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Abstract

Biswapped networks of the formBsw(G) have recently been proposed
as interconnection networks to be implemented as optical transpose inter-
connection systems. We provide a systematic construction of κ + 1 vertex-
disjoint paths joining any two distinct vertices inBsw(G), whereκ ≥
1 is the connectivity ofG. In doing so, we obtain an upper bound of
max{2∆(G)+5,∆κ(G)+∆(G)+2} on the(κ+1)-diameter ofBsw(G),
where∆(G) is the diameter ofG and∆κ(G) theκ-diameter. Suppose that
we have a deterministic multipath source routing algorithmin an intercon-
nection networkG that findsκ mutually vertex-disjoint paths inG joining
any 2 distinct vertices and does this in time polynomial in∆κ(G), ∆(G)
andκ (and independently of the number of vertices ofG). Our constructions
yield an analogous deterministic multipath source routingalgorithm in the
interconnection networkBsw(G) that findsκ + 1 mutually vertex-disjoint
paths joining any2 distinct vertices inBsw(G) so that these paths all have
length bounded as above. Moreover, our algorithm has time complexity
polynomial in∆κ(G), ∆(G) andκ. We also show that ifG is Hamiltonian
thenBsw(G) is Hamiltonian, and that ifG is a Cayley graph thenBsw(G)
is a Cayley graph.
Keywords: Interconnection networks. OTIS networks. Biswapped networks.
Connectivity. Hamiltonicity. Cayley graphs.



1 Introduction

Interconnection networks play an ever-increasing role in computers and computa-
tion. For example: they are used to facilitate communication between processors
in distributed-memory multiprocessors (such as the supercomputers in the IBM
Blue Gene project); they are increasingly replacing buses and crossbars in net-
work switches and routers; they feature widely in computer systems as a means
by which to connect I/O devices with processors and memory; and they are core
to on-chip networks. As technology advances, interconnection networks need to
be implemented on a smaller and smaller scale, so that they connect more and
more components and enable faster and more data intensive communications.

There are numerous factors which influence the choice of interconnection net-
work, including topology, flow control, routing, traffic patterns and packaging
(see, for example, [2]). As regards the last of these factors, one cannot ignore
the physical implementation of an interconnection networkand, in particular, the
actual physical locations of the ‘wires’ which constitute the interconnection net-
work. It is known that over a distance of greater than a few millimetres, optical
connections out-perform electronic connections in terms of power consumption,
speed and crosstalk [6, 7, 10]. Based on these observations,interconnection net-
works known asOptical Transpose Interconnection Systems(OTIS) were devised
where extra optical connections are added to (existing) electronic networks (OTIS
networks originated in [11] but their study was initiated within the computer ar-
chitecture community in [16] and independently, under the name of swapped net-
works, in [17, 18, 19]).

OTIS networks have abase graphG, onn vertices, and consist ofn disjoint
copies ofG. These copies are labelledG1, G2, . . . , Gn and the vertices of any copy
arev1, v2, . . . , vn. The edges involved in any one of these copies ofG are intended
to model (shorter) electronic connections whereas additional edges, where there
is an edge from vertexvi of copyGj to vertexvj of copyGi, for everyi, j ∈
{1, 2, . . . , n}, with i 6= j, are intended to model the (longer) optical connections.
The resulting OTIS network is denoted by OTIS-G. Of course, an OTIS network
is dependent upon its base graphG, and numerous results have been proven for
both specific base graphs and classes of base graphs (see, forexample, the papers
[1, 3, 4, 12] and the references therein).

One slightly displeasing aspect of OTIS networks is that no matter what the
base graphG is, the corresponding OTIS network OTIS-G cannot be a Cayley
graph, or even a vertex-transitive graph, as an OTIS networkis not regular. In
general, if the base graphG has some aspect of symmetry then we lose this
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symmetry in the graph OTIS-G, and as well as losing desirable specific prop-
erties, like vertex-transitivity, the loss of this symmetry can make general net-
work analysis more problematic. In order to ‘recapture’ symmetric aspects of
OTIS networks, Xiao, Parhami, Chen, He and Wei [20] have recently proposed
biswapped networkswhich, they claim, are ‘fully symmetric and have cluster
connectivity very similar to OTIS networks’. The biswappednetworkBsw(G)
is defined very similarly to the OTIS network OTIS-G except that instead of hav-
ing n copies of the base graphG (whereG hasn vertices), we have2n copies
G0

1, G
0
2, . . . , G

0
n, G

1
1, G

1
2, . . . , G

1
n and the ‘optical’ edges join vertexvi in G0

j with
vertexvj in G1

i , wherei, j ∈ {1, 2, . . . , n}. Immediately we see that ifG is reg-
ular then the biswapped networkBsw(G) is regular and so there is some hope
for recapturing any symmetric properties of the base graphG. In [20], convinc-
ing arguments are made as to the efficacy of biswapped networks and some basic
properties of biswapped networks are derived relating to shortest paths and routing
algorithms.

