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ABSTRACT 29 

In order to better understand the nature and formation of oceanic lithosphere beneath 30 

the Early Cretaceous Ontong Java Plateau, Re-Os isotopes have been analysed in a 31 

suite of peridotite xenoliths from Malaita, Solomon Islands. Geological, 32 

thermobarometric and petrological evidence from previous studies reveal that the 33 

xenoliths represent virtually the entire thickness of the southern part of subplateau 34 

lithospheric mantle (<120 km). This study demonstrates that vertical Os isotopic 35 

variations correlate with compositional variations in a stratified lithosphere. The 36 

shallowest plateau lithosphere (<85 km) is dominated by fertile lherzolites showing a 37 

restricted range of 187Os/188Os (0.1222 to 0.1288), consistent with an origin from ~160 38 

Ma Pacific lithosphere. In contrast, the basal section of subplateau lithospheric mantle 39 

(~95-120 km) is enriched in refractory harzburgites with highly unradiogenic 40 
187Os/188Os ratios ranging from 0.1152 to 0.1196, which yield Proterozoic model ages 41 

of 0.9-1.7 Ga. Although the whole range of Os isotope compositions of Malaita 42 

peridotites is within the variations seen in modern abyssal peridotites, the contrasting 43 

isotopic compositions of shallow and deep plateau lithosphere suggest their derivation 44 

from different mantle reservoirs. We propose that the subplateau lithosphere forms a 45 

genetically unrelated two-layered structure, comprising shallower, typical oceanic 46 

lithosphere underpinned by deeper impinged material, which included a component of 47 

recycled Proterozoic lithosphere. The impingement of residual but chemically 48 

heterogeneous mantle, mechanically coupled to the recently-formed, thin lithosphere, 49 

may have a bearing on the anomalous initial uplift and late subsidence history of the 50 

seismically anomalous plateau root. 51 
 52 
Key words: xenoliths; peridotite; Ontong Java Plateau; Re-Os isotopes; 53 
recycling; mantle plume 54 

 55 
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1. Introduction 56 

The Early Cretaceous Ontong Java Plateau in the western Pacific is the most 57 

voluminous large igneous province on the Earth, with an area of ~ 2 x 106 km2 and a 58 

maximum crustal thickness of >30 km (e.g. Richardson et al., 2000; Miura et al., 2004). 59 

Almost the entire plateau is thought to have been generated by massive volcanism in a 60 

single episode ca. 122 Ma (Mahoney et al., 1993; Tejada et al., 1996; Parkinson et al., 61 

2002; Tejada et al., 2002), generally attributed to large-scale mantle plume activity. 62 

Thus, the nature and origin of the plateau has received widespread interest due to its 63 

implications for the dynamics of the Earth’s mantle and possible global environmental 64 

impact (e.g. Courtillot and Olson, 2007). However, the origin of the Ontong Java 65 

Plateau remains contentious as to whether the voluminous magmatism was due to 66 

melting of a high-temperature mantle plume. The high-potential mantle temperature (Tp 67 

>1500 ˚C) estimated from the geochemical characteristics of plateau lavas (Fitton and 68 

Godard, 2004; Herzberg, 2004) is apparently incompatible with the minor initial uplift 69 

(2.5-3.6 km above the surrounding seafloor) and post-eruption subsidence (1.5±0.4 km) 70 

documented by the submarine eruption of plateau lavas (Roberge et al., 2005). This has 71 

led several researchers to propose alternative models which do not invoke plume 72 

activity (e.g. Ingle and Coffin, 2004; Korenaga, 2005), but these non-plume hypotheses 73 

can not adequately explain lava geochemistry (e.g.,, Kerr and Mahoney, 2007). Since 74 

this discrepancy between geochemical and geophysical approaches likely originates 75 

from certain specific assumptions regarding the nature of the source mantle and its 76 

consequences for the lithospheric structure, it is crucial to constrain the origin and 77 

evolution of the lithospheric mantle underlying the plateau. This will lead to a better 78 

understanding of the causal mechanisms of plateau formation, and other large igneous 79 

provinces in general. 80 

An important resource for understanding the subplateau lithosphere is the varied 81 
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suite of mantle xenoliths found in 34 Ma alnöite intrusions on the Solomon Island of 82 

Malaita (e.g. Nixon and Boyd, 1979; Nixon and Neal, 1987). Malaita is located on the 83 

uplifted southwestern margin of the Ontong Java Plateau, resulting from its collision 84 

against the Solomon arc (Fig. 1). The first contact between the Solomon arc in the 85 

overlying Australian Plate and the plateau in the subducting Pacific Plate commenced 86 

about 20-25 Ma (Petterson et al., 1997), suggesting that xenolith entrainment by the 87 

host alnöite occurred in an oceanic environment (Fig. 1B). Previous thermobarometry 88 

revealed that the xenolith suite, including both peridotites and pyroxenites were 89 

equilibrated over a wide range of P-T conditions (770-1340˚C, 1.6-3.6 GPa, Nixon and 90 

Boyd, 1979; Ishikawa et al., 2004) corresponding to depths of 60-120 km (Fig. 2A), 91 

defining a geotherm typical of old oceanic lithosphere. Thus, geological and 92 

thermobarometric evidence suggest that the xenoliths represent virtually an entire 93 

section of the subplateau lithosphere that is not associated with any known subducting 94 

slab or slab-related structures. The lithological structure, reconstructed on the basis of 95 

predominant lithologies within different depth intervals, can be interpreted in terms of 96 

normal oceanic lithosphere subsequently influenced by the plateau thickening. 97 

Perhaps the most important inference arising from the above petrological 98 

reconstruction is that the lower section of subplateau lithosphere may represent melting 99 

residues from Ontong Java Plateau magmatism (Ishikawa et al., 2004). This 100 

interpretation is largely based on the presence of an intra-lithospheric depleted zone of 101 

~15 km thickness between 85 and 100 km, which is barren of garnet-bearing xenoliths 102 

(Fig. 2B). This interval is dominated by highly depleted harzburgites containing olivine 103 

with high forsterite content [Fo=molar 100Mg/(Mg+Fe) ~92], and is overlain by a 104 

succession of more fertile mantle that has undergone small degrees of melting at a 105 

normal seafloor spreading center some 40 Ma before the plateau magmatism (Ishikawa 106 

et al., 2005). To generate the refractory residues in a high-pressure environment (~2.5 107 

GPa or more) at the base of pre-existing oceanic lithosphere, ascending mantle would 108 
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require a very high-Tp, in excess of 1600˚C (Fig. 2A). This constraint appears to 109 

conform to a hot-plume hypothesis for the plateau generation. 110 

In order to evaluate whether or not such refractory residues were created by 111 

melting in a recently active plume, we carried out a Re-Os isotope study of Malaita 112 

peridotite xenoliths covering the spectrum of P-T and lithological variations. The 113 

advantage of the Re-Os isotope system is two-fold. Firstly, the vast majority of 114 

peridotite xenoliths are subjected to post-crystallization disturbance e.g. mantle 115 

metasomatism, infiltration of host alnöite and seawater alteration, precluding the 116 

comprehensive identification of primary signatures based on highly incompatible 117 

element isotope systems (Neal, 1988; Ishikawa et al., 2005). In contrast, the Re-Os 118 

isotope system has a greater potential to identify the primary signatures because of its 119 

relative immunity to secondary effects (e.g. Pearson and Wittig, 2008). Secondly, melt 120 

depletion significantly lowers the Re/Os ratio of mantle peridotites and retards the 121 

ingrowth of 187Os from the decay of 187Re, allowing the timing of melt depletion to be 122 

estimated solely from 187Os/188Os ratios, using the Re-depletion model age (TRD) 123 

concept (e.g. Walker et al., 1989). Hence, the Re-Os isotope system is particularly 124 

suitable for dating refractory harzburgites and therefore can address the origin of the 125 

deep harzburgitic root of the Ontong Java Plateau. 126 

2. Samples and methods 127 

Samples investigated here include spinel lherzolite, spinel harzburgite, 128 

garnet-spinel lherzolite and garnet lherzolite (Table 1) from the Malaita alnöite intrusion. 129 

