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Abstract

In this paper, we study triangle-free graphs. Let G = (VG, EG) be an
arbitrary triangle-free graph with minimum degree at least two and σ4(G) ≥
|VG|+ 2. We first show that either for any path P in G there exists a cycle C
such that |VP \ VC | ≤ 1, or G is isomorphic to exactly one exception. Using
this result, we show that for any set S of at most δ vertices in G there exists
a cycle C such that S ⊆ VC .

1 Introduction

Let G = (VG, EG) be a graph, where VG is a finite set of order |VG| = n and EG is a

set of unordered pairs of two different vertices, called edges. For graph terminology

not defined below we refer to [10]. For simplicity, we sometimes denote |VG| by |G|
and “u ∈ VG” by “u ∈ G”. For a vertex u ∈ G we denote its neighborhood, i.e., the

set of adjacent vertices, by NG(u) = {v |uv ∈ EG}. The degree dG(u) of a vertex u

is the number of edges incident with it, or equivalently the size of its neighborhood.

The minimum degree of G is denoted by δG. If no confusion is possible we will omit

the subscript G in the later notations.

1This work was done when the author was visiting Nihon University, supported by KAKENHI
(13304005)
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A graph H is a subgraph of a graph G, denoted by H ⊆ G, if VH ⊆ VG and

EH ⊆ EG. For a subset U ⊆ VG we denote by G[U ] the induced subgraph of G over

U ; hence G[U ] = (U,EG ∩ (U ×U)). For simplicity, we denote G[VG\VH ] by G−H.

We denote the complement of a graph G = (V,E) by G = (V, (V × V )\E). For

two graphs G1 = (V1, E1) and G2 = (V2, E2), we denote their union by G1 ∪ G2 =

(V1∪V2, E1∪E2) and their join by G1∗G2 = (V1∪V2, E1∪E2∪(V1×V2)). A complete

graph is a graph with an edge between every pair of vertices. The complete graph

on n vertices is denoted by Kn. The complete bipartite graph Kk ∗Kℓ is denoted by

Kk,ℓ.

A graph G is called connected if for every pair of distinct vertices u and v, there

exists a path P connecting u and v, i.e., a sequence P = v1v2 . . . vp of distinct vertices

starting by u = v1 and ending by v = vp, where each pair of consecutive vertices

forms an edge of G. The vertices v1 and vp are called the ends of P . The order of a

longest path in G is denoted by pG. A vertex u is called a cut vertex of a connected

graph G if G[V \{u}] is disconnected. A graph G = (V,E) is called k-connected if

G[V \U ] is connected for any set U ⊆ V of at most k − 1 vertices. A cycle C is

a sequence v1v2 . . . vpv1 of distinct vertices, where each pair of consecutive vertices

forms an edge. The order of a longest cycle in a graph G is called the circumference

cG. A cycle C is called dominating if G − C is edgeless.

Let G = (V,E) be a graph. A set U ⊆ V is called independent if G does

not contain edges with both ends in U . The number of vertices in a maximum

independent set is called the independence number of G. We denote

σk(G) = min{
k∑

i=1

dG(xi) | x1, x2, . . . , xk are distinct and independent}.

If the independence number of G is less than k, then we define σk(G) = ∞.

Previous research

A graph G is called hamiltonian if G contains a cycle C with VC = VG. The

problem of finding whether a given graph G is hamiltonian is one of the oldest

problems in the history of graph theory and has direct applications to, for example,

the travelling salesman problem. See Gould [14] for a survey. For a graph G that

is not hamiltonian, a natural question is to ask how close it is to hamiltonicity. To
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measure this, we can take the difference pG − cG, called the relative length, between

the order of a longest path and the circumference of G. We observe that pG−cG = 0

if and only if G is hamiltonian. Furthermore, pG − cG ≤ 1 implies that all longest

cycles are dominating. In order to see this, suppose C is a non-dominating longest

cycle of a graph G. So |C| = cG. Since C is non-dominating, G − C contains an

edge. We take a shortest path connecting this edge to C and extend it with cG − 1

edges of C, say P . We then find that pG − cG ≥ |P | − |C| ≥ 2, a contradiction. In

the literature many results on dominating cycles and the relative length pG− cG can

be found (see, e.g., [17, 18, 22, 23]).

