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Abstract

Biswapped networks of the forBsw(G) have recently been proposed
as interconnection networks to be implemented as optieakpose inter-
connection systems. We provide a systematic construcfianol vertex-
disjoint paths joining any two distinct vertices Bsw(G), wherex >
1 is the connectivity ofGG. In doing so, we obtain an upper bound of
max{2A(G)+5, Ak (G)+A(G)+2} onthe(k + 1)-diameter ofBsw(G),
whereA(G) is the diameter off and A, (G) the k-diameter. Suppose that
we have a deterministic multipath source routing algoriihran intercon-
nection networkG that findsx mutually vertex-disjoint paths it joining
any 2 distinct vertices and does this in time polynomialAn.(G), A(G)
andx (and independently of the number of verticeg)f Our constructions
yield an analogous deterministic multipath source rousitgprithm in the
interconnection networlBsw(G) that findsk + 1 mutually vertex-disjoint
paths joining any distinct vertices inBsw(G) so that these paths all have
length bounded as above. Moreover, our algorithm has tinmeptaxity
polynomial inA,(G), A(G) andx. We also show that i€ is Hamiltonian
then Bsw(G) is Hamiltonian, and that if7 is a Cayley graph theBsw(G)
is a Cayley graph.

Keywords Interconnection networks. OTIS networks. Biswapped neta.
Connectivity. Hamiltonicity. Cayley graphs.



1 Introduction

Interconnection networks play an ever-increasing rolemjguters and computa-
tion. For example: they are used to facilitate communicatietween processors
in distributed-memory multiprocessors (such as the sapeptters in the IBM
Blue Gene project); they are increasingly replacing busescaossbars in net-
work switches and routers; they feature widely in compuystesms as a means
by which to connect I/O devices with processors and memany;they are core
to on-chip networks. As technology advances, interconmectetworks need to
be implemented on a smaller and smaller scale, so that thayecb more and
more components and enable faster and more data intensnrawaications.

There are numerous factors which influence the choice afdotmection net-
work, including topology, flow control, routing, traffic gatns and packaging
(see, for example, [2]). As regards the last of these factmme cannot ignore
the physical implementation of an interconnection netwan#, in particular, the
actual physical locations of the ‘wires’ which constitulte tinterconnection net-
work. It is known that over a distance of greater than a fewimnmdtres, optical
connections out-perform electronic connections in terfrggower consumption,
speed and crosstalk [6, 7, 10]. Based on these observaitbas;onnection net-
works known a®ptical Transpose Interconnection Syst@$1S were devised
where extra optical connections are added to (existingjreleic networks (OTIS
networks originated in [11] but their study was initiatedvim the computer ar-
chitecture community in [16] and independently, under thma of swapped net-
works, in [17, 18, 19]).

OTIS networks have base graph’, onn vertices, and consist of disjoint
copies ofG. These copies are labelléd, Gs, . . ., GG, and the vertices of any copy
arevy, vq, . .., v,. The edges involved in any one of these copieS afe intended
to model (shorter) electronic connections whereas aduitiedges, where there
is an edge from vertex; of copy G; to vertexv; of copy G;, for everyi,j €
{1,2,...,n}, withi # j, are intended to model the (longer) optical connections.
The resulting OTIS network is denoted by OT&S-Of course, an OTIS network
is dependent upon its base graghand numerous results have been proven for
both specific base graphs and classes of base graphs (sexariople, the papers
[1, 3, 4, 12] and the references therein).

One slightly displeasing aspect of OTIS networks is that radten what the
base graplt is, the corresponding OTIS network OT{S-cannot be a Cayley
graph, or even a vertex-transitive graph, as an OTIS netwgoniot regular. In
general, if the base grapfi has some aspect of symmetry then we lose this
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symmetry in the graph OTI&~ and as well as losing desirable specific prop-
erties, like vertex-transitivity, the loss of this symmetan make general net-
work analysis more problematic. In order to ‘recapture’ syetric aspects of
OTIS networks, Xiao, Parhami, Chen, He and Wei [20] haventgeroposed
biswapped networks/hich, they claim, are ‘fully symmetric and have cluster
connectivity very similar to OTIS networks’. The biswappeetwork Bsw(G)

is defined very similarly to the OTIS network OTIS-except that instead of hav-
ing n copies of the base graph (whereG hasn vertices), we havén copies
&, GY, ..., G, G, Gy, ..., G, and the ‘optical’ edges join vertex in GY with
vertexv; in Gy, wherei, j € {1,2,...,n}. Inmediately we see that { is reg-
ular then the biswapped networksw(G) is regular and so there is some hope
for recapturing any symmetric properties of the base gi@pln [20], convinc-
ing arguments are made as to the efficacy of biswapped netvaoidk some basic
properties of biswapped networks are derived relating éotebt paths and routing
algorithms.