Detailed individual sample locations are unavailable because the xenoliths were usually 130 

found in dense rain forests and river deposits that precluded accurate location. The 131 

classification of rock types, petrographic and major element characteristics of 132 

constituent minerals together with their equilibrium conditions have previously been 133 

described by Ishikawa et al. (2004). Garnet lherzolites and some spinel harzburgites 134 
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belong to a high-temperature (high-T) group, derived from greater depths (>95 km) than 135 

the low-temperature (low-T) group (<95 km). 136 

For the most part, mineral chemistry in both peridotite types is consistent with 137 

their origin as melting residues, as is most clearly indicated by their high Fo contents 138 

(Fig. 2B). In contrast, whole-rock compositions have been variably influenced by 139 

metasomatic enrichment and surficial alteration, as documented by their typically high 140 

LOI values. The effects of these processes are clearly indicated by the development of 141 

texturally equilibrated amphibole (<20 vol%) and serpentine-carbonate replacing 142 

olivine. In order to test to what extent the Re-Os isotope system is resistant to such 143 

effects, we analysed a range of peridotites including less altered samples - defined as 144 

<2.5 wt% loss on ignition (LOI) - along with highly altered samples (>2.5 wt% LOI) 145 

selected from the lithological spectrum. Extremely altered samples (>10 wt% LOI) were 146 

not analysed. 147 

Xenoliths were sawn and their surfaces ground with corundum paper to remove 148 

metal contaminants and alteration. Samples were disaggregated between thick plastic 149 

sheets with a rock hammer and then powdered in an agate mill and mortar. Al2O3 150 

concentrations were determined by XRF on fused glass beads at Leicester University, 151 

UK. Concentration and isotopic measurements for Re-Os were performed at Durham 152 

University, UK, using isotope dilution mass spectrometry (NTIMS for Os, ICPMS for 153 

Re) after acid digestion in an Anton-Paar High Pressure Asher. Details of the procedure 154 

for sample digestion, chemical purification and mass spectrometry were reported in 155 

Dale et al. (2009) and references therein. Analyses of 170 pg aliquots of the University 156 

of Maryland Os standard solution (UMCP), giving similar signal sizes to sample loads, 157 

gave a mean 187Os/188Os of 0.11379±14 (2σmean, n=39) over the period of analysis, in 158 

good agreement with a value of 0.113787±7 for 10–100 ng/g aliquots measured on the 159 

same instrument in Faraday cup mode (Luguet et al., 2008). Replicate analyses of 160 

in-house standard sample (GP13, n=7) yield 0.315±0.006 ppb for Re, 3.97±0.26 ppb for 161 
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Os and 0.12604±20 for 187Os/188Os ratio (errors quoted at 2σmean), in good agreement 162 

with published values (Pearson et al., 2004; Puchtel et al., 2008, and references therein). 163 

Re-Os analyses have been duplicated for 4 samples (Table 1), three of which display 164 

good reproducibility for Re and Os concentrations and 187Os/188Os ratios between 165 

duplicates (<12.5%, <15.5% and <1% RSD, respectively). In contrast, sample SAS63 166 

shows larger variability in both Re and Os concentrations (95%, 54%, respectively), 167 

probably due to the relatively low concentrations in this sample. 168 

3. Results 169 

3.1. Low-temperature peridotites 170 

Whole-rock Al2O3 contents of the low-T peridotites vary from 1.0 to 7.3 wt%, 171 

indicating a wide range in fertility. There are broad correlations between whole-rock 172 

Al2O3 and both olivine Fo and spinel Cr-number (Cr#), except for garnet-spinel 173 

lherzolites whose spinel Cr#s were increased by subsolidus formation of garnet (Fig. 3). 174 

The overall trends are very similar to those observed for the global compilation of 175 

oceanic peridotites including abyssal peridotites and xenoliths from ocean islands. This 176 

covariation is consistent with an origin as residues of variable degrees of melt depletion. 177 

However, it is evident that several samples do not plot on the apparent depletion trends. 178 

Two garnet-spinel lherzolites have whole-rock Al2O3 contents (7.3 and 6.0 wt%), which 179 

are markedly higher than the other lherzolites (2.0-4.9 wt%) or estimates of average 180 

depleted MORB mantle (DMM, 3.98 wt% Al2O3; Workman and Hart, 2005) and 181 

primitive upper mantle (PUM, 4.44 wt% Al2O3; McDonough and Sun, 1995). Such 182 

Al2O3 enrichment is evident as an overabundance of garnet in the mode (>15 vol%). 183 

Two spinel-facies cpx-free peridotites with higher Al2O3 contents (2.3 and 3.0 wt%) 184 

than the majority of harzburgites (1.0-2.0 wt%), contain high-Cr# spinel (0.61 and 0.62), 185 

slightly low-Fo olivine (89.3 and 89.7) and abundant amphibole (14 and 17 vol%). 186 

These represent strongly metasomatised samples, which we can use to evaluate 187 



 8

metasomatic effects on Re-Os isotope compositions. 188 

Whole rock Re concentrations in the low-T peridotites vary from 0.003 to 0.92 189 

ppb (Table 1), overlapping the range for abyssal peridotites and peridotite xenoliths 190 

from ocean islands (Fig. 4). The majority of low-T peridotites have relatively low Re 191 

concentrations (mean 0.18 ppb) compared to the PUM estimate (0.35±0.06 ppb; Becker 192 

et al., 2006), consistent with the incompatible behavior of Re during mantle melting. 193 

This is also illustrated by the lower Re contents of spinel harzburgites (mean 0.06 ppb) 194 

than spinel lherzolites and garnet-spinel lherzolites (mean 0.23 versus 0.22 ppb). 195 

However, no clear correlation exists between Re concentrations and the indices of melt 196 

extraction discussed above. This may be explained by Re enrichment because several 197 

samples (spinel- or garnet-spinel lherzolites) have significantly higher Re than the PUM 198 

estimate. 199 

Os concentrations in spinel lherzolites and garnet-spinel lherzolites range from 200 

1.8 to 5.6 ppb and 3.0 to 7.4 ppb, with mean values of 3.9 and 4.3 ppb, respectively, 201 

overlapping the range found in other oceanic peridotites (Fig. 4). Mean Os 202 

concentrations for the lherzolites are almost identical to the PUM estimate of 3.9±0.5 203 

(Becker et al., 2006), indicating the compatible behavior of Os during mantle melting. 204 

Spinel harzburgites, however show a greater variation in Os concentration (0.03-5.8 205 

ppb), with one anomalously high value (13.0 ppb - sample SAS30). Samples with less 206 

than 1 ppb Os are limited to highly depleted compositions (Al2O3 <1.5 wt%; Fo >91), 207 

whereas Os concentrations for harzburgites containing low-Fo olivine (<90) are higher 208 

than average values of lherzolite and the PUM estimate. 209 

Present-day 187Os/188Os ratios of the low-T peridotites yield an average ratio of 210 