Ore [19] showed that a graph G with σ2 ≥ n is hamiltonian. Bondy [5] studied

σ3 and proved the following result.

Theorem 1 ([5]). If G is a 2-connected graph with σ3 ≥ n + 2, then all longest

cycles are dominating.

The lower bound on σ3 in Theorem 1 is tight. One can see this as follows.

Consider the graph Gk = (Kk ∪ Kk ∪ Kk) ∗ K2 of order n = 3k + 2 for k ≥ 2. It is

easy to check that Gk is 2-connected and has σ3(Gk) = 3k + 3 = n + 1. However,

since each cycle in Gk can pass through K2 at most twice, any longest cycle does

not contain vertices of one Kk, and consequently is not dominating.

Enomoto et al. [12] proved the following.

Theorem 2 ([12]). If G is a 2-connected graph with σ3 ≥ n + 2, then pG − cG ≤ 1.

We already noted that pG−cG ≤ 1 implies that all longest cycles are dominating.

Hence, Theorem 2 generalizes Theorem 1. Clearly, the opposite is not true. For

example, consider the graph obtained from a cycle u1u2 . . . upu1 by adding two new

vertices v and w and two edges vu1 and wu2.

Our results

In this paper we are interested in proving a similar result for triangle-free graphs

(graphs that do not contain K3) corresponding to Theorem 2 of Enomoto et al. Is it

possible to make a jump from σ3 to σ4 when we restrict ourselves to this graph class?

Triangle-free graphs are the natural generalization of bipartite graphs and therefore

have been widely studied in the literature, also in the context of hamiltonian research
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(cf. [2, 3, 7, 13, 16]). Broersma, Yoshimoto and Zhang [9] showed that a 2-connected

triangle-free graph with σ3 ≥ (n + 5)/2 contains a longest cycle that is dominating.

The lower bound on σ3 is tight, even for the existence of dominating cycles. Note

that graphs satisfying the conditions of this theorem might contain longest cycles

that are not dominating. However, if σ2 ≥ (n + 1)/2, then all longest cycles are

dominating [24]. This lower bound is almost best possible by examples due to Ash

and Jackson [1].

The main result of this paper is as follows. Its proof is given in Section 2.

Theorem 3. Let G be a triangle-free graph with δ ≥ 2 not isomorphic to the graph

in Figure 1(i). If σ4 ≥ n + 2 then for any path P there exists a cycle C such that

|P − C| ≤ 1.

* * * *

(i) (ii)

Figure 1: (i) exception for Theorem 3, (ii) the graph H5.

We note that Theorem 3 immediately implies that pG−cG ≤ 1. Hence, this result

for triangle-free graphs is “similar” to Theorem 2 of Enomoto et al. for 2-connected

graphs.

The lower bound on σ4 in Theorem 3 is tight. In order to see this, consider the

graph Hk = Kk−1 ∗ Kk ∗ K1 ∗ Kk ∗ Kk−1 of order n = 4k − 1 for k ≥ 2. For an

illustration of the case k = 5, see Figure 1(ii). Obviously, Hk is triangle-free. It is

easy to check that Hk has minimum degree 2 ≤ δHk
= k = n+1

4
. Since Hk contains

at least four vertices of minimum degree, we find that σ4(Hk) = n+1. Furthermore,

Hk contains a path P of order |P | = n. However, any cycle can pass through K1

at most once. So a longest cycle C contains all vertices of exactly one Kk−1, one

adjacent Kk and the vertex of the K1. Hence, for all k ≥ 2, the circumference of Hk

is cHk
= 2k = n+1

2
≤ n−2. So, for P there does not exist a cycle C with |P −C| ≤ 1.