In this paper, we further extend the structural analysislo$aapped network
Bsw(G). We provide a systematic construction of+ 1 vertex-disjoint paths
joining any two distinct vertices iBsw(G), wherex > 1 is the connectivity of
G. In doing so, we obtain an upper bound on fkret 1)-diameter of Bsw(G)
of max{2A(G) + 5, A.(G) + A(G) + 2}, whereA(G) is the diameter o7 and
A, (G) the k-diameter (in [20] it was merely observed, without expléomatthat
Bsw(G) has connectivity at least+ 1). As a corollary, we obtain that @ is reg-
ular of degreex and has connectivity then Bsw(G) has connectivity + 1 and
the wide-diameter oBsw(G) is bounded above byA, (G) + 3. Furthermore,
we prove that i is connected and has minimal degrethenG has connectivity
atleastd + 1 and A, (Bsw(G)) is at mosBBA(G) + 6. Suppose that we have
a deterministic multipath source routing algorithm in ateronnection network
G that findsx mutually vertex-disjoint paths i/ joining any?2 distinct vertices
and does this in time polynomial i, (G), A(G) andx (and independently of
the number of vertices @F). Our constructions yield a simple deterministic mul-
tipath source routing algorithm in the interconnectiowtgk Bsw(G) that finds
r + 1 mutually vertex-disjoint paths joining arydistinct vertices inBsw(G) so
that these paths all have length bounded as above. Moremwealgorithm has
time complexity polynomial im\,(G), A(G) andx. We also show that iz is
Hamiltonian thenBsw(G) is Hamiltonian, and that i€/ is a Cayley graph then
Bsw(G) is a Cayley graph (these results were reported in [20] bupraxen). In
addition, we show that if7 is a Cayley graph of the group then Bsw(G) is a
Cayley graph of the group that is the wreath produdt @fith the cyclic group of
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order2.

We present the background and definitions relating to thpepen Section 2,
before showing thaBsw(G) is Hamiltonian ifG is and thatBsw(G) is a Cayley
graph if G is in Section 3. Our main results, relating to the+ 1)-diameter of
Bsw(G) and the subsequent deterministic multipath source roafgnayithm, are
in Section 4, with our conclusions and directions for furttesearch in Section 5.

2 Basic definitions

We give here the basic graph-theoretic definitions releteihis paper. All graphs
are undirected and for any graph-theoretic terminologydadined here, we re-
fer the reader to [5]. We also explain why certain graph patans are relevant
when a graph forms the interconnection network of a disteitbtmemory multi-
processor (with the processors located at vertices anddiesecorresponding to
direct communication links between pairs of processors).o€casion when we
are referring to a graph as an interconnection network, Weataout processors
and links rather than vertices and edges. The reader isedfty [8] and [21] for
more on interconnection networks.

A pathin a graph is a sequence of distinct vertices so that thera edge
joining consecutive vertices, with the first and last vesibeing thend-vertices
and acycle (or circuit) is a path where there is an edge joining the first and last
vertices. AHamiltonian pathin a graph is a path that contains every vertex of
the graph exactly once, andHamiltonian cycleis a Hamiltonian path with an
edge from the last vertex of the path to the first. Two pathsrarex-disjointif
neither has a vertex that appears on the other path excgpgsibly sharing or
2 end-vertices, and a set of paths in a grapmawéually vertex-disjoinif any two
distinct paths are vertex-disjoint. Hamiltonian cycles aseful in interconnec-
tion networks as they can be used to easily undertake mamatty broadcasts.
As regards sets of mutually vertex-disjoint paths, theistexice has two bene-
fits. A message can be split into pieces and mutually verigpidt paths joining
two distinct vertices, andv can be used to send each piece of the message in
parallel from a processor atto a processor at, secure in the knowledge that
there will be no resulting conflict at interim vertices. Alsshould processors
or links fail, having alternative paths by which to commuateadds to the fault
tolerance of the interconnection network. A multipath nogtalgorithm is often
associated with the mutually vertex-disjoint paths of aerconnection network,
where amultipath routing algorithms an algorithm implemented in an intercon-
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nection network that finds mutually vertex-disjoint patbimjng processors at any
distinct vertices in the network. A multipath routing algbm is asourcemul-
tipath routing algorithm if the paths are fully computed la¢ source processor
before messages are sent, and a multipath routing algoisttieterministiaf the
algorithm depends solely upon the vertices at which thecgoand destination
processors are located.

Theneighbourhooaf a vertexv of a graphG = (V, E) is defined asV (v) =
{v € V: (v,0') € E}. An articulation setfor a graphG' = (V, E) is a subset
of verticesU C V so that if we remove every vertex 0f from G, along with its
incident edges, then the resulting graph has at [2ashnected components. A
graphG = (V, E) hasconnectivityx > 1 if G has more than vertices and there
is a set ofx vertices forming an articulation set but there exists naldtion
set of size smaller tharn. We repeatedly use Menger’'s Theorem: if a graph
G = (V, E) has connectivityx then given any vertex € V and any distinct
verticesuvy, v, ..., v, € V, different fromu, there ares mutually vertex-disjoint
paths fromw to vy, v, . . ., v,.

The length of a shortest path in a connected grapk (V, E') between two
verticesv, v’ € V is denoted (v, v’). Thediameterof a graph’7, denoted\ (G),
ismax{dg(v,v) : v,v" € V}. Suppose tha¥’| = nandletx € {1,2,...,n—1}.
The k-diameterof G, denotedA,(G), is the smallest integer such that for every
pair of distinct vertices andv’ of V, there arex mutually vertex-disjoint paths
from v to v" so that the longest such path has length at MQgty) (note that the
r-diameter might be undefined). Afis equal to the connectivity afr then the
r-diameter is known as theide-diameter The diameter of a grapl bounds the
number of hops a message must undertake in a shortest-paihgralgorithm
over the interconnection netwotk. The x-diameter bounds the number of hops
a piece of a message must undertake when a message is paditiad sent in
parallel overs mutually vertex-disjoint paths. Note that Menger’s Theotells
us about the existence of mutually vertex-disjoint patha igraph but nothing
about the lengths of such paths.