0.1258 (n=58), and range from 0.1163 to 0.1404 (Table 1, Fig. 5). Most of these values, 211 

while overlapping the chondritic range, are significantly less radiogenic than the 212 

chondritic average (187Os/188Os=0.1276, Walker et al., 2002) and PUM 213 

(187Os/188Os=0.1296, Meisel et al., 2001). These values are comparable to those of 214 
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abyssal peridotites (mean: 187Os/188Os=0.1249; range: 0.1139-0.1385, n=125) and 215 

peridotite xenoliths from ocean islands (mean: 187Os/188Os=0.1236; range: 216 

0.1138-0.1383, n=60), supporting their derivation from an oceanic setting. When 217 

differentiated by rock type, garnet-spinel lherzolites tend to have slightly more 218 

radiogenic Os (mean 187Os/188Os=0.1276, n=16) than spinel lherzolites (mean 219 
187Os/188Os=0.1259, n=24) and spinel harzburgites (mean 187Os/188Os=0.1241, n=18). 220 

However, such variations cannot be directly attributed to any clear chronological 221 

difference as there is a lack of definitive correlation, on a lithological basis, between 222 
187Os/188Os and 187Re/188Os or any robust indicators of the degree of melt-depletion such 223 

as whole-rock Al2O3, olivine Fo content or spinel Cr# (Figs. 6 and S1 in the Appendix). 224 

Scattering of present-day 187Os/188Os ratios in spinel harzburgites (187Os/188Os= 225 

0.1163-0.1339) can be related to the varying effect of 187Re ingrowth due to the large 226 

range of 187Re/188Os ratios from ~0.006 to 8.3 (Fig. 6 inset). When the data are corrected 227 

for in situ decay of Re since the 122 Ma age of the Ontong Java Plateau magmatism, 228 

they can be subdivided into two populations with differing initial 187Os/188Os ratios. A 229 

main group (n=14) has 187Os/188Os122 Ma of 0.1221 to 0.1247, whereas others (n=4) have 230 

very unradiogenic 187Os/188Os122 Ma ranging from 0.1161 to 0.1171. However, these 231 

groups cannot be differentiated on the basis of whole-rock Al2O3 and LOI contents, or 232 

petrography and mineral chemistry. 233 

3.2. High-temperature peridotites 234 

As with the low-T Malaita peridotites, whole-rock Al2O3 contents of the high-T 235 

peridotites vary according to rock type and mineral compositions: garnet lherzolites 236 

have much higher Al2O3 (2.7-4.6 wt%) and lower olivine Fo (87.0-90.9) than those of 237 

spinel harzburgites (0.9-2.3 wt%; 90.6-92.3). Most samples scatter around the expected 238 

melting trend defined by the low-T peridotites (Fig. 3A). Two garnet lherzolites display 239 

clear deviations below this melting trend due to their low olivine Fo. The high-T spinel 240 
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harzburgites show degrees of melt-depletion similar to the low-T peridotites. The 241 

differences in spinel Cr# likely reflect differences in equilibration temperatures (Fig. 242 

3B). 243 

Despite the small data set (n=12), Re and Os concentrations and Os isotope 244 

compositions in the high-T peridotites vary considerably, although they are restricted to 245 

the ranges of oceanic peridotites and the low-T Malaita peridotites (Figs. 4 and 5). As 246 

expected from the incompatible behavior of Re and strongly compatible behavior of Os 247 

during mantle melting, spinel harzburgites (0.003-0.12 ppb) tend to have slightly lower 248 

Re than garnet lherzolites (0.02-0.58 ppb), while there is no discernible difference in 249 

their Os concentration ranges (1.6-4.6 ppb and 1.0-4.9 ppb, respectively). 250 

The measured 187Os/188Os appear to display systematic variations reflecting the 251 

differences in rock type. Garnet lherzolites with slightly depleted characteristics (olivine 252 

Fo=90-91) show uniform 187Os/188Os ratios of 0.1244-0.1254, despite a wide range of 253 
187Re/188Os ratios (0.05 to 0.82; Fig. 6). More depleted rocks such as spinel harzburgites, 254 

characterized by low 187Re/188Os (0.01-0.15), possess distinctively unradiogenic 255 
187Os/188Os ratios of 0.1168-0.1196 which are distinguishable from most of the low-T 256 

harzburgites in terms of present-day 187Os/188Os ratios, despite both harzburgite groups 257 

recording similar degrees of melt-depletion (Fig. 3A). However, in terms of 258 

ingrowth-corrected 187Os/188Os ratios (assuming 122 Ma), a minor group of the low-T 259 

harzburgites is similar to the high-T harzburgites. Two Fe-enriched garnet lherzolites 260 

(SAG21 and SAG27) define the highest and lowest 187Os/188Os ratios of the high-T 261 

peridotites and hence there is no isotopic relationship with Fe-enrichment. Overall, the 262 

high-T peridotites are characterized by a bimodal distribution of 187Os/188Os ratios, 263 

whereas more radiogenic compositions dominate the low-T peridotites, although a 264 

minor unradiogenic peak is also evident (Figs. 5-7). 265 
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4. Discussion 266 

4.1. Assessing secondary processes 267 

Because we examined a mixture of fresh, unmetasomatised and altered, modally 268 

metasomatised samples, it is prudent to evaluate these influences on the Re-Os 269 

systematics before discussing potential mantle source information. For instance, the 270 

data scattering observed between the 187Os/188Os ratios and melt depletion indicators 271 

could be related to Re and/or Os mobility during syn- and post-eruptive alteration (e.g. 272 

host alnöite infiltration and surficial alteration) or mantle metasomatism (e.g. melt-rock 273 

reaction associated with or without modal changes) after initial melt depletion. 274 

4.1.1. Syn- and post-eruptive alteration 275 

Loss on ignition (LOI; wt%) is an indicator of the overall level of alteration 276 

because the degree of preservation of fresh olivine and orthopyroxene principally 277 

control LOI variations in peridotites. No covariation exists between LOI values (0-7 278 

wt%) and Re-Os concentrations or 187Re/188Os-187Os/188Os ratios among any rock types 279 

(Table 1, Fig. S1). This suggests that there is no systematic effect of surficial alteration 280 

on the xenolith Re-Os systematics. Similar conclusions have been derived from studies 281 

on abyssal peridotites, which have experienced greater degrees of serpentinisation and 282 

seafloor weathering, with significantly higher LOI (9-16 wt%; Harvey et al., 2006; Liu 283 

et al., 2008). 284 

Another process that potentially might have affected the Malaita xenoliths is the 285 

breakdown of sulfide, the main host of Re and Os in typical peridotites (Burton et al., 286 

1999; Alard et al., 2000). Several authors have suggested that sulfide breakdown is 287 

relatively common for peridotite xenoliths during rapid eruption of the host magma, 288 

probably through volatilization under oxygenated conditions (Handler et al., 1999), or 289 

during percolation of sulfur-undersaturated melt associated with host volcanism 290 
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(Reisberg et al., 2005). These processes have been invoked to explain the 291 

well-documented fact that the basalt-borne peridotite xenoliths from off-craton regions 292 

display systematic depletions of S, Re and Os (e.g. elevated Cu/S or Ir/Os ratios) 293 

relative to those in massif peridotite and kimberlite-derived cratonic xenoliths (e.g. 294 

Pearson et al., 2004; Rudnick and Walker, 2009). In the case of oceanic mantle (Fig. 295 

4C), the mean Os concentration of peridotite xenoliths is slightly lower than that in 296 

abyssal peridotites, and this difference could result from sulfide breakdown processes. 297 

However, no such processes have been recognized thus far, even during detailed studies 298 

of sulfide petrography and highly siderophile element behavior (e.g. Lorand et al., 299 

