

Labels of two vertices can be conflicting if they represent information on the
possible roles of the vertices that cannot be combined to an R5-role assignment.
For example, no two vertices in a bag can both get label 1, because this would
mean each of them must have role 1. Our algorithm first checks if there are any
conflicting labels. If so, it outputs NO. Otherwise, it updates the labels in order
to maintain Invariant 1 below. Here, a solution on G is an R5-role assignment
of G. A partial solution on a subgraph H of G is a mapping r′ : VH → {1, 2}
such that no two adjacent vertices x, y of H have roles that are forbidden by R5

(i.e., we do not have r′(x) = r′(y) = 1), and every vertex x in H not adjacent
to a vertex in G −H has neighbors with the roles required by R5 (at least one
neighbor y with role r′(y) = 2, and if r′(x) = 2, also at least one neighbor z with
role r′(z) = 1).
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Invariant 1 Let V ′ be the set of vertices of G that do not belong to any descen-
dant of a bag K ′. Then a partial solution on G[V ′ ∪ K ′] can be extended to a
solution on G if and only if it satisfies the constraints given by the labels LK(v)
of the vertices v ∈ (K ∩K ′) for every child bag K of K ′.

Recall that Kr is the root of the clique tree. Suppose that at some moment
bag Kr is processed. We observe that V ′ ∪K ′ = Kr in Invariant 1 if K ′ = Kr.
Hence, our algorithm ensures that a partial solution on G[V ′ ∪K ′] = G[Kr] can
be extended to a solution on G if and only if it satisfies the constraints given by
the labels of the vertices on K ∩Kr for every child bag K of Kr. Our algorithm
will now decide if such a partial solution on G[Kr] exists. If so, it finds one and
goes to Phase 2. If not, it outputs NO.

Phase 2. Produce an R5-role assignment of G

When Phase 2 starts, we know that an R5-role assignment exists for G. Now, the
algorithm will construct an R5-role assignment as follows. The partial solution
on G[Kr] found at the end of Phase 1 is propagated to a solution of G in a “top-
down” manner, processing a bag K only after its parent bag has been processed.

A bag K is processed as follows. Each vertex v ∈ K that already has been
assigned a role at an earlier step in Phase 2 keeps this role; Invariant 1 ensures
that such a role satisfies the constraints given by LK(v). Each vertex in K
without a role gets a role. The algorithm does this in a greedy way by considering
these vertices one by one and assigning them a role that satisfies the constraints
imposed by their labels. This leads to an R5-role assignment of G.

We now present Phase 1 and Phase 2 in detail. When doing this we show that
Invariant 1 is maintained throughout Phase 1. As such we immediately prove
that our algorithm is correct.

2.3 Phase 1 in detail

Table 1 shows what labels a vertex v in a bag K can have. We observe that
Phase 2 is only executed if G is indeed R5-role assignable. We implicitly assume
this in Table 1 and in the remainder of this section, whenever we write that some
vertex gets some role in Phase 2.

Initially, every vertex v in each bagK is assigned the label LK(v) = 0. During
an execution of the algorithm, this label LK(v) will be updated: the arrows in
Figure 4 represent all possible transitions between two labels. This figure will be
clarified in detail later on. For now, we only note that no arrows point downwards
in Figure 4. This corresponds to the fact that labels in a higher level contain
more information than labels in a lower level. For example, if a vertex v in bag
K has a label 22 and one of its neighbors in K gets label 2, then we change
the label LK(v) into 2 before processing the parent bag of K. After all, label
2 contains more information than label 22, as label 2 contains the information
that at least one neighbor of v will get role 2 in Phase 2.
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LK(v) = 0 initial label of every vertex
LK(v) = 1 v must get role 1 in Phase 2
LK(v) = 2 v must get role 2 in Phase 2; it is ensured that v gets a neighbor

with role 1 and a neighbor with role 2
LK(v) = 1∗ v belongs to a set J ⊆ K of at least two vertices that are all

labeled 1∗ because they are given to K from the same child
bag in which a vertex with label 21 is left behind; exactly one
vertex in J must get role 1 (and hence all others must get role 2)

LK(v) = 21 v must get role 2 in Phase 2; it is ensured that v gets a neighbor
with role 2, but we must still make sure that v gets a neighbor with
role 1

LK(v) = 22 v must get role 2 in Phase 2; it is ensured that v gets a neighbor
with role 1, but we must still make sure that v gets a neighbor with
role 2

LK(v) = 1|2 v may get either role 1 or 2 in Phase 2; in the latter case it is ensured
that v gets a neighbor with role 1 and a neighbor with role 2

LK(v) = 1|21 v may get either role 1 or 2 in Phase 2; in the latter case it is ensured
that v gets a neighbor with role 2, but we must still make sure that
v gets a neighbor with role 1

LK(v) = 1|22 v may get either role 1 or 2 in Phase 2; in the latter case it is ensured
that v gets a neighbor with role 1, but we must still make sure that
v gets a neighbor with role 2

Table 1. The different labels a vertex v can have.

We will now give a detailed description of the label assignments in Phase 1. At
each step of this description, we will prove that these label assignments maintain
Invariant 1.

LetK be the bag that is currently being processed. As soon asK is processed,
the algorithm deals with the next bag until all bags have been processed. Recall
that the order in which this is done is such that a bag is processed only if all its
child bags have been processed.