A Cayley digraph is defined as follows. Lét be a finite group with gener-
ating set{~1, 72, . .., }. The elements df form the vertex set off and there is
a directed edgéy, ') in the graphG if ;v = +/, for somei € {1,2,...,r}. A
Cayley graphs a Cayley digraph where the associated generating seisisatln-
der inverses (and so directed edges can be regarded asatedieeges). A graph
G = (V, E) is vertex-transitivef given any two distinct vertices, v’ € V, there
is an automorphism a¥ mappingv tov’. Every Cayley graph is vertex-transitive.
If an interconnection network is vertex-transitive theisiteasible that a problem
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might be solved by a distributed algorithm so that everyeseeixecutes the same
program. If a vertex-transitive interconnection netwak iCayley graph then this
opens the network to analysis using algebraic methods.

Throughout, this paper, the graphhas vertex sét’, where|V'| > 2, and edge
setE. The set/ = {0, 1}, and ifu € U thenw is the element ot/ different from
Uu.

Definition 1 Let G = (V, E) be a graph wherd/ contains at leas® vertices.
The graphBsw(G) is known as théiswapped graph with base and is defined
as follows

e Bsw(G) has vertex sef(u, v, w) : u € U,v,w € V}

e Bsw(G) has edge set consisting of thlester edge$((u, v, w), (u, v, w’)) :
u € Uwvww € V (w,w) € E} and theswap edges ((u, v, w),
(@, w,v)):ue€Uv,weV}.

We say that the verticerrespondingo some vertex, € U are the vertices
of Bsw(G) whose first component ig, and that a vertexu, v, w) of Bsw(G)
corresponding ta. € U isindexedby v € V. Note that the vertices dBsw(G)
corresponding to some vertexc U and indexed by some < V induce a copy of
G. Inwhat follows, we often wish to refer to a vertex in the capby~ correspond-
ingtou € U and indexed by € V. For brevity, we henceforth refer to these
vertices ag=.. We often write a cluster edge of the forftu, v, w), (u, v, w’))
as (u,v,w) —. (u,v,w’), and a swap edge of the for(u, v, w), (a,w,v))
is often written(u, v, w) —s (w,w,v). A path of (possibly no) cluster edges
(u,v,w) —¢ ... = (u,v,w') is often written agu, v, w) =% (u,v,w’).

The vertices corresponding to the the eleménégd 1 of U are depicted in
two different ways in Fig. 1. In both depictions, the vertiad V' are enumerated
aswvy, vg, ..., v,. Inthe top depiction, the verteX, v;, v,), for example, lies on
the row corresponding t0 € U, and within this row it is vertex; of the cluster
indexed byv;. In the bottom depiction, as regards the vertices corredipgriol,
there is one row for the vertices indexed by each V', and the vertex1, v;, v;),
for example, lies on the row indexed by vertexc V.

In [20], the lengths of shortest paths between arbitraryirdis vertices of
Bsw(G) were proven, with the corollary th@sw(G) has diamete2A(G) + 2.
A shortest-path routing algorithm was derived from thesmtglst-path results. A
comparative analysis was also undertakerBsmw (Q),,) andQs,, .1, whereQ,, is
the n-dimensional hypercube, given that these graphs have the samber of
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vertices. This analysis showed thatw(Q,,) has a number of advantages when
compared withQ)s,, .1 (in the context of interconnection networks).

; copies of G vertex (0,v,, V)
u=0 index v, v, vy w2

Vi vy Vs v, \‘v1 vy V3 v Vi vy Vg v

n
vi\ vy V3 v,

: Vi Vy V3 Vn / Vi V2 V3 Vn Vi Va2 V3 Vn Vi V2 V3 Vi
u= B v v Vv v
index "1 vertex (1,vs, v;) 2 3 n
_ index copies of G vertex (0,v,, v,)
u=0 v v, V3 n
Vi Vo V3 Vn Vi Va2 V3 Vn Vi Vy V3 Vn Vi\Va V3 Vn
® - 0 ® -0 ® -0 ® - 0
index
Vi j L2 V3 = Vn
Va 12 vy V3 v,
vertex (1,vy, vy)
V3 Vi@ v, @ v; @ v, @
copies of G \
u=1v, v, @ v, @ v; @ v, @

Figure 1. Some edges Bsw(G).

3 Hamiltonicity and Cayley graphs

We now show that if7 is Hamiltonian themBsw(G) is, and that ifG is a Cayley
graph thenBsw(G) is.

Proposition 2 If G is Hamiltonian thenBsw(G) is Hamiltonian.

Proof Let vy, vs,...,v, be a Hamiltonian cycle inz. Let p; be the path in
Bsw(G) defined as:

(07 Uy, U’i)) (Oa (%) U'i—l)) R (07 (%% Ul)a (07 (%% Un)a

(07 (%) Un—l)a (07 (%) Un—2)7 ceey (07 (%) Ui-i—l)a



and leto; be the path ilBsw(G) defined as:

(17 Vi+1, Ui)? (17 Vi+1, Ui71)7 R (17 Vi+1, Ul)u
(17 Vi+1, Un)7 (17 Vi+1, Un—1)7 (17 Vi1, Un—2)7

) (17Ui+1,Uz'+1)-

The path obtained by concatenating these paths as:

P1,02,02,03,---,Pn—1,0n, Pn,01

is actually a Hamiltonian cycle iBsw(G). O
Proposition 3 If GG is a Cayley graph the®sw(G) is a Cayley graph.