2004). 300 

In the case of Malaitan peridotite xenoliths, the lack of significant Os loss is 301 

clearly indicated by a very pronounced mode in Os concentrations close to the PUM 302 

value (Fig. 4D). Although there is a secondary mode in Os concentrations at less than 1 303 

ppb, this is essentially comprised of the low-T harzburgite group, and it seems unlikely 304 

that secondary alteration preferentially disturbed the harzburgites. Moreover, the low-T 305 

harzburgites yield correlations between 187Re/188Os and 187Os/188Os ratios, which can be 306 

interpreted as having age significance (Fig. 6A inset). Note that neither array is a 307 

mixing trend caused by infiltration of seawater or the host alnöite; seawater and alnöite 308 

are characterized by 187Re/188Os and 187Os/188Os values that plot well below and above 309 

these arrays, respectively (seawater, 187Re/188Os ~4000, 187Os/188Os ~1; alnöite 310 
187Re/188Os ~0.25, 187Os/188Os ~0.155). Thus, syn- and post-eruptive alteration 311 

processes do not offer a reasonable explanation for the Re-Os variation observed in the 312 

Malaitan xenoliths. This, in turn suggests that the overall variation was likely created by 313 

processes occurring before the xenolith emplacement. 314 

4.1.2. Mantle metasomatism 315 

Within the Malaita peridotite suite, there are a number of indications of 316 
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overprinting by reaction with percolating melts or fluids. For example, some samples 317 

contain texturally equilibrated amphibole (limited to low-T peridotite groups), low-Fo 318 

olivine and clinopyroxene with elevated incompatible elements such as Na and Ti 319 

contents (Neal, 1988; Ishikawa et al., 2004). If such metasomatic processes had a 320 

significant impact on the Re-Os systematics, we may expect a correlation of 187Os/188Os 321 

with degree of metasomatism. No systematic variation exists. For example, 322 

amphibole-rich (>10 vol%) lherzolites and harzburgites (SAS45, SAG22, SAG6, 323 

SAS27, SAS56) possess subchondritic 187Os/188Os ratios, which are indistinguishable 324 

from other less metasomatised samples. Sample SAG3 has elevated (supra-PUM) Al 325 

and Re contents and also the highest 187Os/188Os ratio of the suite. However, this sample 326 

has an overabundance of garnet and does not contain a significant amount of modal 327 

amphibole. Hence, processes other than amphibole introduction are likely to control the 328 

anomalous composition of this sample, such enrichment in Al2O3 and Re from melt 329 

infiltration, with the highly radiogenic 187Os/188Os ratio reflecting radiogenic in-growth. 330 

Other geochemical data provide further evidence that Os isotopic compositions 331 

have not been significantly changed by the recent metasomatism. The spinel lherzolites 332 

with the highest and lowest 187Os/188Os ratios (SAS32 and SAS41, respectively) were 333 

both assigned to the least-metasomatised group based on trace element and Sr-Nd 334 

isotopic compositions of constituent clinopyroxene (Ishikawa et al., 2005). The sample 335 

SAS32 preserves an unradiogenic Sr composition of 0.7029 and, together with the other 336 

least metasomatised peridotites, a Sm-Nd isotopic record of melt depletion at c.a. 160 337 

Ma. The anomalously low 187Os/188Os ratio found in sample SAS41 complements its 338 

anomalously high initial εNd value of +16.4 recorded in clinopyroxene. Thus, it is likely 339 

that Os isotope variations are primarily controlled by pre-existing heterogeneity in the 340 

source peridotite. 341 

High-T peridotites do not contain volatile-bearing phases such as amphibole, but 342 

there is evidence of metasomatic enrichment caused by percolating melt in the 343 
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compositions of their constituent minerals (Ishikawa et al., 2004). In particular, garnet 344 

lherzolites SAG21 and SAG27, derived from the deepest portion of the lithosphere (3.3 345 

and 3.4 GPa, respectively), contain minerals with low Mg-numbers (e.g. low-Fo 346 

olivine) which give rise to clear deviations below the overall melting trend in the Al2O3 347 

vs. Fo diagram (Fig 3B). Retention of core-rim zonation in garnets suggests that 348 

Fe-enrichment of these samples probably occurred recently (Ishikawa et al., 2004). This 349 

Fe-metasomatism can be attributed, on the basis of mineral chemistry, to melt-meditated 350 

chemical interaction with pyroxenites, which occur in Malaita as a suite of xenoliths 351 

derived from the same depth interval. As 187Os/188Os ratios of the garnet 352 

clinopyroxenites vary greatly from 0.17 to 5 (Ishikawa et al., 2009), we would expect 353 

that 187Os/188Os ratios in metasomatised peridotites may be elevated, if the Re-Os 354 

system has been significantly perturbed. In contrast, all high-T peridotites including the 355 

Fe-enriched garnet lherzolites have unradiogenic 187Os/188Os, suggesting that the effect 356 

of pyroxenite interaction on 187Os/188Os ratios has been minimal, possibly due to the 357 

combined effects of the low Os concentrations in pyroxenite-derived melts and the 358 

recent nature of the chemical interaction. Indeed, the similarity of 187Os/188Os ratios 359 

between SAG27 and spinel harzburgites, suggests that refertilization of former 360 

harzburgite may be responsible for the present fertile major element chemical 361 

composition of SAG27, while the sample retains the Os isotope memory of the 362 

precursor. 363 

In summary, the wide range of 187Os/188Os compositions observed in Malaita 364 

peridotites are not systematically affected by disturbance due to secondary processes 365 

such as recent low-T alteration or metasomatism, but instead mostly reflect long-term 366 

heterogeneity in the source peridotite which provides useful chronological information. 367 

This is in agreement with the conclusion of the other Re-Os isotope studies of oceanic 368 

mantle (e.g. Liu et al., 2008). 369 
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4.2. Re-Os Ages 370 

4.2.1 Mechanism and timing of low-T harzburgite formation 371 

 The two linear arrays defined by the low-T harzburgites in the Re-Os isochron 372 

diagram (Fig. 6 inset) yield apparent ages of 111±24 and 129±10 Ma for main and 373 

unradiogenic groups, respectively. Although they are not isochrons, these apparent ages 374 

are within uncertainty of the 126-119 Ma range of the Ontong Java Plateau magmatism 375 

determined by Ar-Ar and Re-Os dating of plateau basalts (Mahoney et al., 1993; Tejada 376 

et al., 1996; Parkinson et al., 2002; Tejada et al., 2002). This coincidence supports their 377 

chronological significance, and moreover implies a genetic relationship between plateau 378 

basalts and the low-T harzburgites. Since the variation in 187Re/188Os in the low-T 379 

harzburgites is largely controlled by variable degree of Os depletion, the inferred age 380 

appears to represent the timing of Os removal. The fact that only the low-T harzburgite 381 

group contains low Os samples (<1 ppb) could be used to suggest that the 382 

transformation to harzburgite is responsible for lowering Os content. The strongly 383 

compatible behavior of Os during mantle melting argues against this hypothesis; melt 384 

depletion normally leads to higher Os contents in refractory harzburgites than precursor 385 

peridotites in cratonic and massif peridotites (e.g. Pearson et al., 2004). An alternative 386 

model is that the formation of the Malaita low-T harzburgites results from 387 

melt-peridotite reaction involving dissolution of garnet and pyroxenes and precipitation 388 

of new forsteritic olivine (e.g., Kelemen et al., 1992). The infiltration of 389 

sulfur-undersaturated basaltic or picritic melts at high melt/rock ratio can lead to 390 

dissolution of sulfide together with garnet and pyroxenes from host peridotites. Since 391 

Os is located almost exclusively in sulfide, while a significant fraction of Re could 392 

reside in silicate (Burton et al., 2000; Luguet et al., 2007), the resulting harzburgites are 393 

expected to have elevated Re/Os ratios, as observed in some of the low-T harzburgites. 394 