In this paper, we further extend the structural analysis of abiswapped network
Bsw(G). We provide a systematic construction ofκ + 1 vertex-disjoint paths
joining any two distinct vertices inBsw(G), whereκ ≥ 1 is the connectivity of
G. In doing so, we obtain an upper bound on the(κ + 1)-diameter ofBsw(G)
of max{2∆(G) + 5,∆κ(G) + ∆(G) + 2}, where∆(G) is the diameter ofG and
∆κ(G) theκ-diameter (in [20] it was merely observed, without explanation, that
Bsw(G) has connectivity at leastκ+1). As a corollary, we obtain that ifG is reg-
ular of degreeκ and has connectivityκ thenBsw(G) has connectivityκ + 1 and
the wide-diameter ofBsw(G) is bounded above by2∆κ(G) + 3. Furthermore,
we prove that ifG is connected and has minimal degreed thenG has connectivity
at leastd + 1 and∆κ+1(Bsw(G)) is at most3∆(G) + 6. Suppose that we have
a deterministic multipath source routing algorithm in an interconnection network
G that findsκ mutually vertex-disjoint paths inG joining any2 distinct vertices
and does this in time polynomial in∆κ(G), ∆(G) andκ (and independently of
the number of vertices ofG). Our constructions yield a simple deterministic mul-
tipath source routing algorithm in the interconnection networkBsw(G) that finds
κ+ 1 mutually vertex-disjoint paths joining any2 distinct vertices inBsw(G) so
that these paths all have length bounded as above. Moreover,our algorithm has
time complexity polynomial in∆κ(G), ∆(G) andκ. We also show that ifG is
Hamiltonian thenBsw(G) is Hamiltonian, and that ifG is a Cayley graph then
Bsw(G) is a Cayley graph (these results were reported in [20] but notproven). In
addition, we show that ifG is a Cayley graph of the groupΓ thenBsw(G) is a
Cayley graph of the group that is the wreath product ofΓ with the cyclic group of
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order2.
We present the background and definitions relating to this paper in Section 2,

before showing thatBsw(G) is Hamiltonian ifG is and thatBsw(G) is a Cayley
graph ifG is in Section 3. Our main results, relating to the(κ + 1)-diameter of
Bsw(G) and the subsequent deterministic multipath source routingalgorithm, are
in Section 4, with our conclusions and directions for further research in Section 5.

2 Basic definitions

We give here the basic graph-theoretic definitions relevantto this paper. All graphs
are undirected and for any graph-theoretic terminology notdefined here, we re-
fer the reader to [5]. We also explain why certain graph parameters are relevant
when a graph forms the interconnection network of a distributed-memory multi-
processor (with the processors located at vertices and the edges corresponding to
direct communication links between pairs of processors). On occasion when we
are referring to a graph as an interconnection network, we talk about processors
and links rather than vertices and edges. The reader is referred to [8] and [21] for
more on interconnection networks.

A path in a graph is a sequence of distinct vertices so that there is an edge
joining consecutive vertices, with the first and last vertices being theend-vertices,
and acycle(or circuit) is a path where there is an edge joining the first and last
vertices. AHamiltonian pathin a graph is a path that contains every vertex of
the graph exactly once, and aHamiltonian cycleis a Hamiltonian path with an
edge from the last vertex of the path to the first. Two paths arevertex-disjointif
neither has a vertex that appears on the other path except forpossibly sharing1 or
2 end-vertices, and a set of paths in a graph aremutually vertex-disjointif any two
distinct paths are vertex-disjoint. Hamiltonian cycles are useful in interconnec-
tion networks as they can be used to easily undertake many-to-many broadcasts.
As regards sets of mutually vertex-disjoint paths, their existence has two bene-
fits. A message can be split into pieces and mutually vertex-disjoint paths joining
two distinct verticesu andv can be used to send each piece of the message in
parallel from a processor atu to a processor atv, secure in the knowledge that
there will be no resulting conflict at interim vertices. Also, should processors
or links fail, having alternative paths by which to communicate adds to the fault
tolerance of the interconnection network. A multipath routing algorithm is often
associated with the mutually vertex-disjoint paths of an interconnection network,
where amultipath routing algorithmis an algorithm implemented in an intercon-
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nection network that finds mutually vertex-disjoint paths joining processors at any
distinct vertices in the network. A multipath routing algorithm is asourcemul-
tipath routing algorithm if the paths are fully computed at the source processor
before messages are sent, and a multipath routing algorithmis deterministicif the
algorithm depends solely upon the vertices at which the source and destination
processors are located.

Theneighbourhoodof a vertexv of a graphG = (V,E) is defined asNG(v) =
{v′ ∈ V : (v, v′) ∈ E}. An articulation setfor a graphG = (V,E) is a subset
of verticesU ⊆ V so that if we remove every vertex ofU from G, along with its
incident edges, then the resulting graph has at least2 connected components. A
graphG = (V,E) hasconnectivityκ ≥ 1 if G has more thanκ vertices and there
is a set ofκ vertices forming an articulation set but there exists no articulation
set of size smaller thanκ. We repeatedly use Menger’s Theorem: if a graph
G = (V,E) has connectivityκ then given any vertexv ∈ V and any distinct
verticesv1, v2, . . . , vκ ∈ V , different fromv, there areκ mutually vertex-disjoint
paths fromv to v1, v2, . . . , vκ.

The length of a shortest path in a connected graphG = (V,E) between two
verticesv, v′ ∈ V is denotedδG(v, v′). Thediameterof a graphG, denoted∆(G),
ismax{δG(v, v

′) : v, v′ ∈ V }. Suppose that|V | = n and letκ ∈ {1, 2, . . . , n−1}.
Theκ-diameterof G, denoted∆κ(G), is the smallest integer such that for every
pair of distinct verticesv andv′ of V , there areκ mutually vertex-disjoint paths
from v to v′ so that the longest such path has length at most∆κ(G) (note that the
κ-diameter might be undefined). Ifκ is equal to the connectivity ofG then the
κ-diameter is known as thewide-diameter. The diameter of a graphG bounds the
number of hops a message must undertake in a shortest-path routing algorithm
over the interconnection networkG. Theκ-diameter bounds the number of hops
a piece of a message must undertake when a message is partitioned and sent in
parallel overκ mutually vertex-disjoint paths. Note that Menger’s Theorem tells
us about the existence of mutually vertex-disjoint paths ina graph but nothing
about the lengths of such paths.