Proof LetI be a finite group with generating sétso thatG is the Cayley graph
of (I, ). LetII be the symmetric group dhelements (that is, the cyclic group
of order2) generated by the elementso, H is the Cayley graph offl, {r}). We
denote the underlying set of any group by the name of the gramud_etII act on
the setl” x I via:

(7,7)" = (¢, ) and(v,7)'" = (v,7"),

wherely is the identity element difl. Define the set of elemenisx I' x II and
its subset) = {(1g,7, 1) : v € ¥} U{(1g, ¢, m)}, Wherel, is the identity
element ofl". Define the following multiplication on elements Bfx I x II:

b o) (@B Bale€) if e =
(O[,ﬁ,E)(O(,B,E)—{ (an7ﬁ6/7€€,> if€:1H

(where the ‘internal’ multiplications are those of the goed’ andIl). That is,
we have defined the group known as the wreath produdi (see, for example,
[14]). Itis trivial to verify that Bsw(G) is the Cayley graph ofl": I1, ) (with a
directed edge from a source vertex to a target vertex olgtdgenultiplying the
source vertex on the left by a generatof)f 0

4 Connectivity and disjoint paths

In this section, we examine aspects of the connectivitiei(G) in relation to
both the connectivity and degree@f= (V, E).
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4.1 Inrelation to the connectivity of G

As was implicitly observed in [20]Bsw(G) has connectivity at leagt+ 1 when

G has connectivitys > 1. However, we refine this observation and explicitly
construct for every distinct pair of vertices Bsw(G), x + 1 mutually vertex-
disjoint paths between thvertices, so obtaining an upper bound on the length
of the longest of these paths; that is, an upper bounden (Bsw(G)), the

(k + 1)-diameter of Bsw(G). We partition our constructions into a sequence of
propositions depending upon the different types of pairgeofices inBsw(G).
The first proposition deals with the case when the vertice8«i#(G) are of the
form (u, v, w) and(u, v, w’).

Proposition 4 LetG be a graph of connectivity > 1. Let(u, v, w) and(u, v, w’)

be distinct vertices oBsw(G). There are at least + 1 mutually vertex-disjoint
paths joining(u, v, w) and (u, v, w’) so that the longest of these paths has length
at mostmax{A,(G), A(G) + 6}.

Proof Clearly, we have: mutually vertex-disjoint paths, each of length at most
A, (G), joining the verticegu, v, w) and(u, v, w’) in GL. Letv* be a neighbour
of v in G. Consider the following path in Bsw(G):

(u,v,w) =5 (T, w,v) —. (T, w,v")
—s (U, v w) =% (u, v*,w'") = (T, w',v")

—e (T, v) =4 (u,v,w'),

where the path itz from (u, v*, w) to (u, v*,w’) is any such path. This path
is vertex-disjoint with all of the: paths described earlier and has length at most
A(G) +6. O

In upcoming proofs, if we detail a path as in the proof of Ppon 4 in
which there is a sub-pattu, v*, w) —* (u,v*,w’), for example, then unless we
state otherwise the implied path is any pattGj from the vertex(u, v*, w) to
the vertex(u, v*, w’).

The next proposition deals with the case when pairs of \vestxt Bsw(G) are
of the form(u, v, w) and(u, v’, w’), wherev # v'.

Proposition 5 Let G be a graph of connectivity > 1, and let(u,v,w) and
(u,v’;w’) be distinct vertices oBsw(G) wherev # v'. There are at least + 1
mutually vertex-disjoint paths joinin@:, v, w) and (u, v’, w’) so that the longest
of these paths has length at mdst(G) + A(G) + 2.
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Proof We split the proof into two cases.
Case 1w # w'.
As G has connectivity, there are at least mutually vertex-disjoint paths;, o7,

.., ol from vertex(u, v, w) to vertex(u, v, w’) in G, so that each path has length
at mostA,(G). Foreach € {1,2,...,k}, if o has length at leagt then define
w; as the penultimate vertex el (and sow; is a neighbour ofv’ in G). We may
assume w.l.o0.g. that if some has lengthl theni = 1.

For every: € {2,3,...,k}, define the path; in Bsw(G) as:

*
C

(u,v,w) =% (u, v, w;) =5 (T, w;,v) =% (T, w;, V")

—s (U, Ula wz) —c (U, Ula U}/),

where the path irG from (u,v,w) to (u, v, w;) is isomorphic too, truncated
atw;. Each path has length at ma&f,(G) + A(G) + 2. Define the patly; in
Bsw(G) as:

(u,v,w) =

C

(u,v,w") =, (u,w',v) =%

s (w,w' v

%S (u7 /U/7 w’)?

where the path iz, from (u, v, w) to (u, v, w’) is isomorphic tor|. The pathr,
has length at mosh,.(G) + A(G) + 2. Define the pathy in Bsw(G) as:

(u, v, w) =4 (T, w,v) =% (Ww,v') =, (u,v, w)
=5 (u, v wy) = (w0, w'),
where the path i’ from (u,v’, w) to (u,v’,w') is isomorphic tar}. The pathp

has length at mosh,.(G) + A(G) + 2. The pathg, o4, 09, .. ., 0., are mutually
vertex-disjoint and can be visualized as in Fig. 2.