The systematic decrease in Os content and resulting increase of Re/Os due to 395 
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progressive melt-peridotite reaction has been well documented in a dunite channel from 396 

the Troodos ophiolite (Büchl et al., 2002). Moreover, similar processes have been 397 

implicated in the formation of bimodal suites of fertile lherzolites and refractory 398 

harzburgites derived from different depth intervals along the northern Canadian 399 

Cordillera (Peslier et al., 2000). 400 

A model of harzburgite formation by remelting of a dominantly lherzolitic 401 

lithosphere triggered by the percolation of melts or fluid into the lithospheric base, such 402 

as proposed by Peslier et al. (2000), could be applicable to the generation of the Malaita 403 

low-T harzburgites. Equilibrium temperatures place the majority of the low-Os 404 

harzburgites below the lherzolite-dominated upper lithosphere (Fig. 8A), suggesting that 405 

the low-T lherzolites and the harzburgites do not share a common origin through simple 406 

melt extraction due to adiabatic decompression (Ishikawa et al., 2004). This is also 407 

supported by ages of ca. 111-130 Ma defined on Re-Os isochron correlation diagrams 408 

by the harzburgites (Fig. 6. These ages are younger than the Sm-Nd isochron age of ca. 409 

160 Ma for lithosphere formation in a mid-oceanic ridge setting (Ishikawa et al., 2005). 410 

Thus, a likely scenario is that the harzburgites were formed through open-system 411 

melting of a ~160 Ma lower lithosphere induced by infiltration of sulfur-undersaturated 412 

magma related to ca. 122 Ma Ontong Java Plateau activity. This scenario is consistent 413 

with the sulfur-undersaturated nature of the erupted plateau basalts (Chazey and Neal, 414 

2004; Roberge et al., 2004), whose primary magma is thought to coexist with 415 

harzburgite at moderate high-pressure conditions (2-3 GPa; Herzberg, 2004). 416 

A difficulty with the above model is that the plateau basalts display PUM-like 417 

initial 187Os/188Os ratios (0.1295±11; Parkinson et al., 2002), in contrast to the 418 

unradiogenic 187Os/188Os initial ratios (main group: 0.1236±6; unradiogenic group: 419 

0.1163±5) of the low-T harzburgites. However, the melt percolation process can occur 420 

without the attainment of Os isotopic equilibrium because the principal reaction 421 

controlling the Re-Os systematics is the dissolution of sulfide exposed to the migrating 422 
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melt. Osmium isotopic disequilibrium between interstitial sulfides and sulfide 423 

inclusions trapped in silicates has been frequently observed in natural peridotites, and 424 

has been commonly interpreted as a consequence of melt percolation (Burton et al., 425 

1999; Alard et al., 2002). We therefore envisage that there was no subsequent sulfide 426 

precipitation from the melt and the remaining Os in the low-T harzburgites is 427 

principally hosted in minor sulfide inclusions shielded from intergranular melt. This can 428 

account for the difference in Os isotope composition of infiltrated magma (related to 429 

Ontong Java Plateau basalts) and their reaction products. The above scenario is also 430 

attractive in terms of explaining why the two groups of harzburgites cannot be 431 

differentiated based on petrography and chemistry. They have acquired their depleted 432 

character during percolation of almost identical melts, which results in significant loss 433 

of Os without modification of original 187Os/188Os ratios. 434 

An alternative scenario is that the low-T harzburgites were originally formed as 435 

residues after melt extraction and then underwent Os loss associated with late-stage 436 

metasomatism. This scenario may be attractive if we consider that the low-T 437 

harzburgites represent the upper-layer of upwelling mantle accreted to the base of 438 

pre-existing lherzolitic lithosphere. However, at the present state of our knowledge, it 439 

seems difficult to explain why the metasomatism responsible for Os removal is only 440 

operative preferentially for the low-T harzburgites. Thus, a detailed mechanism for the 441 

formation of the low-T harzburgites deserves further study and would offer further 442 

insights into the relationships between the plateau basalts and underlying lithosphere. 443 

4.2.2 Model ages – timing of melt depletion 444 

Despite the lack of isochronous behavior for the majority of Malaita peridotites, 445 

the timing of melt depletion can be estimated for individual samples using the model 446 

age concept. Any recent disturbance of the Re-Os system renders model ages calculated 447 

using measured 187Re/188Os ratios unreliable. This is particularly true for Malaita 448 
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peridotites which have probably been extensively affected by 122 Ma Ontong Java 449 

Plateau magmatism (e.g. low-T harzburgites which display large Re/Os variations). As 450 

an alternative we employ the Re-depletion model age (TRD) to translate peridotite Os 451 

isotope data into minimum ages of depletion, assuming that a single melting event 452 

quantitatively removed Re (Walker et al., 1989). We calculate TRD ages at 122 Ma 453 

(TRD-122 Ma) assuming that measured Re/Os ratios have persisted since the time of 454 

Ontong Java Plateau magmatism. Such TRD-122 Ma ages will always yield ages slightly 455 

older than the simple TRD ages as the latter assume no ingrowth of 187Os since plateau 456 

formation. 457 

Another source of model age uncertainty relates to the selection of the model 458 

reservoir. PUM reservoirs may not be appropriate, particularly for dating young, 459 

Phanerozoic peridotites because it is unrealistic to assume recent convective mantle is 460 

dominated by such primitive material (e.g. Rudnick and Walker, 2009). Instead, we use 461 

two different mantle evolution models for calculating TRD and TRD-122 Ma ages: TRD ages 462 

were calculated using the overall chondrite average (187Os/188Os=0.1276, 463 
187Re/188Os=0.397; Walker et al., 2002); whereas TRD-122 Ma ages are calculated using a 464 

combined data set for two Os-rich platinum-group alloy (PGA) suites derived from 465 

recently emplaced ophiolites (southwestern Oregon and northern California, 165 Ma; 466 

Tibet, 95 Ma), which yields an average 187Os/188Os ratio of 0.1251 for a depleted mantle 467 

source (n=1116; Meibom and Frei, 2002; Meibom et al., 2002; Walker et al., 2005; 468 

Pearson et al., 2007; Shi et al., 2007; Luguet et al., 2008). This equates to an 469 

unradiogenic present-day 187Os/188Os ratio of 0.1259 (assuming chondritic evolution 470 

since 122 Ma). Thus, most TRD-122 Ma ages are significantly younger than simple TRD 471 

ages calculated assuming chondritic mantle evolution (Table 1). 472 

On the basis of TRD ages, there are two populations of the 187Os/188Os ratios in 473 

the Malaita peridotites. The main population (55 of 70 samples) yields TRD ages of -0.2 474 

to 0.8 Ga (Table 1, Fig 5). A subordinate population (11 of 70 samples) gives 475 
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Proterozoic model TRD ages of 1.1 to 1.8 Ga. Using TRD-122 Ma ages (Fig. 7), the main 476 

population is recast as -0.4 to 0.7 Ga and the unradiogenic population gives ages of 0.9 477 

to 1.7 Ga. The average difference in TRD and TRD-122 Ma ages is about ~170 Ma (average 478 

values of the main population TRD ~290 Ma and TRD-122 Ma ~120 Ma) and principally 479 

reflects the choice of reference reservoir. The TRD-122 Ma ages of the main population 480 

provide plausible estimates for normal Jurassic-Cretaceous mantle. The older ages 481 

clearly represent ancient mantle that experienced high degree melt extraction in the 482 