A Cayley digraphG is defined as follows. LetΓ be a finite group with gener-
ating set{γ1, γ2, . . . , γr}. The elements ofΓ form the vertex set ofG and there is
a directed edge(γ, γ′) in the graphG if γiγ = γ′, for somei ∈ {1, 2, . . . , r}. A
Cayley graphis a Cayley digraph where the associated generating set is closed un-
der inverses (and so directed edges can be regarded as undirected edges). A graph
G = (V,E) is vertex-transitiveif given any two distinct verticesv, v′ ∈ V , there
is an automorphism ofG mappingv to v′. Every Cayley graph is vertex-transitive.
If an interconnection network is vertex-transitive then itis feasible that a problem
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might be solved by a distributed algorithm so that every vertex executes the same
program. If a vertex-transitive interconnection network is a Cayley graph then this
opens the network to analysis using algebraic methods.

Throughout, this paper, the graphG has vertex setV , where|V | ≥ 2, and edge
setE. The setU = {0, 1}, and ifu ∈ U thenu is the element ofU different from
u.

Definition 1 Let G = (V,E) be a graph whereV contains at least2 vertices.
The graphBsw(G) is known as thebiswapped graph with baseG and is defined
as follows:

• Bsw(G) has vertex set{(u, v, w) : u ∈ U, v, w ∈ V }

• Bsw(G) has edge set consisting of thecluster edges{((u, v, w), (u, v, w′)) :
u ∈ U, v, w, w′ ∈ V, (w,w′) ∈ E} and theswap edges{((u, v, w),
(u, w, v)) : u ∈ U, v, w ∈ V }.

We say that the verticescorrespondingto some vertexu ∈ U are the vertices
of Bsw(G) whose first component isu, and that a vertex(u, v, w) of Bsw(G)
corresponding tou ∈ U is indexedby v ∈ V . Note that the vertices ofBsw(G)
corresponding to some vertexu ∈ U and indexed by somev ∈ V induce a copy of
G. In what follows, we often wish to refer to a vertex in the copyof G correspond-
ing to u ∈ U and indexed byv ∈ V . For brevity, we henceforth refer to these
vertices asGv

u. We often write a cluster edge of the form((u, v, w), (u, v, w′))
as (u, v, w) →c (u, v, w′), and a swap edge of the form((u, v, w), (u, w, v))
is often written(u, v, w) →s (u, w, v). A path of (possibly no) cluster edges
(u, v, w) →c . . . →c (u, v, w

′) is often written as(u, v, w) →∗

c (u, v, w
′).

The vertices corresponding to the the elements0 and1 of U are depicted in
two different ways in Fig. 1. In both depictions, the vertices ofV are enumerated
asv1, v2, . . . , vn. In the top depiction, the vertex(0, vi, vj), for example, lies on
the row corresponding to0 ∈ U , and within this row it is vertexvj of the cluster
indexed byvi. In the bottom depiction, as regards the vertices corresponding to1,
there is one row for the vertices indexed by eachv ∈ V , and the vertex(1, vi, vj),
for example, lies on the row indexed by vertexvi ∈ V .

In [20], the lengths of shortest paths between arbitrary distinct vertices of
Bsw(G) were proven, with the corollary thatBsw(G) has diameter2∆(G) + 2.
A shortest-path routing algorithm was derived from these shortest-path results. A
comparative analysis was also undertaken onBsw(Qn) andQ2n+1, whereQn is
then-dimensional hypercube, given that these graphs have the same number of
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vertices. This analysis showed thatBsw(Qn) has a number of advantages when
compared withQ2n+1 (in the context of interconnection networks).

...

...

...

...

... ... ... ...... ...

... ... ... ...... ...

v1 vn
v3v2 v1 vn

v3v2 v1 vn
v3v2 v1 vn

v3v2

v1 vn
v3v2 v1 vn

v3v2 v1 vn
v3v2 v1 vn

v3v2

v1 vnv3v2

v1 vnv3v2u = 0
copies of G

vertex (1, v  ,  v  )2 1

vertex (0, v  ,  v  )n 2

... ... ... ...... ...

v1

vn

v2

v1

v3

v2 v3 vn

v1 vn
v3v2 v1 vn

v3v2 v1 vn
v3v2 v1 vn

v3v2

v1 vnv3v2

... ... ...

v1 v2 v3 vn

v1 v2 v3 vn

v1 v2 v3
vn

copies of G

copies of G

vertex (0, v  ,  v  )n 2

vertex (1, v  ,  v  )2 1

index

index

index

index

u = 0

u = 1

u = 1

Figure 1. Some edges inBsw(G).

3 Hamiltonicity and Cayley graphs

We now show that ifG is Hamiltonian thenBsw(G) is, and that ifG is a Cayley
graph thenBsw(G) is.

Proposition 2 If G is Hamiltonian thenBsw(G) is Hamiltonian.

Proof Let v1, v2, . . . , vn be a Hamiltonian cycle inG. Let ρi be the path in
Bsw(G) defined as:

(0, vi, vi), (0, vi, vi−1), . . . , (0, vi, v1), (0, vi, vn),

(0, vi, vn−1), (0, vi, vn−2), . . . , (0, vi, vi+1),
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and letσi be the path inBsw(G) defined as:

(1, vi+1, vi), (1, vi+1, vi−1), . . . , (1, vi+1, v1),

(1, vi+1, vn), (1, vi+1, vn−1), (1, vi+1, vn−2),

. . . , (1, vi+1, vi+1).

The path obtained by concatenating these paths as:

ρ1, σ2, ρ2, σ3, . . . , ρn−1, σn, ρn, σ1

is actually a Hamiltonian cycle inBsw(G).

Proposition 3 If G is a Cayley graph thenBsw(G) is a Cayley graph.