Case2w = w'.
Letw;, ws, ..., w, be distinct neighbours af in G. For every; € {1,2,...,x},
define the path} in Bsw(G) as:

(u, v, w) = (u,v,w;) = (T wg,v) =5 (W w;, V")

_)8 (U, UI: wl) _)c (U, UI? w/)'
Each path has length at mas{G) + 4. Define the path in Bsw(G) as:

(u,v,w) =, (T, w,v) ==

2 (w,w,v") = (u, v, w)

= (u,v’,w’).
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u=0 index copy of G vertex (0, v, wy) V'

the path p

)
V' \ V'

u=1 index vertex (1,w, Vv W W

Figure 2. The pathg, 01, 09, ..., 0, in Bsw(G) in Case 1.

The pathp has length at mosh(G) + 2. The pathg, 01,05, ..., ol are mu-
tually vertex-disjoint. O

The final case to deal with is when pairs of vertice®otv((G) are of the form
(u,v,w) and(@, v, w’).

Proposition 6 Let G be a graph of connectivity > 1, and let(u,v,w) and
(uw,v', w') be vertices oBsw(G). There are at least + 1 mutually vertex-disjoint
paths joining(u, v, w) and (u,v’,w’) so that the length of the longest of these
paths is at mOXA(G) + 5.

Proof As G has connectivity:, the vertexw € V has at leask distinct neigh-

bourswy,ws,...,w, € V, and the vertexo’ € V has at leask distinct neigh-
boursw), w), ... ,w. € V.
Case 1v ¢ {wj,wh,...,w. w'}andv’ & {wy,ws, ..., w,, w}.

There is a straightforward construction that yields eu+ 1 mutually vertex-
disjoint paths. For everye {1,2,..., x}, define the path; in Bsw(G) as:

(u,v,w) —. (u,v,w;) =5 (T, w;,v)

=5 (W wy, w) = (u,wi,w;) =% (u, wi,v')

*
C

— (@, w)) = (w0, w').
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Each pathy; has length at moXA(G) + 5. Define the path in Bsw(G) as:

(u,v,w) =4 (W, w,v) =% (Ww,w') =, (u, W, w)
%*

[

The pathp has length at moA(G) + 3.

Case 2v = w}, forsomei € {1,2,...,x}, andv’ & {wy, wy, ..., w,, w}.

W.l.0.g. we may suppose that= w/. Leto’ be a shortest path froma to v’ in

G and letw,, ws, . . ., w, be distinct neighbours af not lying ono’. For every

i €42,3,...,k}, define the patlr; in Bsw(G) as in Case 1, and define the path
p as in Casd also. Define the path; as:

(u,w',v") =, (@, v, w).

(u,v,w) =% (u,v,0") = (W0, 0) =, (W, ,w),

where the path irGY, from (u,v,w) to (u,v,v’) is isomorphic too’. The path
oy has length at mosh (G) + 2. The path, 04, 09, . .., 0, are mutually vertex-
disjoint and can be visualized as in Fig. 3.

u=0 index ypi_y copies of G w5

” / \ ' vertex (0, w', w)

w'

the path p

vertex (1, w, w

W=V

u=1 index
Figure 3. The pathg, 01,09, . .., 0, In Bsw(G) in Case 2.

Case 3v = w' andv’ & {wy, ws, ..., We, w}.

Let o’ be a shortest path from to v’ in G and letws,, ws, ..., w, be distinct
neighbours ofv not lying ono’. For everyi € {2,3,..., x}, define the path; in
Bsw(G) as in Case 1. Define the pathin Bsw(G) as:

(u, v, w) =

P (u,v,0") = (T, 0) = (T, v, w'),
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where the path =%, from (u, v, w) to (u,v,v’) is isomorphic tor’. The patho,
has length at mosk(G) + 1. Define the pathy in Bsw(G) as:

(u,v,w) =, (T, w,v) ==

(T, w,wh) = (u ), w)

—* (u, wi, V") = (W, 0, w)) = (w0, w').

The pathp has length at moRA(G) + 4.
Case 4v = w; andv’ = wjy, fori, j € {1,2,..., k} with i # j.
W.l.0.g. we may assume that 1 and;j = 2. For every: € {3,4,...,x}, define
the pathy; in Bsw(G) as in Case 1, and define the pathas in Case 1 also. Define
the patho, in Bsw(G) as:
(u, v, w) = (u,v,w1) =5 (T, wy,v)
=5 (W, wy, wh) = (u, wy, wy) —E (u,wy, v')

—s (W, v, wh) = (u,v,w).
The paths; has length at moRA(G) + 5. Define the patla, as:

(u, v, w) = (U, v, wy) =5 (U, wa,v)

—e (W, wo, w'") = (W, v, w').

The patho, has lengtls.
Case 5v = w} andv’ = w;, fori € {1,2,...,k}.
W.l.0.g. we may assume that= 1. For everyi € {2,3,..., x}, define the path;

in Bsw(G) as in Case 1, and define the paths in Case 1 also. Define the path
o1 in Bsw(G) as:

(u, v, W) = (u,v,w1) = (W wy,v) = (T, W).
The patho; has lengtls.
Case 6v =w}, fori € {1,2,...,k}, andv’ = w.
W.l.0o.g. we may assume that= 1. For everyi € {2,3,...,x}, define the path
o; in Bsw(G) as in Case 1. Define the pathin Bsw(G) as:

(u, v, w) = (u,v,w1) =>4 (W wy,v) =% (T, wy, w')
*
Cc

—s (u,w' wy) =% (u, w0 =, (@0, w).
The paths; has length at moRIA(G) + 4. Define the pathp as:

(u,v,w) = (W, w,v) =, (W,w,w) = (u,v,w).