Meso-Proterozoic, emplaced beneath the Ontong Java Plateau. These ancient samples 483 

are far more common in high-T (deep) peridotite suite (Fig. 7), indicating uneven 484 

depth-distribution of the ancient mantle within the subplateau lithosphere. 485 

4.3. Origin of ancient osmium signatures 486 

There are several potential explanations for the diversity of ancient Os 487 

signatures found in the oceanic lithosphere underlying the Ontong Java Plateau. Ancient 488 

depleted subcontinental mantle is characterized by very unradiogenic Os whose ancient 489 

model ages (e.g. Walker et al., 1989; Carlson et al., 2005; Pearson and Wittig, 2008) 490 

reflect their isolation from the convecting mantle for billions of years. Such material 491 

could underlie the Ontong Java Plateau. An analogous scenario was suggested for 492 

mantle beneath the Kerguelen Plateau to account for unradiogenic Os isotope 493 

compositions (≥0.1189) found in some Kerguelen harzburgite xenoliths (Hassler and 494 

Shimizu, 1998). However, unlike the Kerguelen Plateau where several lines of evidence 495 

support the involvement of continental fragments (see Frey et al., 2002), the consensus 496 

of previous work on the Ontong Java Plateau indicates its generation in an essentially 497 

oceanic setting, within the Pacific Plate, far removed from any known continental 498 

boundaries (e.g. Kroenke et al., 2004). Hence the involvement of ancient continental 499 

lithosphere seems unlikely. Tectonic underplating of old subcontinental mantle can also 500 

be ruled out because plate reconstructions indicate that xenolith entrainment occurred in 501 
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an intraplate setting within the subducting Pacific plate, well before the initiation of 502 

collision-related deformation of the plateau against the overlying Australia Plate (Fig. 503 

1). 504 

Another hypothesis is that the Ontong Java Plateau lithosphere may reflect the 505 

inherent isotopic variability of the oceanic mantle as represented by abyssal peridotites, 506 

within which our data largely fall (Fig. 5). Although the majority of abyssal peridotites 507 

possess 187Os/188Os in the range from 0.120 to 0.130, recent studies of the Mid-Atlantic 508 

ridge and the ultra-slow spreading Gakkel ridge demonstrate the presence of samples 509 

with much lower 187Os/188Os, extending as low as 0.1139 (Harvey et al., 2006; Liu et al., 510 

2008). Furthermore, sulfide grains recovered from abyssal peridotites show significant 511 

Os isotopic heterogeneity between individual grains within a single sample (Alard et al., 512 

2005; Harvey et al., 2006). This evidence, along with the even larger isotopic diversity 513 

of PGAs derived from ophiolites (e.g. Meibom et al., 2002; Pearson et al., 2007) has led 514 

many researchers to postulate that the oceanic upper mantle retains Os isotopic 515 

signatures of ancient melting events, which are resistant to subsequent convective 516 

mixing. Within this context, it is possible to interpret the Os isotopic diversity observed 517 

in Malaita peridotites as merely representing the unmixed heterogeneity in the 518 

convective upper mantle. However, the sharp contrast between the Os isotopic 519 

distributions of shallow and deep Malaita peridotites (Fig. 7) is difficult to explain by 520 

mantle heterogeneity alone. The low-T peridotites show remarkable correspondence to 521 

the combined data set for PGAs from the Jurassic-Cretaceous ophiolites, supporting 522 

their derivation from the same mantle reservoir. In contrast, the bimodal distribution of 523 

the high-T peridotites is distinctive and unradiogenic 187Os/188Os ratios less than 0.120 524 

are statistically abundant. This suggests that the deep lithosphere is sampling a different 525 

mantle reservoir from the normal shallow convective upper mantle represented by the 526 

low-T Malaita peridotites, PGA grains and the majority of abyssal peridotites. 527 

A model that can explain the relationship between depth and isotopic 528 
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heterogeneity in the Malaita peridotites involves the deepest plateau lithosphere as 529 

representing recycled heterogeneity within the upwelling mantle source of Ontong Java 530 

Plateau magmatism. A similar model has recently been suggested for Salt Lake Crater 531 

peridotite xenoliths from Hawaii (Bizimis et al., 2007), which, strikingly, have an 532 

almost identical statistical distribution of Os isotope compositions to the high-T Malaita 533 

peridotites (Fig. 7). In the case of the Ontong Java Plateau lithosphere, peridotites with 534 

ancient depletion ages are strongly focused in the lower section of the lithosphere (>95 535 

km) lying under pre-existing 160 Ma Pacific lithosphere comprised of the low-T 536 

lherzolites and just beneath a layer of low-Os harzburgites (Fig. 8). Hence, we suggest 537 

that the basal section of subplateau lithosphere represents the residual mantle left behind 538 

after Ontong Java magmatism, incorporating significant amounts of ancient recycled 539 

components. 540 

In Fig. 8, we attempt to illustrate that the Os isotopic compositions of Malaita 541 

peridotites are consistent with the lithosphere underlying the Ontong Java Plateau 542 

consisting of shallower oceanic lithosphere and deeper impinged material. The 543 

involvement of ancient recycled components in this ascending material has previously 544 

been identified by the existence of recycled garnet pyroxenites of Proterozoic age (0.5-1 545 

Ga) in the basal section of the subplateau lithosphere (Nd-Hf-Pb; Ishikawa et al., 2007). 546 

Broadly comparable ages obtained from the high-T harzburgites (TRD-122 Ma age mode 547 

~1.1 Ga) imply that the pyroxenites and deep peridotites could be regarded as fragments 548 

of the same crust-mantle section, introduced into the convecting mantle in the 549 

Proterozoic and subsequently incorporated into upwelling mantle that created the 550 

Ontong Java Plateau in the Cretaceous Pacific. 551 

Implications for the Ontong Java Plateau 552 

Malaita xenolith data indicate the presence of substantial heterogeneity in the 553 

upwelling mantle beneath the plateau, as represented by three different lithologies: 554 
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depleted harzburgite created by ancient melting, recycled eclogite/pyroxenite 555 

originating from ancient crust (Ishikawa et al., 2007) and fertile lherzolite typical of the 556 

convective mantle. Although a homogeneous peridotitic PUM-like source has been 557 

proposed for the Ontong Java Plateau basalts (Parkinson et al., 2002), the near total 558 

absence of the PUM-like 187Os/188Os ratios from the Malaita peridotite suite suggests 559 

that mixing and homogenization of composite magmas derived from radiogenic 560 

pyroxenites and unradiogenic peridotites may be responsible for the relatively uniform 561 

PUM-like lava compositions.  562 

Whether the plateau was formed through upwelling of heterogeneous source 563 

mantle is relevant to the minor initial uplift of the plateau (Fig. 8D). However, unknown 564 

factors such as the relative abundances of the three lithologies and the relevant potential 565 

mantle temperature (Tp) preclude being able to place quantitative dynamical constraints 566 

of the chemical and physical characteristics of the upwelling mantle as a whole. 567 

A relatively high fraction of dense eclogite/pyroxenite components would give 568 

voluminous melt at low-Tp, due to the higher melt productivity of eclogite/pyroxenite, 569 

obviating the need for very high-Tp mantle and reducing initial uplift (Fitton and 570 

Godard, 2004; Korenaga, 2005). However, it is doubtful that such low-T magma could 571 

lead to remelting of pre-existing lherzolitic lithosphere as indicated by the Cretaceous 572 

formation of a refractory harzburgite-layer (Fo~92) now present at ~85-90 km depth 573 

(Fig. 8). Thus, we speculate that a hotter-than-ambient mantle must have played a role 574 

in the formation of the Ontong Java Plateau. However, the requirement of exceptionally 575 

high-Tp mantle (>1600˚C; Fig. 2) to account for the occurrence of deep harzburgite 576 

(>95 km) is circumvented because the harzburgites acquired their depleted character 577 

during the Proterozoic. 578 

The residual mantle after plateau volcanism may have been rheologically strong, 579 

presumably due to chemical modification and/or complete dehydration associated with 580 

melting, allowing the residue to form a rigid basal section to the oceanic lithosphere. 581 
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Such mechanical coupling is required because the fragments of the residue, generated at 582 