The algorithm distinguishes between the following three phases. Phase 1a
deals with the case in which K 6= Kr and K is a leaf bag. Phase 1b deals with
the case in which K 6= Kr and K is not a leaf bag. Phase 1c deals with the case
in which K = Kr. For Phase 1a and 1b, we recall that by Observation 1 at least
one vertex in K stays behind, and at least one vertex is given to its parent bag,
which we denote by K ′.

Phase 1a. Deal with leaf bags

Suppose K 6= Kr is a leaf bag of T . Let v be a vertex that stays behind. The
algorithm distinguishes between the cases |K| = 2 and |K| ≥ 3.

Case 1. |K| = 2.
In this case, v must have degree 1 in G. Let w be the other vertex of K. By
Observation 1, we find that w is given to K ′.
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Fig. 4. All possible labels and all possible transitions between them.

Set LK(v) := 1 and LK(w) := 22.

Reason: Because v has degree 1 in G, v must get role 1. This means w must get
role 2, and we must ensure that at least one other neighbor of w gets role 2.
Hence, the given label assignments maintain Invariant 1.

Case 2. |K| ≥ 3.

Set LK(u) := 1|2 for every vertex u ∈ K.

Reason: If in Phase 2 all vertices in K ∩K ′ receive role 2, then we assign role
1 to v and role 2 to all other vertices of K \K ′. In the other case, when there
exists a vertex x ∈ K ∩K ′ that receives role 1, we assign role 2 to v and every
other vertex in K \K ′. Hence, Invariant 1 is maintained.

Phase 1b. Deal with non-leaf bags that are not the root bag

Suppose K 6= Kr is not a leaf bag of T . Recall that we process K only after
each of its child bags has been processed. Hence, LKc

(v) 6= 0 for every vertex
v ∈ K that is given to K from a child bag Kc. Such a vertex v may belong to
different child bags, and consequently, it may have received different labels. We
show how to combine these multiple labels into a single label LK(v) in K such
that Invariant 1 is maintained. The algorithm distinguish between three cases.

Case 1. K contains a vertex v that has label 1 in a child bag of K.
Our algorithm distinguishes between the following cases.

Case 1.1. Vertex v has received label 2, 21 or 22 in another child bag of K.

Output NO.

Reason: Invariant 1 forces v to have two different roles. This is not allowed.

Case 1.2. There is a vertex w ∈ K \ {v} with label 1 in a child bag of K.
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Output NO.

Reason: Invariant 1 forces two adjacent vertices, namely v and w, both to have
role 1. This is not allowed.

Case 1.3. There is a set J ⊆ K of vertices that received label 1∗ in a child bag
of K to which v does not belong.

Output NO.

Reason: Invariant 1 forces two adjacent vertices, namely v and a vertex from J ,
both to have role 1. This is not allowed.

Case 1.4. Cases 1.1− 1.3 do not occur and |K| = 2.
Let w be the other vertex of K. Note that either v or w stays behind in K due
to Observation 1.

Case 1.4.1. LKc
(w) ∈ {1∗, 1|2, 1|21, 21} in some child bag Kc of K.

Set LK(v) := 1 and LK(w) := 2.

Reason: Invariant 1 forces v to get role 1, and consequently, w to get role 2. If
LKc(w) = 1∗ in some child bagKc, then by label definition w has a neighbor with
label 21 and this neighbor will get role 2 in Phase 2. If LKc

(w) ∈ {1|2, 1|21, 21},
then we also apply the label definitions.

Case 1.4.2. LKc
(w) ∈ {1|22, 22} for every child bag Kc of K that contains w,

and K\K ′ = {v}.

Set LK(v) := 1 and LK(w) := 22.

Reason: Invariant 1 forces v to have role 1, and consequently, w must get role
2 and still requires a neighbor with role 2. Note that w may belong to no child
bag of K.

Case 1.4.3. LKc
(w) ∈ {1|22, 22} for every child bag Kc of K that contains w,

and K\K ′ = {w}.

Output NO.

Reason: Invariant 1 forces v to have role 1, and consequently w to have role 2,
and then w gets no required neighbor with role 2. Note that w may belong to
no child bag of K.

Case 1.5. Cases 1.1− 1.3 do not occur and |K| ≥ 3.

Set LK(v) := 1 and LK(w) := 2 for every w ∈ K\{v}.

Reason: Vertex v must get role 1 by Invariant 1, and in this way each vertex in
K \ {v} will have a neighbor with role 1 (namely v) and a neighbor with role 2.

We conclude that Invariant 1 is maintained in every subcase described above.

Case 2. K contains no vertex that received label 1 in a child bag, but K does
contain a vertex that received label 1∗ in a child bag.
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For some p ≥ 1, let K1, . . . ,Kp be the child bags of K that contain vertices with
label 1∗. For i = 1, . . . , p, let V ∗i be the set of vertices in Ki that have label
1∗ in Ki, while not having label 2, 21 or 22 in any other child bag of K. So,
exactly one vertex in each Ki must get role 1 and this vertex must be chosen
from V ∗i . Because such a vertex will be in K and two vertices with role 1 cannot
be adjacent, this vertex must be the same vertex for every V ∗i . Hence, it must
be taken from the set V ∗ =

⋂p
i=1 V

∗
i .

The algorithm distinguishes between the following cases.

Case 2.1. |V ∗| = 0.

Output NO.

Reason: See the above argumentation.

Case 2.2. |V ∗| = 1.

Let V ∗ = {v}.

Set LK(v) := 1 and LK(w) := 2 for all w ∈ K \ {v}.