This means that the bound on σ4 is tight indeed.
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In Theorem 3 no condition is imposed on the connectivity of a graph. A natural

question (cf. Theorem 2) is to ask whether adding such a condition would be helpful

for decreasing the lower bound on σ4. However, this is not the case: we can add

all possible edges between the left Kk−1 and the right Kk−1 in Hk. This way we

obtain a new graph H ′
k that is still triangle-free, has minimum degree n+1

4
≥ 2

and σ4(H
′
k) = n + 1, and furthermore contains a path of length n. However, a

longest cycle C will pass through all vertices except one vertex of each Kk−1, so

|C| = cH′
k

= n − 2. We reach the same conclusion as before.

In the literature the following related problem has been studied for general graphs

and graph classes (see, e.g., [4, 6, 8, 11, 15, 20, 21]): for a given graph G, does any

subset S of vertices of restricted size have some cycle passing through it? As an

application of Theorem 3, we obtain the following result for triangle-free graphs. Its

full proof is given in Section 3.

Theorem 4. Let G be a triangle-free graph with δ ≥ 2. If σ4 ≥ n + 2, then for any

set S of at most δ vertices, there exists a cycle C such that S ⊆ VC.

This result implies that a triangle-free graph with δ ≥ 2 and σ4 ≥ n + 2 is

2-connected. On the other hand, the previously defined graph Hk contains a cut

vertex, namely the vertex of the K1. Hence, the lower bound on σ4 in Theorem 4 is

tight. In Section 3 we show that a triangle-free graph with δ ≥ 2 and σ4 ≥ n + 1 is

connected. The lower bound on σ4 is tight due to the graph Kk,k ∪ Kk,k for k ≥ 2.

Additional notations

Let G = (V,E) be a graph. For a subset U ⊆ V and vertex u ∈ V we sometimes

write “U\u” instead of “U\{u}”.

Let H be a subgraph of G. We denote NG(x)∩ VH by NH(x) and its cardinality

|NH(x)| by dH(x). The set of neighbours
∪

v∈H NG(v) \ VH is denoted by NG(H)

or N(H). For an edge e = uv in G, we write N(e) = N({u, v}). For a subgraph

F ⊆ G, we write NG(H) ∩ VF as NF (H).

Let C = v1v2 . . . vpv1 be a cycle with a fixed orientation. The successor vi+1 of

vi is denoted by v+
i and its predecessor vi−1 by v−

i . For a vertex subset A in C, we

denote {v+
i | vi ∈ A} and {v−

i | vi ∈ A} by A+ and A−, respectively. The segment

vivi+1 . . . vj is written as vi
−→
C vj, where the subscripts are to be taken modulo |C|.
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The converse segment vjvj−1 . . . vi is written as vj

←−
C vi. Similarly, for a path P =

u1u2 . . . up, we use the notations ui
−→
P uj = uiui+1 . . . uj and uj

←−
P ui = ujuj−1 . . . ui.

2 The Proof of Theorem 3

Let S be a vertex subset of G. If a path P is a longest path over all paths containing

S, then we call P a maximal path for S. The set of all maximal paths for S is denoted

by P(S). Before proving Theorem 3 we first show the following lemma.

Lemma 5. Let G be a triangle-free graph with δG ≥ 2 not isomorphic to the graph

in Figure 1i. Then for any path R, there either exists a path in P(VR) such that the

degree sum of the ends is at least σ4(G)/2, or else a cycle C such that |R−C| ≤ 1.

Proof. Let G be a triangle-free graph with δG ≥ 2. Assume that G is not isomorphic

to the graph in Figure 1i. Let R be any path in G and P = u1u2 . . . up ∈ P(VR) such

that the degree sum of the ends is maximal in P(VR). Notice that N(u1) = NP (u1)

and N(up) = NP (up). So all neighbors of u1 and up in G belong to P .

Suppose there are vertices ui ∈ N(u1)\u2 and uj ∈ N(up)\up−1 such that i ≤ j.

Then {u1, ui−1, uj+1, up} is independent; otherwise there is a triangle (forbidden) or

a cycle containing VR (we are done). Because d(u1)+d(ui−1)+d(uj+1)+d(up) ≥ σ4,

one of the degree sums d(u1) + d(up) and d(ui−1) + d(uj+1) is at least σ4/2. Hence,

at least one of the paths P or ui−1
←−
P u1ui

−→
P ujup

←−
P uj+1 is a desired path.