Proof Let Γ be a finite group with generating setΣ so thatG is the Cayley graph
of (Γ,Σ). Let Π be the symmetric group on2 elements (that is, the cyclic group
of order2) generated by the elementπ; so,H is the Cayley graph of(Π, {π}). We
denote the underlying set of any group by the name of the grouptoo. LetΠ act on
the setΓ× Γ via:

(γ, γ′)π = (γ′, γ) and(γ, γ′)1Π = (γ, γ′),

where1Π is the identity element ofΠ. Define the set of elementsΓ× Γ × Π and
its subsetΩ = {(1G, γ, 1H) : γ ∈ Σ} ∪ {(1G, 1G, π)}, where1G is the identity
element ofΓ. Define the following multiplication on elements ofΓ× Γ× Π:

(α, β, ǫ)(α′, β ′, ǫ′) =

{

(αβ ′, βα′, ǫǫ′) if ǫ = π;
(αα′, ββ ′, ǫǫ′) if ǫ = 1Π

(where the ‘internal’ multiplications are those of the groupsΓ andΠ). That is,
we have defined the group known as the wreath productΓ ≀ Π (see, for example,
[14]). It is trivial to verify thatBsw(G) is the Cayley graph of(Γ ≀ Π,Ω) (with a
directed edge from a source vertex to a target vertex obtained by multiplying the
source vertex on the left by a generator ofΩ).

4 Connectivity and disjoint paths

In this section, we examine aspects of the connectivity ofBsw(G) in relation to
both the connectivity and degree ofG = (V,E).
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4.1 In relation to the connectivity ofG

As was implicitly observed in [20],Bsw(G) has connectivity at leastκ+ 1 when
G has connectivityκ ≥ 1. However, we refine this observation and explicitly
construct for every distinct pair of vertices inBsw(G), κ + 1 mutually vertex-
disjoint paths between the2 vertices, so obtaining an upper bound on the length
of the longest of these paths; that is, an upper bound onDκ+1(Bsw(G)), the
(κ + 1)-diameter ofBsw(G). We partition our constructions into a sequence of
propositions depending upon the different types of pairs ofvertices inBsw(G).
The first proposition deals with the case when the vertices ofBsw(G) are of the
form (u, v, w) and(u, v, w′).

Proposition 4 LetG be a graph of connectivityκ ≥ 1. Let(u, v, w) and(u, v, w′)
be distinct vertices ofBsw(G). There are at leastκ + 1 mutually vertex-disjoint
paths joining(u, v, w) and(u, v, w′) so that the longest of these paths has length
at mostmax{∆κ(G),∆(G) + 6}.

Proof Clearly, we haveκ mutually vertex-disjoint paths, each of length at most
∆κ(G), joining the vertices(u, v, w) and(u, v, w′) in Gv

u. Let v∗ be a neighbour
of v in G. Consider the following pathρ in Bsw(G):

(u, v, w) →s (u, w, v) →c (u, w, v
∗)

→s (u, v
∗, w) →∗

c (u, v
∗, w′) →s (u, w

′, v∗)

→c (u, w
′, v) →s (u, v, w

′),

where the path inGv∗

u from (u, v∗, w) to (u, v∗, w′) is any such path. This pathρ
is vertex-disjoint with all of theκ paths described earlier and has length at most
∆(G) + 6.

In upcoming proofs, if we detail a path as in the proof of Proposition 4 in
which there is a sub-path(u, v∗, w) →∗

c (u, v∗, w′), for example, then unless we
state otherwise the implied path is any path inGv∗

u from the vertex(u, v∗, w) to
the vertex(u, v∗, w′).

The next proposition deals with the case when pairs of vertices ofBsw(G) are
of the form(u, v, w) and(u, v′, w′), wherev 6= v′.

Proposition 5 Let G be a graph of connectivityκ ≥ 1, and let (u, v, w) and
(u, v′, w′) be distinct vertices ofBsw(G) wherev 6= v′. There are at leastκ + 1
mutually vertex-disjoint paths joining(u, v, w) and (u, v′, w′) so that the longest
of these paths has length at most∆κ(G) + ∆(G) + 2.
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Proof We split the proof into two cases.

Case 1: w 6= w′.

AsG has connectivityκ, there are at leastκ mutually vertex-disjoint pathsσ′

1, σ
′

2,

. . . , σ′

κ from vertex(u, v, w) to vertex(u, v, w′) in Gv
u, so that each path has length

at most∆κ(G). For eachi ∈ {1, 2, . . . , κ}, if σ′

i has length at least2 then define
wi as the penultimate vertex onσ′

i (and sowi is a neighbour ofw′ in G). We may
assume w.l.o.g. that if someσ′

i has length1 theni = 1.
For everyi ∈ {2, 3, . . . , κ}, define the pathσi in Bsw(G) as:

(u, v, w) →∗

c (u, v, wi) →s (u, wi, v) →
∗

c (u, wi, v
′)

→s (u, v
′, wi) →c (u, v

′, w′),

where the path inGv
u from (u, v, w) to (u, v, wi) is isomorphic toσ′

i truncated
at wi. Each path has length at most∆κ(G) + ∆(G) + 2. Define the pathσ1 in
Bsw(G) as:

(u, v, w) →∗

c (u, v, w
′) →s (u, w

′, v) →∗

c (u, w
′, v′)

→s (u, v
′, w′),

where the path inGv
u from (u, v, w) to (u, v, w′) is isomorphic toσ′

1. The pathσ1

has length at most∆κ(G) + ∆(G) + 2. Define the pathρ in Bsw(G) as:

(u, v, w) →s (u, w, v) →
∗

c (u, w, v
′) →s (u, v

′, w)

→∗

c (u, v
′, w1) →c (u, v

′, w′),

where the path inGv′

u from (u, v′, w) to (u, v′, w′) is isomorphic toσ′

1. The pathρ
has length at most∆κ(G) + ∆(G) + 2. The pathsρ, σ1, σ2, . . . , σκ are mutually
vertex-disjoint and can be visualized as in Fig. 2.

Case 2: w = w′.

Let w1, w2, . . . , wκ be distinct neighbours ofw in G. For everyi ∈ {1, 2, . . . , κ},
define the pathσ′

i in Bsw(G) as:

(u, v, w) →c (u, v, wi) →s (u, wi, v) →
∗

c (u, wi, v
′)

→s (u, v
′, wi) →c (u, v

′, w′).