Reason: Why the algorithm sets LK(v) := 1 is explained above. The algorithm
sets LK(u) := 2 for every w ∈ K \ {v} for the following three reasons. Firstly,
none of the vertices in K \ {v} received label 1 in any of the child bags of K,
since we assumed that Case 1 does not occur. Secondly, the constraint imposed
by the labels 1∗ in each Ki will be satisfied by v. Thirdly, every vertex in K \{v}
has a neighbor that will get role 1 in Phase 2, namely v, and a neighbor that
will get role 2. The latter is true because |K| ≥ 3, which can be seen as follows.
Recall that vertices only have label 1∗ if they are given to a parent bag in groups
of size at least 2. This means K has size at least two. However, if |K| = 2 then
K is properly contained in one of its child bags, contradicting Observation 1.
Hence |K| ≥ 3 holds indeed.

Case 2.3. |V ∗| ≥ 2 and V ∗ ⊆ (K ∩K ′).

Set LK(v) := 1∗ for all v ∈ V ∗ and LK(w) := 2 for all w ∈ K \ V ∗.

Reason: The same arguments as in Case 2.2 apply. The only difference is that
there are at least two vertices in V ∗. Because these vertices are all given to K ′,
the algorithm later decides which one of them will get role 1.

Case 2.4. |V ∗| ≥ 2 and V ∗ 6⊆ (K ∩K ′).

Set LK(v) := 1|2 for all v ∈ V ∗ and LK(w) := 2 for all w ∈ K\V ∗.

Reason: The algorithm sets LK(v) := 1|2 for all v ∈ V ∗ for the following reason.
If a vertex v ∈ V ∗ ∩K ′ receives role 1 in Phase 2, then all neighbors of v will
receive role 2. If all vertices in V ∗∩K ′ receive role 2 (or if V ∗∩K ′ = ∅), then the
algorithm gives the required role 1 to one of the vertices in V ∗\K ′. The label of
all other vertices in K is set to 2 because of the same three reasons as in Case
2.2 and 2.3.

We conclude that Invariant 1 is maintained in every subcase described above.
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Case 3. K contains no vertex that received label 1 or 1∗ in any of its child bags.

We first update the labels of each vertex v ∈ K that is given to K from the child
bags of K. If v is in only one child bag Kc of K, then set LK(v) := LKc(v).
Otherwise, if v has labels in two or more different child bags of K, the algorithm
acts as follows. It first combines two labels into a new label as prescribed by
Table 2, then combines this new label with the next label (if it exists), and
continues until a single label remains.

2 21 22 1|2 1|21 1|22

2 2 2 2 2 2 2
21 2 21 2 2 21 2
22 2 2 22 2 2 22

1|2 2 2 2 1|2 1|2 1|2
1|21 2 21 2 1|2 1|21 1|2
1|22 2 2 22 1|2 1|2 1|22

Table 2. Combining two labels from different child bags.

We explain Table 2 by discussing the following two cases. Suppose v ∈ K has
label 21 in child bag Kc and label 22 in child bag Kd. Label 21 means that v is
ensured to have a neighbor that will receive role 2 in Phase 2. Label 22 means
that v is ensured to have a neighbor that will receive role 1 in Phase 2. Hence,
the algorithms sets LK(v) := 2. Suppose v ∈ K has label 21 in Kc and label
1|22 in Kd. Then v cannot get role 1 in Phase 2. In that case the algorithm sets
LK(v) := 2. Arguments like the above follow directly from the label definitions
and can be used for all other combinations. This way Invariant 1 is maintained.

After the algorithm has updated the label of each vertex that was given to
K from a child bag, the following holds for each v ∈ K. If v was given to K from
a child bag then LK(v) 6= 0; otherwise LK(v) = 0. We write

LK := {LK(v) | v ∈ K},

and LK\K′ = {LK(v) | v ∈ K\K ′} and LK∩K′ = {LK(v) | v ∈ K ∩K ′}, where
we recall that K ′ is the parent bag of K.

The algorithm distinguishes between the following cases.

Case 3.1. {22} ⊆ LK ⊆ {0, 1|2, 1|21, 1|22, 2, 21, 22}.

Case 3.1.1. |K| ≥ 3 or |LK ∩ {2, 21, 22}| ≥ 2.

Change every K-label 22 into 2 and go to Case 3.2.

Reason: If |K| ≥ 3, then K will contain at least two vertices with role 2. Hence,
any vertex with label 22 in K will get its required neighbor with role 2. The
same is true if |K| = 2 and both vertices of K have a K-label in {2, 21, 22}.
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Case 3.1.2. |K| = 2 and |LK ∩ {2, 21, 22}| = 1.

LetK = {v, w}. Because 22 ∈ LK we may assume that LK(v) = 22 and LK(w) /∈
{2, 21, 22}, thus LK(w) ∈ {0, 1|2, 1|21, 1|22}. Note that either v or w stays behind
in K by Observation 1.

Case 3.1.2.1. LK(w) ∈ {0, 1|21} and K\K ′ = {v}.

Set LK(w) := 21.

Reason: Vertex v stays behind and needs a neighbor with role 2. This neighbor
can only be w.

Case 3.1.2.2. LK(w) ∈ {0, 1|21}, and K\K ′ = {w}.

Set LK(w) := 1.

Reason: First suppose LK(w) = 0. Then w is not in a child bag of K. Because
w stays behind, this means that w has degree one. Hence w must receive role 1.
Now suppose LK(w) = 1|21. Because w stays behind, and v will receive role 2,
we find that w will not get a neighbor with role 1, which it would need if it gets
role 2. Hence w must get role 1.

Case 3.1.2.3. LK(w) ∈ {1|2, 1|22}.