In the remaining case we have

i > j for any two vertices ui ∈ N(u1) \ u2 and uj ∈ N(up) \ up−1. (1)

Suppose there is a vertex us ∈ NP (u1) \ {u2, up−2}. Since δG ≥ 2 and N(up) =

NP (up), vertex up has a neighbor ut ̸= up−1 on P . Then we find that the path

P ′ = ut+1
−→
P usu1

−→
P utup

←−
P us+1 is a path in P(VR). The vertex u1 is not adjacent

to ut+1 nor us+1; otherwise there is a triangle or a cycle containing VR. Also, the

vertex up is not adjacent to ut+1 nor to us+1 by statement (1) and us ̸= up−2. Thus

{u1, ut+1, us+1, up} is an independent set. Hence, at least one of the paths P and

P ′ is a desired path as in the previous case. Therefore N(u1) = {u2, up−2} and, by

symmetry, N(up) = {u3, up−1}. Furthermore, by the maximality of the degree sum

of the ends of P we deduce that

the degree of an end of any path in P(VR) is two.
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Because the path u1u2u3up

←−
P u4 is in P(VR), the vertex u1 has to be adjacent to

u++
4 = u6; otherwise, as in the above case, we can obtain a desired cycle or path.

Therefore u6 = up−2, i.e., p = 8, and so any vertex in {u1, u2, u4, u5, u7, u8} is the

end of some path in P(VR), and consequently has degree two. As G is triangle-free,

the vertices u1, u5 and u7 are mutually disjoint. If G−P is not empty, then for any

x ∈ G − P , the set {x, u1, u5, u7} is independent. Hence we find that

d(x) ≥ σ4 − (d(u1) + d(u5) + d(u7)) ≥ n + 2 − 6 = n − 4.

However, x is adjacent to none of the vertices in {u1, u2, u4, u5, u7, u8} because their

degrees are all equal to two. Thus d(x) ≤ n−7, a contradiction. Therefore G−P = ∅
and n = 8. As u3 is adjacent to none of the vertices u1, u5, u7, vertex u3 has to be

adjacent to u6; otherwise d(u1) + d(u3) + d(u5) + d(u7) = 9 < n + 2. Hence G is

isomorphic to the graph in Figure 1i, a contradiction.

We are ready to prove Theorem 3. Let G be a triangle-free graph with δ ≥ 2 and

σ4 ≥ n + 2 that is not isomorphic to the graph in Figure 1i. Let R be any path in

G. We prove that G contains a desired cycle, i.e., a cycle C such that |R − C| ≤ 1.

Suppose the independence number of G is at most three. Then σ4(G) = ∞. By

Lemma 5, there exists a cycle C such that |R − C| ≤ 1.

From now on we assume that the independence number of G is at least four. Let

P = u1u2 . . . up ∈ P(VR) such that

the degree sum of the ends is maximal in P(VR). (2)

Then from Lemma 5, d(u1)+d(up) ≥ σ4/2. Notice that we may assume that there is

no path in P(VR) whose ends are adjacent; otherwise obviously there exists a cycle

containing VR.

If there is ul ∈ NP (u1) ∩ NP (up)
+, then the cycle u1

−→
P u−

l up

←−
P ulu1 is a desired

cycle. Thus we can suppose NP (u1) ∩ NP (up)
+ = ∅. Similarly, we get NP (u1) ∩

NP (up)
++ = ∅ and NP (u1)

− ∩ NP (up)
+ = ∅. If NP (u1)

− ∩ NP (up)
++ is also empty,

then NP (u1), NP (u1)
−, NP (up)

+ and (NP (up) \ up)
++ are mutually disjoint. Hence

we find that

n ≥ |P | ≥ |NP (u1)| + |NP (u1)
−| + |NP (up)

+| + |(NP (up) \ up)
++|

≥ 2d(u1) + 2d(up) − 1 ≥ σ4 − 1 > n.
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This is a contradiction. Therefore NP (u1)
− ∩ NP (up)

++ ̸= ∅.
Let ui ∈ NP (u1)

− ∩ NP (up)
++.

Claim 1. If d(ui) + d(ui−1) > n/2, then there is a desired cycle.