Each path has length at most∆(G) + 4. Define the pathρ in Bsw(G) as:

(u, v, w) →s (u, w, v) →
∗

c (u, w, v
′) →s (u, v

′, w)

= (u, v′, w′).
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v'

w1

w

copy of Gindex

...

v

v

wκ

... ...

... ...

index w w'

v'

v

vertex (1, w, v')

the path ρ

wi

...

wi

wi

w' w'

w1

wκ

vertex (0, v', w  )1

...

u = 0

u = 1

v'

w

v

v'

Figure 2. The pathsρ, σ1, σ2, . . . , σκ in Bsw(G) in Case 1.

The pathρ has length at most∆(G) + 2. The pathsρ, σ′

1, σ
′

2, . . . , σ
′

κ are mu-
tually vertex-disjoint.

The final case to deal with is when pairs of vertices ofBsw(G) are of the form
(u, v, w) and(u, v′, w′).

Proposition 6 Let G be a graph of connectivityκ ≥ 1, and let (u, v, w) and
(u, v′, w′) be vertices ofBsw(G). There are at leastκ+1 mutually vertex-disjoint
paths joining(u, v, w) and (u, v′, w′) so that the length of the longest of these
paths is at most2∆(G) + 5.

Proof As G has connectivityκ, the vertexw ∈ V has at leastκ distinct neigh-
boursw1, w2, . . . , wκ ∈ V , and the vertexw′ ∈ V has at leastκ distinct neigh-
boursw′

1, w
′

2, . . . , w
′

κ ∈ V .

Case 1: v 6∈ {w′

1, w
′

2, . . . , w
′

κ, w
′} andv′ 6∈ {w1, w2, . . . , wκ, w}.

There is a straightforward construction that yields ourκ + 1 mutually vertex-
disjoint paths. For everyi ∈ {1, 2, . . . , κ}, define the pathσi in Bsw(G) as:

(u, v, w) →c (u, v, wi) →s (u, wi, v)

→∗

c (u, wi, w
′

i) →s (u, w
′

i, wi) →
∗

c (u, w
′

i, v
′)

→s (u, v
′, w′

i) →c (u, v
′, w′).
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Each pathσi has length at most2∆(G) + 5. Define the pathρ in Bsw(G) as:

(u, v, w) →s (u, w, v) →
∗

c (u, w, w
′) →s (u, w

′, w)

→∗

c (u, w
′, v′) →s (u, v

′, w′).

The pathρ has length at most2∆(G) + 3.

Case 2: v = w′

i, for somei ∈ {1, 2, . . . , κ}, andv′ 6∈ {w1, w2, . . . , wκ, w}.

W.l.o.g. we may suppose thatv = w′

1. Let σ′ be a shortest path fromw to v′ in
G and letw2, w3, . . . , wκ be distinct neighbours ofw not lying onσ′. For every
i ∈ {2, 3, . . . , κ}, define the pathσi in Bsw(G) as in Case 1, and define the path
ρ as in Case1 also. Define the pathσ1 as:

(u, v, w) →∗

c (u, v, v
′) →s (u, v

′, v) →c (u, v
′, w′),

where the path inGv
u from (u, v, w) to (u, v, v′) is isomorphic toσ′. The path

σ1 has length at most∆(G) + 2. The pathsρ, σ1, σ2, . . . , σκ are mutually vertex-
disjoint and can be visualized as in Fig. 3.
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Figure 3. The pathsρ, σ1, σ2, . . . , σκ in Bsw(G) in Case 2.

Case 3: v = w′ andv′ 6∈ {w1, w2, . . . , wκ, w}.

Let σ′ be a shortest path fromw to v′ in G and letw2, w3, . . . , wκ be distinct
neighbours ofw not lying onσ′. For everyi ∈ {2, 3, . . . , κ}, define the pathσi in
Bsw(G) as in Case 1. Define the pathσ1 in Bsw(G) as:

(u, v, w) →∗

c (u, v, v
′) →s (u, v

′, v) = (u, v′, w′),
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where the path inGv
u from (u, v, w) to (u, v, v′) is isomorphic toσ′. The pathσ1

has length at most∆(G) + 1. Define the pathρ in Bsw(G) as:

(u, v, w) →s (u, w, v) →
∗

c (u, w, w
′

1) →s (u, w
′

1, w)

→∗

c (u, w
′

1, v
′) →s (u, v

′, w′

1) →c (u, v
′, w′).

The pathρ has length at most2∆(G) + 4.

Case 4: v = w′

i andv′ = wj, for i, j ∈ {1, 2, . . . , κ} with i 6= j.

W.l.o.g. we may assume thati = 1 andj = 2. For everyi ∈ {3, 4, . . . , κ}, define
the pathσi in Bsw(G) as in Case 1, and define the pathρ as in Case 1 also. Define
the pathσ1 in Bsw(G) as:

(u, v, w) →c (u, v, w1) →s (u, w1, v)

→∗

c (u, w1, w
′

2) →s (u, w
′

2, w1) →
∗

c (u, w
′

2, v
′)

→s (u, v
′, w′

2) →c (u, v
′, w′).

The pathσ1 has length at most2∆(G) + 5. Define the pathσ2 as:

(u, v, w) →c (u, v, w2) →s (u, w2, v)

→c (u, w2, w
′) = (u, v′, w′).

The pathσ2 has length3.

Case 5: v = w′

i andv′ = wi, for i ∈ {1, 2, . . . , κ}.

W.l.o.g. we may assume thati = 1. For everyi ∈ {2, 3, . . . , κ}, define the pathσi

in Bsw(G) as in Case 1, and define the pathρ as in Case 1 also. Define the path
σ1 in Bsw(G) as:

(u, v, w) →c (u, v, w1) →s (u, w1, v) →c (u, v
′, w′).

The pathσ1 has length3.