Set LK(w) := 2.

Reason: First suppose K\K ′ = {v}. In this case w can function as the neighbor
with role 2 that v needs. Because w then has a neighbor, namely v, that will
receive role 2, we can set LK(w) := 2, even in the case that w had label 1|22

in K. Now suppose K\K ′ = {w}. The algorithm lets w be the required role 2
neighbor of v. If LK(w) = 1|22, then the algorithm sets LK(w) := 2 instead of
LK(w) := 22, because v will be a role 2 neighbor of w.

We conclude that Invariant 1 is maintained in every subcase described above.

Case 3.2. LK ∩ {2, 21} 6= ∅ and LK ⊆ {0, 1|2, 1|21, 1|22, 2, 21}.

The algorithm distinguishes between the following cases.

Case 3.2.1. LK\K′ ∩ {0, 1|2, 1|21, 1|22} 6= ∅.

Change every K-label in {0, 1|21, 1|22} into 1|2, and every K-label 21 into 2.

Reason: Let v ∈ K\K ′ have LK(v) ∈ {0, 1|2, 1|21, 1|22}. If none of the vertices
in K ∩K ′ receives role 1 in Phase 2, then Phase 2 assigns role 1 to v; otherwise
v gets role 2. The latter is fine, because K contains a vertex with K-label 2 or
21 that will receive role 2.

Case 3.2.2. {21} ⊆ LK\K′ ⊆ {21, 2} and |LK∩K′ ∩ {0, 1|2, 1|21, 1|22}| = 0.

Output NO.

Reason: There is a vertex in K\K ′ with K-label 21, and this vertex will not get
its required neighbor with role 1.
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Case 3.2.3. {21} ⊆ LK\K′ ⊆ {21, 2} and |LK∩K′ ∩ {0, 1|2, 1|21, 1|22}| = 1

Let v ∈ LK∩K′ be the (unique) vertex in K ∩K ′ that has LK(v) ∈ {0, 1|2, 1|21}.

Set LK(v) := 1 and change the K-label of every vertex in K\{v} into 2.

Reason: First suppose |K| = 2, say K = {v, w}. Observe that w ∈ K\K ′ due to
Observation 1. Because 21 ∈ LK , we then find that LK(w) = 21. The algorithm
changes this label into 2, because v is a neighbor of w that will get role 1 after
updating its K-label. Now suppose |K| ≥ 3. Because v will get role 1, every
vertex in K\{v} will get role 2. Because |K| ≥ 3, every vertex in K\{v} is
guaranteed to have a neighbor with role 2. Hence, the K-label of such a vertex
is updated into 2.

Case 3.2.4. {21} ⊆ LK\K′ ⊆ {21, 2} and |LK∩K′ ∩ {0, 1|2, 1|21, 1|22}| ≥ 2.

Let J consist of all vertices in K ∩ K ′ with K-label in {0, 1|2, 1|21, 1|22}, so
|J | ≥ 2.

Change the K-label of every vertex in J into 1∗, and the K-label of every vertex
in K\J into 2.

Reason: We use the same arguments as in Case 3.2.2.2 after observing that
|K| ≥ 3 holds.

Case 3.2.5. LK\K′ = {2}.

Change every K-label 0 into 1|21, and every K-label 1|22 into 1|2.

Reason: Because all vertices in K\K ′ have K-label 2, they do not need a vertex
with role 1 in K ∩ K ′, and every vertex in K ∩ K ′ is guaranteed to have a
neighbor with role 2. Therefore, the algorithm does as above.

We conclude that Invariant 1 is maintained in each subcase of Case 3.2.

Case 3.3. LK ⊆ {0, 1|2, 1|21, 1|22}.

Case 3.3.1. |K| ≥ 3, or |K| = 2 with LK\K′ = {1|2}, or |K| = 2 with LK\K′ =
{1|21} and LK∩K′ ∈ {1|2, 1|21}.

Change every K-label into 1|2.

Reason: First suppose |K| ≥ 3. Then each vertex in K will get a neighbor with
role 2. If no vertex of K ∩K ′ gets role 1, the algorithm gives role 1 to a vertex in
K\K ′. Otherwise every vertex in K\K ′ gets role 2 and will then have a neighbor
with role 1. Hence, the algorithm correctly updates each K-label into 1|2.

Now suppose |K| = 2 with LK\K′ = {1|2}. Let K = {v, w} with v ∈ K ∩K ′,
and w ∈ K ∩K ′. Thus, LK(v) = 1|2. If w gets role 1 in Phase 2, then v will get
role 2. If w gets role 2, then it already has a neighbor in K ′ with some role, as
K ′ \K 6= ∅ due to Observation 1. If w still needs a neighbor of a specific role,
then the algorithm sets v to that role; otherwise v is assigned an arbitrary role.
Hence, the algorithm correctly sets L(w) := 1|2.

Finally suppose |K| = 2 with LK\K′ = {1|21} and LK∩K′ ∈ {1|2, 1|21}.
Let K = {v, w} with v ∈ K\K ′ and w ∈ K ∩ K ′. Then LK(v) = 1|21 and
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LK(w) ∈ {1|2, 1|21}. If w gets role 2 then v gets role 1 as otherwise, when v gets
role 2, v would not have a required neighbor with role 1. Note that w already is
guaranteed to have a neighbor with role 2. If w gets role 1 then v gets role 2.
Then w will be the required role 1 neighbor of v.

Case 3.3.2 |K| = 2 with LK\K′ = {1|21} and LK∩K′ ∈ {0, 1|22}.