122 Ma, were brought to the surface as xenoliths 90 Ma later, when the plateau had 583 

migrated away from its generation site. This suggests that the Ontong Java Plateau 584 

lithosphere thickened abruptly at the time of plateau generation, implying that the 585 

evolution of this accreted residue played an essential role in the subsidence history of 586 

the plateau. Surface wave tomography has revealed the presence of a low-velocity root 587 

reaching to a depth of 300 km beneath the central high plateau (Richardson et al., 2000; 588 

Klosko et al., 2001; Gomer and Okal, 2003). This has been interpreted as the residual 589 

mantle root of the Ontong Java Plateau magmatism, with a chemically anomalous 590 

nature. Such an observation is apparently consistent with the xenolith studies, although 591 

Malaita xenoliths may only represent the peripheral thinner lithosphere (~120 km). 592 

Thus, higher resolution tomography to constrain internal and external structures of this 593 

root will be critical to obtaining a more complete picture of the subplateau lithosphere 594 

and may provide new insights into the nature and origin of the Ontong Java Plateau. 595 
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 818 

Figure captions 819 

Fig. 1. Map of (A) present-day and (B) 35 Ma plate configurations of southeast Asia 820 
and the southwest Pacific after Hall (2002). 821 
 822 
Fig. 2. (A) P-T estimates for Malaita peridotite and pyroxenite xenoliths based on Brey 823 
and Köhler (1990) thermobarometry. Thick dashed lines labelled as PSM and GDH1 824 
represent the aysmptotic geotherms for old oceanic lithosphere from Parsons and Sclater 825 
(1977) and Stein and Stein (1992), respectively. Solidus, liquidus and 30% melting 826 
contour (thin dashed line) for fertile peridotite and adiabatic gradients are taken from 827 
Herzberg (2004). The overall resemblance between P-T array of xenoliths (34 Ma 828 
Malaita geotherm) and the theoretical oceanic geotherms suggest that (1) ~90 m.y. of 829 
cooling since the Ontong Java Plateau magmatism to the time of the xenoliths 830 
entrainment was adequate for cooling of the lithosphere to a nearly steady-state; (2) the 831 
thermal perturbation accompanied by the host eruption was negligible probably because 832 
the alnöite (a silica-undersaturated ultramafic magma with affinities to kimberlite) is a 833 
very small degree partial melt. Filled ellipse indicates possible melting condition for 834 
generating an intra-lithospheric depleted zone estimated by assuming that (1) 835 
harzburgite containing Fo92 olivine was residual after 30% melting of fertile peridotite 836 
and (2) subsequent cooling path to the 34 Ma Malaita geotherm was nearly isobaric. (B) 837 
Forsterite (Fo) contents in olivine from spinel lherzolites (filled circles), garnet 838 
lherzolites (open circles) and spinel harzburgites (grey circles) against estimated 839 
temperature. Corresponding depths are also shown in y axis. Dashed line is the 840 
boundary between high-temperature type and low-temperature type groups. The hatched 841 
field represents an intra-lithospheric depleted zone defined by lack of garnet-bearing 842 
xenoliths (see text for details). Histogram and probability density curve for all plots are 843 
also shown. A ‘bandwidth’ uncertainty for probability density curve was set to be 844 
identical to the width of histogram bin. 845 
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 846 
Fig. 3. Co-variation of (A) forsterite (Fo) content in olivine and (B) spinel Cr# 847 
[=Cr/(Cr+Al)] with whole-rock Al2O3 content of low-T type (GSL: garnet-spinel 848 
lherzolite, SL: spinel lherzolite, SH: spinel harzburgite) and high-T type (GL: garnet 849 
lherzolite, SH: spinel harzburgite) groups of Malaita peridotite xenoliths. The estimates 850 
for primitive upper mantle (PUM) are indicated by open squares (McDonough and Sun, 851 
1995). Shaded field encompasses global compilations of oceanic peridotites (shaded 852 
squares) including abyssal peridotites and oceanic peridotite xenoliths. Complete data 853 
sources are found in Simon et al. (2008). 854 
 855 
Fig. 4. Histogram and probability density curve showing Re and Os concentrations for 856 
oceanic peridotites (A and C, respectively) and for Malaita peridotite xenoliths (B and D, 857 
respectively). Shaded bars in A and C are published data of abyssal peridotites (Liu et 858 
al., 2008), hatched bars are oceanic peridotite xenoliths (Hauri, 1992; Hassler and 859 
Shimizu, 1998; Widom et al., 1999; Meisel et al., 2001; Becker et al., 2006; Bizimis et 860 
al., 2007; Simon et al., 2008), respectively. Shaded bars in B and D are Malaita low-T 861 
peridotite xenoliths, hatched bars are high-T peridotite xenoliths (this study). An 862 
estimate for primitive upper mantle (PUM) is shown for comparison (Becker et al., 863 
2006). A ‘bandwidth’ uncertainty for probability density curve was set to be identical to 864 
the width of histogram bin. 865 
 866 
Fig. 5. Histogram and probability density curve showing measured 187Os/188Os ratios 867 
and TRD ages for (A) chondrites (Walker et al., 2002), (B) abyssal peridotites (data 868 
sources as in Fig. 4.), (C) oceanic peridotite xenoliths (data sources as in Fig. 4.) and 869 
(D) Malaita peridotite xenoliths data (shaded: low-T peridotites, hatched: high-T 870 
peridotites). The estimate for the primitive upper mantle (PUM) is shown for 871 
comparison (Meisel et al., 2001). A ‘bandwidth’ uncertainty for probability density 872 
curve of 0.0025 was applied to the 187Os/188Os ratios of all samples. 873 
 874 
Fig. 6. (A) Co-variation of measured 187Os/188Os ratios against 187Re/188Os. Symbols 875 
and data sources are as in Figs. 3 and 4, respectively. Inset shows overall variations of 876 
low-T spinel harzburgites which can be divided into two subgroups: (1) a main group 877 
(n=14) yielding an apparent age of 111±24 Ma (mean square weighted deviation=447) 878 
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with initial 187Os/188Os=0.1236±6; (2) an unradiogenic group (n=4) yielding an apparent 879 
age of 129±10 Ma (mean square weighted deviation=13) with initial 880 
187Os/188Os=0.1163±5. Dashed lines in the inset denote reference isochrons with ages of 881 
122 Ma (Ontong Java Plateau magmatism) and 34 Ma (host alnöite eruption). 882 
 883 
Fig. 7. Histogram and probability density curve showing (A) present-day 187Os/188Os 884 
ratios and TRD-122 Ma ages for platinum-group alloy grains (PGAs) derived from 885 
Jurassic-Cretaceous (90-165 Ma) ophiolites (Meibom et al., 2002; Pearson et al., 2007), 886 
(B, C, D) 122 Ma-corrected 187Os/188Os ratios and TRD-122 Ma ages for low-T peridotite 887 
and high-T peridotite xenoliths from Malaita (B and C, respectively) and peridotite 888 
xenoliths from Salt Lake Crater (SLC), Hawaii (D, Bizimis et al., 2007). Noted that 889 
Re-ingrowth correction for SLC xenoliths was not applied because recent 890 
metasomatism by a Hawaiian melt likely modified their bulk Re concentrations. The 891 
estimate for the 122 Ma primitive upper mantle (PUM) is shown for comparison 892 
(Meisel et al., 2001). A ‘bandwidth’ uncertainty for probability density curve of 0.0025 893 
was applied to the 187Os/188Os ratios of all samples. 894 
 895 
Fig. 8. Co-variation of (A) Os concentrations [ppb and normalised to primitive upper 896 
mantle (PUM: Becker et al., 2006)] and (B) 122 Ma-corrected 187Os/188Os ratios and 897 
TRD-122 Ma ages with estimated temperatures (Ishikawa et al., 2004) of Malaita peridotites. 898 
Symbols are as in Figs 3. (C, D) Inferred stratigraphic succession beneath the Ontong 899 
Java Plateau at 34 Ma (C) and at 122 Ma just before the plateau emplacement (D). 900 
 901 
Fig. S1. Co-variation of 122 Ma-corrected 187Os/188Os ratios against (A) whole-rock 902 
LOI content, (B) whole-rock Al2O3 content, (C) forsterite (Fo) content in olivine and 903 
(D) spinel Cr# [=Cr/(Cr+Al)]. Dotted tie-lines connect 122 Ma-corrected and 904 
present-day ratios shown by transparent symbols. Symbols and data sources are as in 905 
Figs 3 and 4, respectively. 906 
 907 
Table 1 Footnote 908 
GL: garnet lherzolite, SH: spinel harzburgite, GSL: garnet-spinel lherzolite, SL: spinel 909 
lherzolite, SH: spinel harzburgite; dupl., duplicate analyses of Re-Os isotopes; P-T 910 
estimates and mineral data (Fo in olivine and Cr# in spinel) from Ishikawa et al. (2004); 911 
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Pressure values in brackets were obtained as the intersection of the geotherm (a linear 912 
regression of the P-T array) with estimated temperatures; Uncertainties on measured 913 
isotope ratios (given in brackets) are 2σmean; 187Os/188Os ratios normalised using 914 
192Os/188Os=3.08271 and corrected using 18O/16O and 17O/16O of 0.002045 and 915 
0.000371 respectively; Average total procedural blanks were 1.1 and 1.7 pg for Re and 916 
Os, respectively, with a 187Os/188Os ratio of 0.150. Blank corrections relate to the 917 
appropriate reagent batch rather than a long-term mean, but their contributions to 918 
measured Re and Os concentrations and 187Os/188Os ratios were typically less than 10%, 919 
0.2% and 0.1%, respectively; contributions for some low abundance samples were 920 
greater (<30%, <7% and <0.7%, respectively); TRD ages (Ga) are calculated by using 921 
present-day 187Os/188Os ratios relative to the evolution of average chondrite 922 
(187Os/188Os=0.1276), whereas TRD-122 Ma ages (Ga) are calculated by using 923 
187Os/188Os122 Ma relative to the evolution of PGAs from Mesozoic ophiolites 924 
(187Os/188Os122 Ma=0.1251), respectively (see text for details). 925 