Proof. Let e0 = x1x2 = ui−1ui and

C = u1
−→
P ui−2up

←−
P ui+1u1 = v1v2 . . . vp−2v1

which occur on C in the order of their indices. Notice that N(e0) = N(x1)∪N(x2)\
{x1, x2} ⊂ VC because P is a maximal path for VR.

If N(e0) and N(e0)
+ are not disjoint, then there exists a triangle or a desired

cycle. Hence N(e0) ∩ N(e0)
+ = ∅. In the set of segments C − N(e0), there are two

segments v+
s

−→
C v−

s′ and v+
t

−→
C v−

t′ such that {vs, vt′} ⊂ N(x1) and {vs′ , vt} ⊂ N(x2).

Then vs+2, vt+2 /∈ NC(e0) ∪ NC(e0)
+; otherwise there is a desired cycle. Therefore,

we find

n − 2 ≥ |C| ≥ |N(e0)| + |N(e0)
+| + |{vs+2, vt+2}|

= |NC(x1)| + |NC(x1)
+| + |NC(x2)| + |NC(x2)

+| + |{vs+2, vt+2}|

= 2(d(x1) − 1) + 2(d(x2) − 1) + 2 = 2(d(x1) + d(x2)) − 2 > n − 2.

This is a contradiction.

If δ ≥ (n + 2)/4, then our proof is completed now by this claim. We divide our

argument into two cases.

Case 1. |NP (u1)
− ∩ NP (up)

++| = 1

Let {ui} = NP (u1)
− ∩NP (up)

++. We show that d(ui) + d(ui−1) > n/2. Because

n ≥ |P | ≥ |NP (u1)| + |NP (u1)
−| + |NP (up)

+| + |(NP (up) \ up−1)
++|

−|NP (u1)
− ∩ NP (up)

++|

= 2d(u1) + 2d(up) − 1 − 1 ≥ σ4 − 2 ≥ n,

it holds that

VG = VP = NP (u1) ∪ NP (u1)
− ∪ NP (up)

+ ∪ (NP (up) \ up−1)
++ (3)
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and that

d(u1) + d(up) =
n

2
+ 1. (4)

Hence the order n is even.

Because

ui−3
←−
P u1ui+1uiui−1ui−2up

←−
P ui+2 ∈ P(VR),

we have ui−3ui+2 /∈ EG. If ui−3u1 ∈ EG then

ui−2 /∈ NP (u1) ∪ NP (u1)
− ∪ NP (up)

+ ∪ (NP (up) \ up−1)
++.

See Figure 2i. This contradicts (3). Thus ui−3u1 /∈ EG. Especially, ui−3 is not u2.

ui ui+2u1

(ii)

uiui-3u1 up

(i)
ui-2 up

Figure 2:

Similarly, if ui+2up ∈ EG, then

ui+2 /∈ NP (u1) ∪ NP (u1)
− ∪ NP (up)

+ ∪ (NP (up) \ up−1)
++.

See Figure 2ii. This also contradicts (3). Hence, ui+2up /∈ EG and especially ui+2 ̸=
up−1. As u1up /∈ EG, {u1, ui−3, ui+2, up} is an independent set.

Let x1x2 = ui−1ui and w1 = ui−3 and w2 = ui+2. Because d(u1)+d(up)+d(w1)+

d(w2) ≥ σ4 ≥ n + 2, we have

d(w1) + d(w2) =
n

2
+ 1

by (2) and (4). Notice that none of u1, up, w1, w2 are adjacent to x1 nor x2; otherwise

easily we can find a triangle or a desired cycle. Hence for each i, j,

d(u1) + d(up) + d(xi) + d(wj) ≥ n + 2.

Assume that n/2 is even, say 2l. Then d(u1) + d(up) = d(w1) + d(w2) = 2l + 1. By

symmetry, we can suppose that d(w1) ≤ l. Because

d(u1) + d(up) + d(xi) + d(w1) ≥ 4l + 2,
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we have d(xi) ≥ l + 1 for i = 1, 2. Hence d(x1) + d(x2) ≥ 2l + 2 > n/2.