Let K = {v, w}. Assume v ∈ K\K ′, thus LK(v) = 1|21. By Observation 1 we
find that w ∈ K ∩K ′, thus LK(w) ∈ {0, 1|22}.

Set LK(v) := 1|2 and LK(w) := 1|22.

Reason: If w gets role 2 then v gets role 1 as otherwise, when v gets role 2, v
would not have a required neighbor with role 1. Then w is still required to get
a neighbor with role 2. If w gets role 1 then v gets role 2. Then w will be the
required role 1 neighbor of v.

Case 3.3.3. |K| = 2 with LK\K′ = {1|22}.

Let K = {v, w}. Assume v ∈ K\K ′, thus LK(v) = 1|22. By Observation 1 we
find that w ∈ K ∩K ′. Note that LK(w) ∈ {0, 1|2, 1|21, 1|22}.

Set LK(v) := 1|2 and LK(w) := 2.

Reason: Vertex w cannot get role 1, because then v would get role 2 and miss
its required neighbor with role 2. Since K ′ is maximal, there exists a vertex
w′ ∈ K ′\K. If w′ gets role 1, the algorithm assigns role 2 to role v. If w′ gets
role 2, the algorithm assigns role 1 to v. In this way w will have neighbors of
both roles.

Case 3.3.4. |K| = 2 with LK\K′ = {0}.
Let K = {v, w}. Assume v ∈ K\K ′, thus LK(v) = 0. This means that

v is vertex of degree 1 in G. By Observation 1 we find that w ∈ K ∩ K ′.
Note that LK(w) 6= 0, because then K would be a leaf bag. Hence LK(w) ∈
{1|2, 1|21, 1|22}.

Case 3.3.4.1. LK(w) ∈ {1|2, 1|21}.

Set LK(v) := 1 and LK(w) := 2.

Reason: Because v has degree 1 in G, v must get role 1. This means that w must
get role 2 and that w has a neighbor with role 1, namely v.

Case 3.3.4.2. LK(w) = 1|22.

Set LK(v) := 1 and LK(w) := 22.

Reason: Because v has degree 1 in G, v must get role 1. This means that w must
get role 2 but still needs a neighbor with role 2.

We conclude that Invariant 1 is maintained in each subcase of Case 3.3.

Phase 1c. Deal with the root bag
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The root bag Kr is the last bag of T to be processed in Phase 1. Because the
root bag is the only bag of T that does not have a parent bag, the case analysis
for Kr slightly differs from the case analysis for other bags of T , as we explain
below. After processing Kr, the algorithm enters Phase 2 unless it has output
NO.

Case 1. Kr contains a vertex v that has label 1 in a child bag of Kr.

The algorithm acts as in Case 1 of Phase 1b except when it is in Case 1.4.2,
where it does as follows instead.

Output NO.

Reason: Vertex w is not able to get a required role 2 neighbor.

Case 2. Kr contains no vertex that received label 1 in a child bag, but Kr does
contain a vertex that received label 1∗ in a child bag.

The algorithm acts as in Case 2 of Phase 1b except when it is in Case 2.3 or 2.4,
where it does as follows instead.

Set LKr
(v) := 1 for some v ∈ V ∗ and LKr

(w) := 2 for all w ∈ Kr\{v}.

Reason: Kr does not have a parent bag. Hence, the algorithm must assign one
of the vertices role 1.

Case 3. Kr contains no vertex that received label 1 or 1∗ in one of its child
bags.

The algorithm first updates the Kr-label of every vertex in Kr as in Case 3 of
Phase 1b and then distinguishes between the following cases.

Case 3.1. LKr
∩ {1|2, 1|21, 1|22} 6= ∅.

Because |Kr| ≥ 2, there exist two different vertices v, w in Kr. Assume LKr
(v) ∈

{1|2, 1|21, 1|22}. Note that LKr
(w) ∈ {0, 1|2, 1|21, 1|22, 2, 21, 22}.

Case 3.1.1. |Kr| ≥ 3, or |Kr| = 2 with LKr
(w) ∈ {1|2, 1|21, 2, 21}.

Set LKr (v) := 1 and LKr (u) := 2 for all u ∈ Kr\{v}.

Reason: First suppose |Kr| ≥ 3. This means that |Kr\{v}| ≥ 2. Hence, every
vertex in Kr\{v} has a neighbor with role 2, while v is the required role 1
neighbor. Now suppose |Kr| = 2 with LKr

(w) ∈ {1|2, 1|21, 2, 21}. Then w needs
no neighbor of role 2 anymore, and v will be its neighbor of role 1.

Case 3.1.2. |Kr| = 2 with LKr
(v) ∈ {1|2, 1|21} and LKr

(w) ∈ {0, 1|22}.

Set LKr (v) := 2 and LKr (w) := 1.

Reason: In this way, both v and w have the required roles in their neighborhoods.

Case 3.1.3. |Kr| = 2 either with LKr (v) = 1|22 and LKr (w) = 0, or with
LKr (v) = 1|21 and LKr (w) = 22.

Output NO.
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Reason: In the first case, w is in no child bag of Kr. If w gets role 2, then w either
has no neighbor with role 1 or no neighbor with role 2. If w gets role 1, then v
gets role 2. However, then v has no neighbor with role 2. Hence, the algorithm
correctly outputs NO. In the second case w will get role 2 and has no neighbor
with role 2, unless v gets role 2. However, in that case, v has no neighbor with
role 1. Hence, the algorithm correctly outputs NO.