Future
Malaita

OJP

Australia

Antarctica

India

Eurasia
Subducted
Pacific Plate
Subducted
Pacific Plate

20˚S

20˚N

40˚N

0˚

40˚S

60˚S

180˚

15
0˚
E

12
0˚
E

90
˚E

Australia

Antarctica

India

Eurasia

20˚S

20˚N

40˚N

0˚

40˚S

60˚S

180˚

15
0˚
E

12
0˚
E

90
˚E

OJP

Malaita

A B

Fig. 1. A. Ishikawa et al. / submitted to Earth and Planetary Science Letters



Moho 

Lithosphere
Athenosphere 

Spinel peridotite 
Garnet peridotite 

Garnet pyroxenite 

Liquidus 

30 %
 m

elting

Peridotite solidus 

PSM (~150 m.y.) 

GDH1 (~100 m.y.) 

M
antle adiabat

Tp = 1300˚C

Temperature (˚C)

Pressure (GPa) Depth (km)

1400 1600 180012001000800

0

1

2

50

100

150

3

4

5

600

cooling

A

Plum
e

 adiabat
Tp = 1600˚C

700

800

900

1000

1100

1200

1300

1400

86 88 90 92 94
Fo in olivine

(N)

4

12

20

Fig. 2. A. Ishikawa et al. / submitted to Earth and Planetary Science Letters

B

80

90

100

110

70

60

Depth (km) Temperature (˚C)



Fe
-e

nr
ic

h
m

en
t Al-enrichment

Meltdepletion

Melt
depletion Al-enrichment

Su
bs

ol
id

us
 

G
rt 

fo
rm

at
io

n

GSL

GL
SH

SL
SH

low-T

high-T

A

B

86

88

90

92

94

0

0.2

0.4

0.6

0.8

Fo
 in

 o
liv

in
e

C
r#

 in
 s

pi
ne

l

Fig. 3. A. Ishikawa et al. / submitted to Earth and Planetary Science Letters

Al2O3 (wt %)
0 1 2 3 4 5 6 7 8



Malaita peridotite Os

Malaita peridotite Re

Oceanic mantle Os

Oceanic mantle Re

PU
M

PUM

4

12

20

4

12

20

7

21

35

7

21

35

0 0.2 0.4 0.6 0.8

0 4 8 12 16

Re (ppb)

Os (ppb)

(N)

4.9 ppb
1.7 ppb

0.92 ppb
(SAS48)

Fig.4 . A. Ishikawa et al. / submitted to Earth and Planetary Science Letters

A

C

D

B



PU
M

Malaita
peridotite
xenoliths

Oceanic
peridotite 
xenoliths

Abyssal 
peridotites

ChondritesA

C

D

B

0123 TRD age (Ga)

5

15

25

4

12

20

6

18

30

0.11 0.12 0.13 0.14

10

30

50
(N)

Fig. 5. A. Ishikawa et al. / submitted to Earth and Planetary Science Letters

187Os/188Os

0.1458
0.1496
0.1582
0.1725



0

0.118

0.112

0.124

0.130

0.136

2 4 6 8

122 Ma

34 Ma

111 ± 24 Ma

129 ± 10 Ma

187Re/188Os

18
7 O

s/
18

8 O
s

0.112

0.118

0.124

0.130

0.136

0.142

0 10.5 1.5 2

Fig. 6. A. Ishikawa et al. / submitted to Earth and Planetary Science Letters



PU
M

(1
22

 M
a)

Hawaii SLC
peridotite
xenoliths
(uncorrected)

Malaita high-T
peridotite
xenoliths
(corrected)

Malaita low-T
peridotite
xenoliths
(corrected)

PGA grains
(uncorrected)

1

3

5

5

15

25

100

300

500

Fig. 7. A. Ishikawa et al. / submitted to Earth and Planetary Science Letters

1

3

5

0.11 0.12 0.13 0.14
187Os/188Os

(N)
A

C

D

B

0123 TRD-122 Ma age (Ga)



Fig. 8. A. Ishikawa et al. / submitted to Earth and Planetary Science Letters

BA
700

800

900

1000

1100

1200

1300

1400
0.1110.1

0.1

0.01

0.01

10 0.12 0.13
187Os/188Os (corrected)Os (ppb)

011 2
TRD-122 Ma age (Ga)Os (PUM normalised) DC

3

2

0.
13

88
(S

AG
3)

~122 Ma~34 Ma

2

3

Asthenospheric
mantle

OJP crust
(~122 Ma)

MORB crust
(~160 Ma)

Pressure (GPa)

~122 Ma
accreted
OJP residue

~122 Ma
accreted
OJP residue

~160 Ma
oceanic
lithosphere

~160 Ma
oceanic
lithosphere

1

0

4

50

Asthenospheric
mantle

MORB crust

40 m.y. old
oceanic
lithosphere

Heterogeneous
OJP plume?
Heterogeneous
OJP plume?

Depth (km)

0

100

Te
m

pe
ra

tu
re

 (˚
C

)

Pr
es

su
re

 (G
Pa

)