Suppose n/2 is odd, say 2l + 1. Then d(u1) + d(up) = d(w1) + d(w2) = 2l + 2.

By symmetry, we may assume that d(w1) ≤ l + 1. Because

d(u1) + d(u2) + d(w1) + d(xi) ≥ 4l + 4,

we have d(xi) ≥ l + 1 for i = 1, 2. Thus d(x1) + d(x2) ≥ 2l + 2 > n/2.

Therefore, in either cases, d(ui) + d(ui−1) > n/2, and hence we are done by

Claim 1.

Case 2. |NP (u1)
− ∩ NP (up)

++| ≥ 2.

Let ui, uj ∈ NP (u1)
− ∩ NP (up)

++ (i > j). If ui−1 is adjacent to uj−1, then the

cycle u1
−→
P uj−1ui−1uiu

+
i

−→
P upui−2

←−
P u+

j u1 is a desired cycle. See Figure 3i. Therefore

u1

up

u1

up (ii)(i)
ui ui-1

uj
uj-1

ui ui-1

uj
uj-1

Figure 3:

ui−1uj−1 /∈ EG. Similarly we can obtain uiuj /∈ EG, see Figure 3ii. Hence we find

that

(d(u1) + d(up) + d(ui−1) + d(uj−1)) + (d(u1) + d(up) + d(ui) + d(uj))

≥ σ4 + σ4 ≥ 2n + 4.

By symmetry, we may without loss of generality assume that

d(u1) + d(up) + d(ui−1) + d(ui) ≥ n + 2. (5)

Let e0 = x1x2 = ui−1ui and C be the cycle u1
−→
P ui−2up

←−
P ui+1u1 = v1v2 . . . vp−2v1

which occur on C in the order of their indices. Notice that a vertex in NC(e0)
+ ∪

{x1, x2} has no neighbours in G− P ; otherwise P is not maximal. Let vs ∈ NC(x2)
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(i)

x1x2

vs

vs
+

vt
(ii) (iii)

x1

x2

vs

vs
+

vt
+

x1

x2

vs

vt
+

vl

vl
+

Figure 4:

and vt ∈ NC(x1) and Is = v+
s

−→
C vt and It = v+

t

−→
C vs. If there is a vertex vl ∈

NIs(v
+
s )− ∩ NIs(v

+
t ), then the cycle v+

s

−→
C vlv

+
t

−→
C vsx2x1vt

←−
C v+

l v+
s is a desired cycle.

See Figure 4i. Hence NIs(v
+
s )− ∩ NIs(v

+
t ) = ∅. Similarly, we have that

NIs(e0)
+ ∩ NIs(v

+
t ) = ∅ and NIs(v

+
s )− ∩ NIs(x1)

+ = ∅.

See Figure 4ii-iii. Hence we obtain that

|Is| ≥ |NIs(v
+
s )−| + |NIs(v

+
t )| + |(NIs(e0) \ vt)

+| − |NIs(v
+
s )− ∩ NIs(x2)

+|.

Let L = NIs(v
+
s )− ∩ NIs(x2)

+. If L is not empty, then for any vertex vl ∈
L, v+

l /∈ NIs(v
+
s )− because G is triangle-free. If v+

l v+
t ∈ EG, then the cycle

v−
l x2x1vt

←−
C v+

l v+
t

−→
C v−

l is a desired cycle. Since v+
l /∈ NC(e0)

+,

v+
l /∈ NIs(v

+
s )− ∪ NIs(v

+
t ) ∪ NIs(e0)

+,

and so we deduce that

L+ ∩ (NIs(v
+
s )− ∪ NIs(v

+
t ) ∪ NIs(e0)

+) = ∅.

Similarly, the vertex v++
s is not contained in NIs(v

+
s )−∪NIs(v

+
t )∪NIs(e0)

+. Therefore

we find that

|Is| ≥ |NIs(v
+
s )−| + |NIs(v

+
t )| + |(NIs(e0) \ vt)

+| − |L| + |L+| + |{v++
s }|

≥ |NIs(v
+
s )| + |NIs(v

+
t )| + |NIs(e0) \ vt| + 1

= dIs(v
+
s ) + dIs(v

+
t ) + dIs(x1) + dIs(x2).