Case 3.1.4. |Kr| = 2 either with LKr
(v) = 1|22 and LKr

(w) ∈ {1|22, 22}, or
with LKr

(v) = 1|2 and LKr
(w) = 22.

Set LKr
(v) := 2 and LKr

(w) := 2.

Reason: In this way, vertex v and w each get role 2, and both have a neighbor
with role 1 from a descendant of Kr, and a neighbor with role 2, namely each
other.

Case 3.2. LKr
⊆ {0, 2, 21, 22}.

Case 3.2.1. {21} ⊆ LKr
⊆ {2, 21, 22}, or |Kr| = 2 with {0} ⊆ LKr

⊆ {0, 22}.

Output NO.

Reason: Suppose {21} ⊆ LKr
⊆ {2, 21, 22}. Then the vertex that has Kr-label

21 has no neighbor of role 1.
Suppose |Kr| = 2 with {0} ⊆ LKr

⊆ {0, 22}. If LKr
= {0}, then G is

a graph on two vertices. Consequently, G has no R5-role assignment. Suppose
LKr = {0, 22}. Let Kr = {v, w} with LKr (v) = 0 and LKr (w) = 22. If v gets
role 2, then v has no neighbor with role 1. Hence v must get role 1. In that case,
however, w has no neighbor with role 2. Thus, the algorithm correctly outputs
NO.

Case 3.2.2. LKr
⊆ {2, 22}.

Change the Kr-label of every vertex in Kr into 2.

Reason: In this way all vertices inKr will get role 2, while having both a neighbor
with role 1 and a neighbor with role 2.

Case 3.2.3. |Kr| ≥ 3 with {0} ⊆ LKr .

Let v ∈ Kr have LKr (v) = 0.

Set LKr (v) := 1 and LKr (u) := 2 for all u ∈ Kr\{v}.

Reason: Because |Kr| ≥ 3, we find that at least two vertices in Kr get role 2.
Hence, all vertices in Kr get the required roles in their neighborhood.

Case 3.2.4. |Kr| = 2 with {0} ⊆ LKr
* {0, 22}.

Let Kr = {v, w}, and let v be a vertex with Kr-label 0. Then LKr
(w) ∈ {2, 21},

since otherwise we would have LKr
⊆ {0, 22}.

Set LKr
(v) := 1 and LKr

(w) := 2.

Reason: In this way both v and w get the required roles in their neighborhood.
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2.4 Phase 2 in detail

Since the algorithm entered Phase 2, an R5-role assignment of G exists. Note
that at the end of Phase 1 every vertex in Kr either has Kr-label 1 or Kr-label
2. The algorithm will assign role 1 to the vertices in Kr with Kr-label 1 and
role 2 to the vertices in Kr with Kr-label 2. It will then construct an R5-role
assignment of G by propagating this partial solution on G[Kr] in a “top-down”
matter, processing a bag K only after its parent bag has been processed. Note
that in this way a vertex has its most updated label when the algorithm assigns
it a role.

Let K ′ be a child bag of Kr. Any vertex u ∈ K ′ that has been assigned a role
already must be a vertex of Kr. Because the partial solution on G[Kr] has been
chosen such that Invariant 1 is maintained, the role of such a vertex u satisfies
the constraints given by LK′(u). Hence u keeps its role.

The algorithm considers all vertices of K ′ without a role one by one. Let v
be such a vertex. If LK′(v) = 1 then v gets role 1. If LK′(v) ∈ {2, 21, 22} then v
gets role 2. If LK′(v) = 1∗, then v belongs to a set J of vertices that each have
K ′-label 1∗. We assign role 1 to v unless another vertex from J already got role 1.
Otherwise, LK′(v) ∈ {1|2, 1|21, 1|22} must hold. In that case we follow exactly
the same analysis as in the description of Phase 1 by checking if a neighbor
w of v in Kr still needs a required neighbor of certain role. If so, we let v be
this neighbor of w. In this way the roles of the vertices of K ′ that are also in
child bags of K ′ satisfy the constraints given by their labels in these child bags.
Invariant 1 then again ensures that we can extend our partial solution to every
child bag K of K ′, and we proceed accordingly until all vertices have obtained
a role. In this way we obtain an R5-role assignment of G.

2.5 Running time analysis

Theorem 5. The R5-Role Assignment problem can be solved in linear time
for the class of chordal graphs.

Proof. Let G = (V,E) be a connected chordal graph. The algorithm first com-
putes a clique tree T = (K, E) of G, which can be done in O(|V |+ |E|) time by
Theorem 4. The algorithm then acts in the way described in Sections 2.2, 2.3,
and 2.4. We already proved correctness of the algorithm in those sections.

In Phase 1, the algorithm computes |K| labels per bag K. Then, by The-
orem 3, there are O(|V | + |E|) labels to compute in total. We first determine,
for each vertex v ∈ K, the time required to compute the label LK(v), given the
labels of v in the child bags of K. Next we determine the time required for the
remaining part of Phase 1.

The time required to construct a label LK(v) from a combination of la-
bels from child bags of K to which v belongs is proportional to the number of
such child bags. For the entire clique tree, this combining of labels then costs
O(

∑
K∈K |K|) = O(|V |+ |E|) time by Theorem 3.

The time required to update the labels in a bagK as prescribed in Section 2.2
is O(|K|) by first scanning K to decide what subcase applies and then updating
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the labels for K. Again by Theorem 3, this requires O(|V |+ |E|) for the entire
clique tree. We conclude that Phase 1 runs in O(|V |+ |E|) time.