Case 6: v = w′

i, for i ∈ {1, 2, . . . , κ}, andv′ = w.

W.l.o.g. we may assume thati = 1. For everyi ∈ {2, 3, . . . , κ}, define the path
σi in Bsw(G) as in Case 1. Define the pathσ1 in Bsw(G) as:

(u, v, w) →c (u, v, w1) →s (u, w1, v) →
∗

c (u, w1, w
′)

→s (u, w
′, w1) →

∗

c (u, w
′, v′) →s (u, v

′, w′).

The pathσ1 has length at most2∆(G) + 4. Define the pathρ as:

(u, v, w) →s (u, w, v) →c (u, w, w
′) = (u, v′, w′).

13



The pathρ has length2.

Case 7: v = w′ andv′ = w.

For everyi ∈ {1, 2, . . . , κ}, define the pathσi in Bsw(G) as in Case 1. Define the
pathρ in Bsw(G) as:

(u, v, w) →s (u, w, v) = (u, v′, w′).

The pathρ has length1.

In all cases, the pathsσ1, σ2, . . . , σκ, ρ are mutually vertex-disjoint. Moreover,
by symmetry, w.l.o.g. every combination of types of(u, v, w) and (u, v′, w′) is
covered by one of the above cases. The result follows.

We can draw together Propositions 4, 5 and 6 as follows.

Theorem 7 Let the graphG have connectivityκ ≥ 1. There areκ + 1 mutually
vertex-disjoint paths joining any2 distinct vertices ofBsw(G) such that the length
of the longest of these paths is at mostmax{2∆(G) + 5,∆(G) + ∆κ(G) + 2};
that is,∆κ+1(Bsw(G)) ≤ max{2∆(G) + 5,∆(G) + ∆κ(G) + 2}.

Corollary 8 LetG be a graph. IfBsw(G) has connectivityκ + 1 then the wide-
diameter ofBsw(G) is bounded above bymax{2∆(G)+5,∆(G)+∆κ(G)+2}.

Hsu and Łuczak [9] proved that if a graphG is regular of degreeκ ≥ 2 and has
connectivityκ then∆κ(G) ≥ ∆(G)+ 1. Thus, we obtain the following corollary.

Corollary 9 LetG be a graph. IfG is regular of degreeκ ≥ 2 and has connec-
tivity κ thenBsw(G) has connectivityκ+1 and the wide-diameter ofBsw(G) is
bounded above by2∆κ(G) + 3.

We remark that many of the graphsG prevalent as interconnection networks are
regular and have degree equal to their connectivity.

4.2 In relation to the degree ofG

As we now show, we can actually construct numerous paths joining 2 distinct
vertices ofBsw(G) even whenG has relatively low connectivity (though we need
thatG is connected). Observe from the proof of Proposition 6 that we have not
used the connectivityκ of G; just thatG is connected and thatw andw′ have
degree at leastκ in G. Consequently, the proof of Proposition 6 immediately
yields the following result.
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Corollary 10 Let G be a connected graph and letw andw′ be vertices ofG so
thatw has degree at leastdw andw′ has degree at leastdw′ (it may be the case
thatw = w′). There are at leastmin{dw, dw′} + 1 mutually vertex-disjoint paths
joining (u, v, w) and (u, v′, w′) in Bsw(G) so that the length of the longest of
these paths is at most2∆(G) + 5.

We can obtain analogues of Corollary 10 for Propositions 4 and 5.

Proposition 11 LetG be a connected graph and letw andw′ be distinct vertices
of G so thatw has degree at leastδw andw′ has degree at leastδw′ . There are at
leastmin{δw, δw′}+1 mutually vertex-disjoint paths joining the vertices(u, v, w)
and(u, v, w′) in Bsw(G) so that the length of the longest of these paths is at most
3∆(G) + 6.

Proof Defined = min{δw, δw′}. LetN be the set of vertices ofV that are neigh-
bours of bothw andw′ in G. For every vertexy ∈ N , we have a pathσy de-
fined as(u, v, w) →c (u, v, y) →c (u, v, w′) in Gv

u. Suppose that|N | = m′. If
(w,w′) is not an edge ofG then definem = m′, otherwise definem = m′ + 1
and the pathσm as(u, v, w) →c (u, v, w′). Let wm+1, wm+2, . . . , wd be distinct
neighbours ofw in G none of which is inN , and letw′

m+1, w
′

m+2, . . . , w
′

d be dis-
tinct neighbours ofw′ in G none of which is inN (in particular, the vertices of
{wi, w

′

i : i = m + 1, m + 2, . . . , d} are all distinct). Letxm+1, xm+2, . . . , xd, x

be distinct vertices ofV such that each is different fromv (such vertices trivially
exist).

For eachi ∈ {m+ 1, m+ 2 . . . , d}, define the pathσi in Bsw(G) as:

(u, v, w) →c (u, v, wi) →s (u, wi, v) →
∗

c (u, wi, xi)

→s (u, xi, wi) →
∗

c (u, xi, w
′

i) →s (u, w
′

i, xi)

→∗

c (u, w
′

i, v) →s (u, v, w
′

i) →c (u, v, w
′).

Each pathσi has length at most3∆(G) + 6. Define the pathρ in Bsw(G) as:

(u, v, w) →s (u, w, v) →
∗

c (u, w, x) →s (u, x, w)

→∗

c (u, x, w
′) →s (u, w

′, x) →∗

c (u, w
′, v)

→s (u, v, w
′).

The pathρ has length at most3∆(G)+4. The pathsρ, σ1, σ2, . . . , σd are mutually
vertex-disjoint and can be visualized as in Fig. 4. The result follows.
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Figure 4. The pathsρ, σ1, σ2, . . . , σd in Bsw(G).