13



The pathp has lengtl2.

Case 7v = v’ andv’ = w.

Foreveryi € {1,2,...,x}, define the path; in Bsw(G) as in Case 1. Define the
pathp in Bsw(G) as:

(u,v,w) =, (U, w,v) = (T, w').

The pathp has lengthl.

In all cases, the paths, 09, .. ., 0., p are mutually vertex-disjoint. Moreover,
by symmetry, w.l.o.g. every combination of types(ef v, w) and (@, v', w’) is
covered by one of the above cases. The result follows. 0

We can draw together Propositions 4, 5 and 6 as follows.

Theorem 7 Let the graph have connectivityy > 1. There arex + 1 mutually
vertex-disjoint paths joining arg/distinct vertices oBsw(G) such that the length
of the longest of these paths is at mastx{2A(G) + 5, A(G) + A.(G) + 2};
thatis, A, .1 (Bsw(G)) < max{2A(G) + 5, A(G) + A.(G) + 2}.

Corollary 8 LetG be a graph. IfBsw(G) has connectivity: + 1 then the wide-
diameter ofBsw(G) is bounded above hyiax{2A(G) + 5, A(G) + AL (G) + 2}.

Hsu and tuczak [9] proved that if a graphis regular of degree > 2 and has
connectivityx thenA,(G) > A(G) + 1. Thus, we obtain the following corollary.

Corollary 9 LetG be a graph. IfGG is regular of degree: > 2 and has connec-
tivity x then Bsw(G) has connectivity: + 1 and the wide-diameter d¢sw(G) is
bounded above A, (G) + 3.

We remark that many of the grapbsprevalent as interconnection networks are
regular and have degree equal to their connectivity.

4.2 Inrelation to the degree ofGG

As we now show, we can actually construct numerous pathsngi? distinct
vertices ofBsw(G) even wher has relatively low connectivity (though we need
that G is connected). Observe from the proof of Proposition 6 thathave not
used the connectivity of G; just thatG is connected and that andw’ have
degree at least in G. Consequently, the proof of Proposition 6 immediately
yields the following result.
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Corollary 10 Let G be a connected graph and letandw’ be vertices of so
that w has degree at least,, and v’ has degree at least, (it may be the case
thatw = w’). There are at leastin{d,,, d,} + 1 mutually vertex-disjoint paths
joining (u,v,w) and (@, v, w') in Bsw(G) so that the length of the longest of
these paths is at mo8i\(G) + 5.

We can obtain analogues of Corollary 10 for Propositionsdtzan

Proposition 11 LetG be a connected graph and letandw’ be distinct vertices

of G so thatw has degree at least, andw’ has degree at least,. There are at
leastmin{d,,, 4, } + 1 mutually vertex-disjoint paths joining the vertides v, w)
and(u,v,w’) in Bsw(G) so that the length of the longest of these paths is at most
3A(G) +6.

Proof Defined = min{J,, d.r}. Let N be the set of vertices df that are neigh-
bours of bothw andw’ in G. For every vertexy € N, we have a patla, de-
fined as(u, v, w) —. (u,v,y) —. (u,v,w’) in GX. Suppose thatN| = m’. If
(w,w’) is not an edge ofr then definen = m’, otherwise definen = m’ + 1
and the pathr,, as(u,v,w) —. (u,v,w’). Let w1, Wnqo, ..., wy be distinct
neighbours ofv in G none of which is inV, and letw;,,, ,,w;, .o, ..., w; be dis-
tinct neighbours ofv’ in G none of which is inV (in particular, the vertices of
{wj,wi i =m+1,m+2,...,d} are all distinct). Letr,, 11, Tmia,..., T4,
be distinct vertices oV such that each is different from(such vertices trivially
exist).
Foreach € {m + 1,m +2...,d}, define the path; in Bsw(G) as:

(u,v,w) = (u,v,w;) =5 (T w;,v) =% (T w;, x;)

_>s (U, Ty, wz) _>Z (U, Zi, wz,) —>S (E7 w'g7 xz)
*
C

—5 (u, wi,v) = (u, v, W) = (u,v,w").

Each pathy; has length at mostA(G) + 6. Define the path in Bsw(G) as:

*
C

(u,v,w) =4 (T, w,v) = (T,w, ) — (U, x,w)
=¥ (u,x,w') = (W,w',x) =% (T, w',v)

—s (u,v,w').

The pathp has length at moSA(G) 4 4. The pathg, 04, 09, . . ., 04 are mutually
vertex-disjoint and can be visualized as in Fig. 4. The tdsiibws. 0
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u=0 index copies of G Xq vertex (0, x, w) X

the path p

u=1 index vertex (1,w, v) Wy w w'
Figure 4. The pathg, 01,05, ...,04in Bsw(G).

Proposition 12 Let G be a connected graph; let and w’ be vertices ofz so
thatw has degree,, andw’ has degree,, ; and letv andv’ be distinct vertices
of G. There are at leastin{J,, d,»} + 1 mutually vertex-disjoint paths joining
the verticegu, v, w) and(u, v', w’) in Bsw(G) so that the length of the longest of
these paths is at mo3N\(G) + 6.