Due to our greedy approach in Phase 2, this phase can also be executed in
O(|V | + |E|) time. We conclude that the overall running time of our algorithm
is O(|V |+ |E|). This completes the proof of Theorem 5. ut

2.6 A remark regarding R6-role assignments

In our linear time algorithm that solves the 2-Role Assignment problem on
chordal graphs we do not have to check if the input graph has an R6-role assign-
ment (cf. Theorem 2). This is rather “fortunate” as the R6-Role Assignment
problem turns out to be NP-complete even when restricted to split graphs, a
subclass of chordal graphs. For showing this we need some extra terminology.

A split graph is a graph G = (V,E) whose vertex set V can be partitioned into
two disjoint sets I and C, such that I is an independent set in G and C is a clique
in G. A hypergraph H is a pair (Q,S) consisting of a set Q = {q1, . . . , qm}, called
the vertices of H, and a set S = {S1, . . . , Sn} of nonempty subsets of Q, called
the hyperedges of H. With a hypergraph H = (Q,S) we associate its incidence
graph I, which is a bipartite graph with partition classes Q and S, where for any
q ∈ Q,S ∈ S we have qS ∈ EI if and only if q ∈ S. A 2-coloring of a hypergraph
H = (Q,S) is a partition (Q1, Q2) of Q such that Q1 ∩ Sj 6= ∅ and Q2 ∩ Sj 6= ∅
for 1 ≤ j ≤ n. A hypergraph H is called nontrivial if Q contains at least three
vertices and Q is a member of S. The Hypergraph 2-Colorability problem
asks whether a given hypergraph has a 2-coloring. This problem, also known as
Set Splitting, is NP-complete (cf. [16]). Obviously, it remains NP-complete
when restricted to nontrivial hypergraphs.

Proposition 1. The R6-Role Assignment problem is NP-complete for the
class of split graphs.

Proof. Let (Q,S) be a nontrivial hypergraph. In its incidence graph I we add
an edge between every pair of vertices in Q. This results in a split graph G. We
claim that (Q,S) has a 2-coloring if and only if G has an R6-role assignment.

Suppose (Q,S) has a 2-coloring (Q1, Q2). Since |Q| ≥ 3, we may without loss
of generality assume that |Q2| ≥ 2. We give each q ∈ Q1 role 1 and each q ∈ Q2

role 2. We assign role 1 to each S ∈ S. Because (Q1, Q2) is a 2-coloring, each
vertex in S has a neighbor with role 1 and a neighbor with role 2 in G. Because
Q is a clique in G and |Q2| ≥ 2, each vertex in Q2 has a neighbor with role 1 and
a neighbor with role 2. For the same reason, each vertex in Q1 has a neighbor
with role 2. Since (Q,S) is nontrivial, Q ∈ S. This guarantees that also in case
|Q1| = 1, each vertex in Q1 has a neighbor with role 1. We conclude that G has
an R6-role assignment.

Suppose G has an R6-role assignment. Then every vertex in S has a neighbor
with role 1 and a neighbor with role 2. By construction, these neighbors are in
Q. This immediately gives a 2-coloring of (Q,S). ut
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3 Complexity of k-Role Assignment for k ≥ 3

It is known that the k-Role Assignment problem is NP-complete for any fixed
k ≥ 2 [13]. We proved in Section 2 that 2-Role Assignment can be solved in
linear time when the input graph is chordal. In this section, we show that the
k-Role Assignment problem for chordal graphs is NP-complete for every fixed
k ≥ 3. We use a reduction from the Hypergraph 2-Colorability problem.
Our NP-completeness proof is more involved than the one for the general case
in [13], as the graph constructed there (also from an instance of Hypergraph
2-Colorability) is not chordal.

Theorem 6. For k ≥ 3, the k-Role Assignment problem is NP-complete for
the class of chordal graphs.

Proof. Let k ≥ 3. We use a reduction from Hypergraph 2-Colorability. Let
(Q,S) be a nontrivial hypergraph with incidence graph I.

We modify I as follows. Firstly, we add an edge between any two vertices inQ,
so Q becomes a clique. Secondly, for each S ∈ S we take a path PS = pS

1 · · · pS
k−2

and connect it to S by the edge pS
k−2S, so these new paths PS are pendant paths

in the resulting graph. Thirdly, we add a copy Hq of a new graph H for each
q ∈ Q. Before we explain how to do this, we first define H. Start with a path
u1u2 · · ·u2k−4. Then take a complete graph on four vertices a, b, c, d, and a com-
plete graph on four vertices w, x, y, z. Add the edges cu1, du1, u2k−4w, u2k−4x.
We then take three paths S = s1 · · · sk−2, T = t1 · · · tk−2 and T ′ = t′1 · · · t′k−2,
and we add the edges sk−2w, ctk−2, dt

′
k−2. This finishes the construction of H.

We connect a copy Hq to q via the edge quq
1, where u

q
1 is the copy of the vertex

u1. We call the resulting graph G; notice that this is a connected chordal graph.
See Figure 5 for an example.

y z

w x

s2 u4

s1

t1 t′1

t2 u1 t′2

c d

a b

H

pS
1

pS
2

S

q

uq
1

S

Q

G

Hq

Fig. 5. The graph H (left side) and the graph G (right side) when k = 4.

We first show that if G has a k-role assignment r : VG → {1, . . . , k}, then r is
an R∗-role assignment, where R∗ denotes the k-vertex path on vertices 1, . . . , k
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such that there is an edge between vertex i and i + 1 for i = 1, . . . , k − 1, and
a loop in vertex k − 1 and in vertex k. To see this, consider a copy Hq of H in
G; we show that we can assign roles to the vertices of Hq in only one way. For
convenience, we denote the vertices of Hq without the superscript q.