Proposition 12 Let G be a connected graph; letw andw′ be vertices ofG so
thatw has degreeδw andw′ has degreeδw′; and letv andv′ be distinct vertices
of G. There are at leastmin{δw, δw′} + 1 mutually vertex-disjoint paths joining
the vertices(u, v, w) and(u, v′, w′) in Bsw(G) so that the length of the longest of
these paths is at most3∆(G) + 6.

Proof We may suppose thatG does not consist of a solitary edge as otherwise
the result trivially holds. Defined = min{δw, δw′}. Let N = {w1, w2, . . . , wm′}
be the set of vertices ofV that are neighbours of bothw andw′ in G. If (w,w′)
is not an edge ofG then definem = m′, otherwise definem = m′ + 1. Let
wm+1, wm+2, . . . , wd be distinct neighbours ofw in G none of which is inN , and
let w′

m+1, w
′

m+2, . . . , w
′

d be distinct neighbours ofw′ in G none of which is inN
(in particular, the vertices of{wi, w

′

i : i = m+ 1, m+ 2, . . . , d} are all distinct).
Suppose thatd−m > 0 and so|V | ≥ 2+2(d−m). Choosexm+1, xm+2, . . . ,

xd, w
∗ ∈ V so that these vertices are all distinct and all different from v andv′

(this is possible). Ifd −m = 0 then choosew∗ ∈ V so that it is different fromv
andv′ (recall,G does not consist of a solitary edge).

For eachi ∈ {1, 2, . . . , m′}, define the pathσi in Bsw(G) as:

(u, v, w) →c (u, v, wi) →s (u, wi, v) →
∗

c (u, wi, v
′)

→s (u, v
′, wi) →c (u, v

′, w′).

Each pathσi has length∆(G) + 4. For eachi ∈ {m + 1, m + 2, . . . , d}, define
the pathσi in Bsw(G) as:

(u, v, w) →c (u, v, wi) →s (u, wi, v) →
∗

c (u, wi, xi)
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→s (u, xi, wi) →
∗

c (u, xi, w
′

i) →s (u, w
′

i, xi)

→∗

c (u, w
′

i, v
′) →s (u, v

′, w′

i) →c (u, v
′, w′).

Each pathσi has length at most3∆(G) + 6.
Suppose that the edge(w,w′) does not appear inG. Define the pathρ in

Bsw(G) as:

(u, v, w) →s (u, w, v) →
∗

c (u, w, w
∗) →s (u, w

∗, w)

→∗

c (u, w
∗, w′) →s (u, w

′, w∗) →∗

c (u, w
′, v′)

→s (u, v
′, w′).

The pathρ has length at most3∆(G) + 6.
Suppose that the edge(w,w′) is inG. Define the pathσm in Bsw(G) as:

(u, v, w) →c (u, v, w
′) →s (u, w

′, v) →∗

c (u, w
′, v′)

→s (u, v
′, w′),

and define the pathρ in Bsw(G) as:

(u, v, w) →s (u, w, v) →
∗

c (u, w, v
′) →s (u, v

′, w)

→c (u, v
′, w′).

The pathsσm andρ both have length at most∆(G) + 3.
The pathsρ, σ1, σ2, . . . , σd are mutually vertex-disjoint and can be visualized

as in Fig. 5, where we assume that(w,w′) is not an edge ofG.

We can draw Propositions 10, 11 and 12 together in the following result.

Theorem 13 LetG be a connected graph. Let(u, v, w) and(u′, v′, w′) be any2
distinct vertices ofBsw(G) so thatδw andδw′ are the degrees ofw andw′ in G,
respectively. There existmin{δw, δw′} + 1 mutually vertex-disjoint paths joining
(u, v, w) and(u′, v′, w′) in Bsw(G) so that the length of the longest of these paths
is at most3∆(G) + 6.

It is worth mentioning the results in [1] as regards connectivity in OTIS net-
works in comparison with Theorem 13. In [1], it is proven thatif G is a connected
graph such that every vertex has degree at leastd then in OTIS-G there are at least
d mutually vertex-disjoint paths joining any2 distinct vertices so that the longest
of these paths has length at most∆(G) + 4. This result assumes nothing about
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the connectivity ofG, only its minimal degree. This is a powerful property of the
OTIS construction, namely that one can use it to build highlyconnected graphs
out of a base graph that does not necessarily have a high connectivity. This prop-
erty is shared by biswapped networks in that Theorem 13 also often allows us
to turn a graphG of low connectivity into a graphBsw(G) of high connectivity
(relatively speaking and in a uniform manner), yet retain some control over the
degree ofBsw(G).
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Figure 5. The pathsρ, σ1, σ2, . . . , σd in Bsw(G) when(w,w′) 6∈ E.

As an illustration of an application of Theorem 13 so as to improve connectiv-
ity, consider a graphG consisting of two disjoint cliques of sizem together with
1 additional edge joining a vertex in one clique to a vertex in the other. The graph
G has connectivity1 yet, by Theorem 13, the graphBsw(G) has connectivity
m, with the degree of any vertex ofBsw(G) being only1 greater than its corre-
sponding degree inG (we also obtain control over the wide-diameter ofBsw(G)
too). As another application of Theorem 13 relating to faulttolerance, suppose
thats andt are two vertices of some graphG where each has degree at leastd and
where there is a collection ofκ mutually vertex-disjoint paths inG joining s and
t. ConsiderG as embedded withinBsw(G) where the intention is thatBsw(G)
is to provide for extra tolerance of faults. If we have an interconnection network
Bsw(G) so that there are at leastκ faulty processors within the embedded copy
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of G in Bsw(G) so that these faulty processors disconnect the processors at s and
t (via theκ paths) then so long as these faulty processors are not at neighbours
of s andt, Theorem 13 ensures that within the interconnection network Bsw(G)
there will still be at leastd mutually vertex-disjoint paths joining the processors at
s andt. That is, ‘wrapping’G within Bsw(G) can lead to added fault tolerance.