Proof We may suppose that does not consist of a solitary edge as otherwise
the result trivially holds. Defind = min{d,,, d,/}. Let N = {wy, ws, ..., w,}
be the set of vertices df that are neighbours of both andw’ in G. If (w,w’)
is not an edge of7 then definen = m/, otherwise definen = m’ + 1. Let
W1, Wmao, - - -, We D distinct neighbours af in G none of which is inV, and
letw;, . 1, w;, .o, ..., w; be distinct neighbours af’ in G none of which is inV
(in particular, the vertices dfw;, w, : it = m+ 1,m + 2,...,d} are all distinct).

Suppose that —m > 0 and sqV'| > 2+ 2(d —m). Chooser,, 1, Tmi2, - -,
xq,w* € V so that these vertices are all distinct and all differeninfroand v’
(this is possible). Itf — m = 0 then choosev* € V' so that it is different fromv
andv’ (recall, G does not consist of a solitary edge).

Foreachi € {1,2,...,m’}, define the path; in Bsw(G) as:

*
C

(u, v, w) = (u,v,w;) =5 (W w;,v) = (W, w;, V")

—s (u, V', w;) —e (u, v, w').
Each pathy; has lengthA(G) + 4. Foreachi € {m + 1,m + 2,...,d}, define
the patho; in Bsw(G) as:

(u,v,w) = (u,v,w;) =5 (T w;,v) =% (T, w;, x;)
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—7s (U, Li, wz) _)Z (U, X, w;) —s (E7 w;7 xl)

—* (Tw, v") = (u, v, W) =, (u, v, w').

Each patty; has length at moSXA(G) + 6.
Suppose that the edde, w’) does not appear itr. Define the pathp in
Bsw(G) as:

(u,v,w) =5 (T, w,v) =% (T,w,w*) =, (v, w", w)
=¥ (u,w*, w') =, (ww', w) =% (@, w',v")

— (u, v, w').

The pathp has length at moSA(G) + 6.
Suppose that the edge, «’) is in G. Define the patlr,, in Bsw(G) as:

(u,v,w) = (u,v,w') =, (T, v) =% (T,w', V)

_)8 (u7 ,U,7 w’)?
and define the pathin Bsw(G) as:

(u,v,w) = (W, w,v) = (Ww,v") =, (u, v, w)

[

—e (u, v, w').

The pathsr,,, andp both have length at most(G) + 3.
The path, 01, 09, . . ., 0, are mutually vertex-disjoint and can be visualized
as in Fig. 5, where we assume tlfat «’) is not an edge of-. O

We can draw Propositions 10, 11 and 12 together in the foligwesult.

Theorem 13 Let G be a connected graph. Lét, v, w) and (v, v’ w') be any2
distinct vertices oBsw(G) so thatd,, andd,, are the degrees ab andw’ in G,
respectively. There existin{d,,, d,» } + 1 mutually vertex-disjoint paths joining
(u,v,w)and(u/,v", w’) in Bsw(G) so that the length of the longest of these paths
is at mosBA(G) + 6.

It is worth mentioning the results in [1] as regards conmgtin OTIS net-
works in comparison with Theorem 13. In [1], itis proven tliat is a connected
graph such that every vertex has degree at letdstn in OTISE there are at least
d mutually vertex-disjoint paths joining ardydistinct vertices so that the longest
of these paths has length at mdstGG) + 4. This result assumes nothing about
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the connectivity of7, only its minimal degree. This is a powerful property of the
OTIS construction, namely that one can use it to build higidgnected graphs
out of a base graph that does not necessarily have a highaaostye This prop-
erty is shared by biswapped networks in that Theorem 13 dten allows us
to turn a graphG of low connectivity into a graptBsw(G) of high connectivity
(relatively speaking and in a uniform manner), yet retaimeaontrol over the
degree ofBsw(G).

u=0 index , copies of G w*

X v'
\ vertex (0, x4, W) d

vertex (1, w;,v)

w*

index w'
Figure 5. The pathg, 01,09, ..., 04N Bsw(G) when(w,w’) & E.

As an illustration of an application of Theorem 13 so as toronp connectiv-
ity, consider a grapld- consisting of two disjoint cliques of size together with
1 additional edge joining a vertex in one clique to a vertexhmdther. The graph
G has connectivityl yet, by Theorem 13, the grapBsw(G) has connectivity
m, with the degree of any vertex éfsw(G) being onlyl greater than its corre-
sponding degree it¥ (we also obtain control over the wide-diametefw (G)
too). As another application of Theorem 13 relating to faolérance, suppose
thats andt are two vertices of some graghwhere each has degree at ledand
where there is a collection af mutually vertex-disjoint paths i&¥ joining s and
t. ConsiderG as embedded withi®sw(G) where the intention is thaBsw(G)
is to provide for extra tolerance of faults. If we have aniot@nection network
Bsw(G) so that there are at leastfaulty processors within the embedded copy
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of G in Bsw(G) so that these faulty processors disconnect the procedsoasd

t (via thex paths) then so long as these faulty processors are not dthoeigs

of s andt, Theorem 13 ensures that within the interconnection nétvigsn (G)
there will still be at leastt mutually vertex-disjoint paths joining the processors at
s andt. That is, ‘wrapping’G within Bsw(G) can lead to added fault tolerance.