Let A be an induced path in G on at most k vertices, starting in a vertex
of degree 1. We claim that the k-role assignment r must assign exactly |VA|
different roles to the vertices of A, i.e., we have |r(VA)| = |VA|. This can be
seen as follows. Suppose |r(VA)| = α < |VA|. We may without loss of generality
assume that, starting from the vertex of degree 1, r assigns roles 1, . . . , α to the
first α vertices of A and role α − 1 to the next vertex of A. However, then all
neighbors of every role in R are fixed. Then, because G is connected, none of
the vertices of G gets assigned role k ≥ |VA| > α by r. This means that r is not
a k-role assignment of G, which is a contradiction.

From the above, we find that we may write r(ti) = i for i = 1, . . . , k− 2 and
r(c) = k− 1. This implies that a vertex with role 1 only has vertices with role 2
in its neighborhood and a vertex with role i for 2 ≤ i ≤ k − 2 only has vertices
with role i − 1 and role i + 1 as neighbors. Then a vertex with role k can only
be adjacent to vertices with role k − 1 or role k. Hence c must have a neighbor
with role k.

Suppose r(d) = k. Then r(t′k−2) ∈ {k − 1, k} and this eventually leads to
r(t′1) ≥ 2 without a neighbor of role r(t′1)− 1 for t′1. This is not possible. Hence
r(d) 6= k. This means that k ∈ r({a, b, u1}). Since a, b, u1 are neighbors of d as
well and a vertex with role k can only have neighbors with role k − 1 and k, we
then find that d has role k − 1.

The above implies that a and b have their role in {k − 2, k − 1, k}. Suppose
k = 3. If r(a) = 1, then r(b) = 2 implying that r is a 2-role assignment (as
r(c) = r(d) = 2 and then r(NG(b)) = {1, 2} implying that r cannot use role 3
because G is connected). Suppose r(a) = 2. Then a needs a neighbor with role
1. Hence r(b) = 1, but then r is a 2-role assignment. Suppose r(a) = 3. Then
r(b) 6= 2, as otherwise b needs a neighbor with role 1. Hence r(b) = 3. This means
that r is an R∗-role assignment. Suppose k ≥ 4. If r(a) = k − 2, then a needs
a neighbor with role k − 3. So, r(b) = k − 3. However, this is not possible since
vertex b with role k − 3 is adjacent to vertex c with role k − 1. If r(a) = k − 1,
then r(b) = k − 2. This is not possible either. Hence r(a) = k and for the same
reasons r(b) = k. Then r is an R∗-role assignment.

We claim that (Q,S) has a 2-coloring if and only if G has a k-role assignment.
Suppose (Q,S) has a 2-coloring (Q1, Q2). We show that G has an R∗-role

assignment, which is a k-role assignment. We assign role i to each pS
i for i =

1, . . . , k − 2 and role k − 1 to each S ∈ S. As (Q,S) is nontrivial, either Q1 or
Q2, say Q2, has size at least two. Then we assign role k − 1 to each q ∈ Q1

and role k − 2 to neighbor uq
1. We assign role k to each q ∈ Q2 and k − 1 to

neighbor uq
1. As |Q2| ≥ 2, every vertex in Q has a neighbor with role k. Hence,

we can finish off the role assignment by assigning roles to the remaining vertices
of each copy Hq of H as follows. For convenience, we remove the superscript q.
We map each path S, T, T ′ to the path 1 · · · k−2, where r(si) = r(ti) = r(t′i) = i
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for i = 1, . . . , k − 2. If u1 received role k − 2 we assign ui role k − 1 − i for
i = 2, . . . , k−2 and we assign uk−2+i role i+1 for i = 1, . . . , k−2. Furthermore,
we assign role k−1 to c, d, w, and role k to a, b, x, y, z. If u1 received role k−1, it
already has a neighbor with role k (namely its neighbor in Q). Then we assign ui

role k− i for i = 2, . . . , k− 1 and we assign uk−1+i role i+ 1 for i = 1, . . . , k− 3.
Furthermore, we assign role k − 1 to c, d, w, x, and role k to a, b, y, z.

To prove the converse statement, suppose G has a k-role assignment r. As we
have shown above, by construction, G must have an R∗-role assignment. Then
each pS

i must have role i for i = 1, . . . , k− 2. Then r(S) = k− 1 for each S ∈ S,
and each S must have a neighbor in Q with role k− 1 and a neighbor in Q with
role k. We define Q1 = {q ∈ Q | r(q) = k − 1} and Q2 = Q \Q1. Then we find
that (Q1, Q2) is a 2-coloring of (Q,S). This completes the proof of Theorem 6.

ut

4 Conclusions

We have settled an open problem of Sheng [24] by presenting a linear time algo-
rithm that decides whether a chordal graph G = (V,E) has a 2-role assignment.
We showed that for any fixed k ≥ 3 the k-Role Assignment problem stays
NP-complete even for the class of chordal graphs.

Role assignments are also studied in topological graph theory. There, a graph
G is called an emulator of a graph R if G has an R-role assignment. One of
the important questions is which graphs allow finite planar emulators; see for
example the recent paper of Rieck and Yamashita [22] for nice developments in
this area. An interesting question is the computational complexity of the k-Role
Assignment problem for planar graphs. The answer to this question is already
unknown for k = 2.
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