4.3 Multipath routing algorithms

Finally, let us comment as regards coverting the constructions of this section into
a multipath routing algorithm in an interconnection network (so we now, on occa-
sion, talk of processors and links rather than vertices and edges). If one consults
the proofs of the various cases in the various results in thissection then one can
easily see that ifG is an interconnection network whose underlying graph has
connectivityκ and there is a deterministic multipath source routing algorithmRG

to findκ mutually vertex-disjoint paths inG from a processor atu to a processor
at v, whereu 6= v, then there is an analogous routing algorithm to findκ + 1
mutually vertex-disjoint paths in the interconnection networkBsw(G). There are
only one or two very minor comments to make. For example, we regularly com-
pute shortest paths inG and need to find (sets of) vertices with specific properties
(such as being distinct from some other vertices or neighbours of some other ver-
tex). These tasks can trivially be dealt with (if one assumesthat our multipath
source routing algorithmRG can compute a shortest path joining2 vertices inG,
which is entirely reasonable). Consequently, because of the actual bounds on the
lengths of the paths we compute, we have the following corollary.

Corollary 14 LetG be an interconnection net-work whose underlying graph has
connectivityκ and where there is a deterministic multipath source routingalgo-
rithm which computesκ mutually vertex-disjoint paths joining any2 distinct ver-
tices inG so that this algorithm has time complexity polynomial in∆κ(G), ∆(G)
andκ. There is a deterministic multipath source routing algorithm in the inter-
connection networkBsw(G) that computesκ + 1 mutually vertex-disjoint paths
joining any2 distinct vertices so that the length of the longest resulting path has
length at mostmax{2∆(G)+5,∆κ(G)+∆(G)+2}. Moreover, this deterministic
multipath source routing algorithm forBsw(G) has time complexity polynomial
in ∆κ(G), ∆(G) andκ.

As an illustration of the application of Corollary 14, considerBsw(Qn). There
is a well-known and simple deterministic multipath source routing algorithm for
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the hypercubeQn which is briefly described as follows (see [15]). W.l.o.g. we
may assume that our source vertex is(0, 0, . . . , 0) and that our destination vertex
is (0, 0, . . . , 0, 1, 1, . . . , 1), where there is a prefix ofi 0’s. We obtaini paths by
first routing to vertex(0, . . . , 0, 1, 0, . . . , 0, 1, 1, . . . , 1), where the edge used lies
in dimensionj, for eachj ∈ {1, 2, . . . , i}, and then by using edges lying in di-
mensionsj+1, j+2, . . . , i, 1, 2, . . . , j−1. We obtainn− i paths by routing over
the edge in dimensionj, for eachj ∈ {i+1, i+2, . . . , n}, and then by using edges
in dimensions1, 2, . . . , i before ending with the edge in dimensionj. This yields
n mutually vertex-disjoint paths, the longest of which has lengthn + 2. The un-
derlying algorithm clearly runs inO(n2) time (note thatn is both the connectivity
and diameter ofQn). Consequently, Corollary 14 yields a deterministic multipath
source routing algorithm forBsw(Qn) that runs in time polynomial inn.

5 Conclusions

Let us remark that biswapped networks should not necessarily be compared with
other interconnection networks on a like-for-like basis, as the whole point of
biswapped networks is that they can be laid out (in the plane)so as to be easily im-
plementable as optical transpose interconnection systems(see the first visualiation
in Fig. 1). For example, one might argue that ifQn is ann-dimensional hypercube
thenBsw(Qn) has22n+1 vertices, connectivityn + 1 and wide-diameter2n + 5
(from Corollary 9), whereasQ2n+1 has22n+1 vertices, connectivity2n + 1, and
wide-diameter2n+2 [13]; consequently,Q2n+1 should be preferable toBsw(Qn).
However, the crucial point is that it is by no means obvious asto how to efficiently
implementQ2n+1 as an optical transpose interconnection system (assuming that
Qn has a suitable electronic implementation). The obvious implementation, where
Q2n+1 is considered as2n+1 copies ofQn with these copies inter-connected in the
‘shape’ ofQn+1, does not have any simple planar depiction and would be such
as to result inn22n+1 optical connections compared with only22n optical connec-
tions inBsw(Qn). Also, and importantly,Bsw(G) can easily be laid out (in the
plane), andQ2n+1 involves(2n+ 1)22n+1 edges whereasBsw(Qn) only involves
n22n+1 + 22n edges. However, the demands of optical transpose interconnec-
tion systems in comparison to standard interconnection networks, along with their
comparative benefits, have been well documented elsewhere and so we do not feel
the need to justify them further.

We have shown that the general construction of a biswapped networkBsw(G)
from a graphG has a number of beneficial properties in the context of parallel
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computing. Whilst our work provides a precise analysis of aspects of connectivity,
there are other obvious directions in which it can be extended. We have obtained
upper bounds on the(κ + 1)-diameter ofBsw(G) in terms of∆κ(G) and∆(G).
It would be interesting to obtain lower bounds and to seek to improve our upper
bounds. Thefault diameterof a graphG of connectivityκ is the maximal diame-
ter of any graph resulting fromG after the removal of at mostκ− 1 vertices (and
their incident edges). It is often closely related to the wide-diameter (especially
in graphs prevalent as interconnection networks). Determining upper bounds on
the fault diameter ofBsw(G), in terms of parameters relating toG, would be a
sensible undertaking. Also, from a combinatorial perspective the construction of
Bsw(G) from G is a natural construction (as is witnessed by its elegant charac-
terization using the wreath product from group theory). Canthis construction be
generalised so that instead of being built around the setU of 2 elements, it is built
around a graphH with vertex setU and edge setF? We intend to study gen-
eralisations such as this in future. Finally, it would be interesting to empirically
evaluate algorithms designed for hybrid optical networks such as OTIS networks
and biswapped networks (such an empirical evaluation wouldhave to take account
of the hybrid nature of such networks).
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