4.3 Multipath routing algorithms

Finally, let us comment as regards coverting the constrastof this section into

a multipath routing algorithm in an interconnection netkv(go we now, on occa-
sion, talk of processors and links rather than vertices aigg®. If one consults
the proofs of the various cases in the various results insecsion then one can
easily see that if7 is an interconnection network whose underlying graph has
connectivityx and there is a deterministic multipath source routing allgor R

to find x mutually vertex-disjoint paths i from a processor at to a processor
at v, whereu # v, then there is an analogous routing algorithm to fing 1
mutually vertex-disjoint paths in the interconnectiormatk Bsw(G). There are
only one or two very minor comments to make. For example, \galegly com-
pute shortest paths @ and need to find (sets of) vertices with specific properties
(such as being distinct from some other vertices or neigrsolusome other ver-
tex). These tasks can trivially be dealt with (if one assuthes our multipath
source routing algorithn®; can compute a shortest path joiningertices inG,
which is entirely reasonable). Consequently, becauseec@t¢kual bounds on the
lengths of the paths we compute, we have the following cargl|

Corollary 14 LetG be an interconnection net-work whose underlying graph has
connectivityx and where there is a deterministic multipath source routitgp-
rithm which computes mutually vertex-disjoint paths joining arydistinct ver-
tices inG so that this algorithm has time complexity polynomialNp(G), A(G)

and k. There is a deterministic multipath source routing alglonit in the inter-
connection networlBsw(G) that computes + 1 mutually vertex-disjoint paths
joining any2 distinct vertices so that the length of the longest resglpath has
length at mosinax{2A(G)+5, A,(G)+A(G)+2}. Moreover, this deterministic
multipath source routing algorithm foBsw(G) has time complexity polynomial

in A,(G), A(G) andk.

As an illustration of the application of Corollary 14, comsi Bsw((),,). There
is a well-known and simple deterministic multipath sourceting algorithm for
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the hypercubé&), which is briefly described as follows (see [15]). W.l.0.g. we
may assume that our source vertexds0, ..., 0) and that our destination vertex
is (0,0,...,0,1,1,...,1), where there is a prefix af0’s. We obtaini paths by
first routing to vertex0,...,0,1,0,...,0,1,1,...,1), where the edge used lies
in dimensiony, for eachj € {1,2,...,4}, and then by using edges lying in di-
mensiong +1,5+2,...,4,1,2,...,7— 1. We obtainn — 7 paths by routing over
the edge in dimensiof for eachj € {i+1,:+2,...,n}, and then by using edges
in dimensiond, 2, . . . , i before ending with the edge in dimensignThis yields

n mutually vertex-disjoint paths, the longest of which hasgtan + 2. The un-
derlying algorithm clearly runs i®(n?) time (note that: is both the connectivity
and diameter of),,). Consequently, Corollary 14 yields a deterministic npath
source routing algorithm foBsw(@Q,,) that runs in time polynomial in.

5 Conclusions

Let us remark that biswapped networks should not necegsmritompared with
other interconnection networks on a like-for-like basis,the whole point of
biswapped networks is that they can be laid out (in the plao@y to be easily im-
plementable as optical transpose interconnection sygsaaghe first visualiation
in Fig. 1). For example, one might argue tha®if is ann-dimensional hypercube
then Bsw(Q,,) has2?"*! vertices, connectivity: + 1 and wide-diameten + 5
(from Corollary 9), wherea§),,,; has2?"*! vertices, connectivitgn + 1, and
wide-diameteRn+2 [13]; consequently))s, 1 should be preferable tBsw(Q),,).
However, the crucial point is that it is by no means obvioumdmw to efficiently
implement(),, ., as an optical transpose interconnection system (assuimang t
@, has a suitable electronic implementation). The obviousempntation, where
Q2,41 is considered a2 copies of(Y,, with these copies inter-connected in the
‘shape’ of ,,. 1, does not have any simple planar depiction and would be such
as to result im22**+1 optical connections compared with oy optical connec-
tions in Bsw(Q,). Also, and importantlyBsw(G) can easily be laid out (in the
plane), and),,, . ; involves(2n + 1)22"*! edges whereaBsw(Q,,) only involves
n22"+1 + 227 edges. However, the demands of optical transpose integcenn
tion systems in comparison to standard interconnectiomnarés, along with their
comparative benefits, have been well documented elsewhésoave do not feel
the need to justify them further.

We have shown that the general construction of a biswappemdneBsw(G)
from a graphG has a number of beneficial properties in the context of parall
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computing. Whilst our work provides a precise analysis pkass of connectivity,

there are other obvious directions in which it can be extdnilée have obtained
upper bounds on the: + 1)-diameter ofBsw(G) in terms of A, (G) andA(G).

It would be interesting to obtain lower bounds and to seekrprove our upper
bounds. Theault diameterof a graphG of connectivityx is the maximal diame-
ter of any graph resulting fror@' after the removal of at most— 1 vertices (and

their incident edges). It is often closely related to theemttiameter (especially
in graphs prevalent as interconnection networks). Det@ngiupper bounds on
the fault diameter oBsw(G), in terms of parameters relating €, would be a

sensible undertaking. Also, from a combinatorial perspged¢he construction of
Bsw(G) from G is a natural construction (as is witnessed by its eleganacha
terization using the wreath product from group theory). @as construction be
generalised so that instead of being built around thé&/s#t2 elements, it is built

around a graptH with vertex setU and edge sef'? We intend to study gen-
eralisations such as this in future. Finally, it would beenesting to empirically
evaluate algorithms designed for hybrid optical networkshsas OTIS networks
and biswapped networks (such an empirical evaluation wioaNe to take account
of the hybrid nature of such networks).
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