By symmetry, we get |It| ≥ dIt(v
+
s ) + dIt(v

+
t ) + dIt(x1) + dIt(x2). By (5),

n − 2 ≥ |C| = |Is| + |It| ≥ dIs(v
+
s ) + dIs(v

+
t ) + dIs(x1) + dIs(x2)

+dIt(v
+
s ) + dIt(v

+
t ) + dIt(x1) + dIt(x2)

= d(v+
s ) + d(v+

t ) + (d(x1) − 1) + (d(x2) − 1) ≥ n,

11



which is a contradiction. This completes the proof of Theorem 3.

3 The Proof of Theorem 4

Let G = (V,E) be a triangle-free graph with δ ≥ 2 and σ4 ≥ n+2. If G is isomorphic

to the exception of Theorem 3, then obviously for any two vertices, there is a cycle

containing the specified vertices. By Theorem 3 and the following lemma, it is

enough to show that G is connected. A cycle C is called a swaying cycle of a subset

S ⊆ V if |C ∩ S| is maximum over all cycles of G.

Lemma 6. Let G be a connected graph such that for any path P , there exists a cycle

C such that |P −C| ≤ 1. Then for any set S with at most δ vertices, there exists a

cycle C such that S ⊂ VC.

Proof. Let S ⊆ VG and let C be a longest swaying cycle of S. Suppose S − C ̸= ∅.
For any vertex x ∈ S − C, there is a path Q joining x and C. Let P be a longest

path containing VC∪Q. Then there exists a cycle D such that |P − D| ≤ 1. If

x has neighbours in G − C, then |P | ≥ |C| + 2 and so |D| ≥ |C| + 1. Because

|D∩S| ≥ |C ∩S|, this contradicts the assumption that C is a longest swaying cycle.

Hence NG−C(x) = ∅.
Because |C ∩S| < δ and dC(x) = d(x) ≥ δ, there exist two vertices vi, vj ∈ N(x)

such that vi+1 = vj or v+
i

−→
C v−

j ⊂ C − S. Hence the cycle vixvj
−→
C vi contains at

least |C ∩ S|+ 1 vertices of S. This contradicts the assumption that C is a swaying

cycle.

Before we can prove that G is connected we first need to show the following

lemma.

Lemma 7. Let H be a connected component of a triangle-free graph G. If |H| ≥ 3,

then H contains non-adjacent vertices x and y such that |H| ≥ max{2d(x), 2d(y)}.

Proof. Let P = u1u2 . . . up be a longest path of H. If u1up /∈ EG, then |P | ≥
|N(u1)| + |N(u1)

−| + |{up}| = 2d(u1) + 1. Hence by symmetry, we have |H| ≥
max{2d(u1) + 1, 2d(up) + 1}, and so {u1, up} is a desired pair. If u1up ∈ EG, then

u1up−1 /∈ EG, and VH = VP as P is a longest path. Then, we have

|P − up| ≥ |N(up−1) \ up| + |(N(up−1) \ up)
+| + |u1| = 2d(up−1) − 1.

12



Therefore |H| ≥ 2d(up−1). As in the above case, we can have |H| ≥ 2d(u1), and so

{u1, up−1} is a desired pair.

By using Lemma 7 we can show that G is indeed connected. This finishes the

proof of Theorem 4.

Lemma 8. Let G be a triangle-free graph with δ ≥ 2. If σ4 ≥ n + 1, then G is

connected.

Proof. Suppose G contains two connected components H1 and H2. Then the as-

sumption that G is triangle-free and δ ≥ 2 implies Hi ≥ 3 for i = 1, 2. Therefore

there are non-adjacent vertices xi, yi in Hi such that |Hi| ≥ max{2d(xi), 2d(yi)}
for i = 1, 2 by Lemma 7. Hence d(x1) + d(y1) + d(x2) + d(y2) ≥ σ4 ≥ n + 1. By

symmetry, we may assume d(x1) + d(x2) ≥ (n + 1)/2. Thus n ≥ |H1| + |H2| ≥
2(d(x1) + d(x2)) ≥ n + 1, a contradiction.
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