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We study the vibration modes of the Skyrme model within the rational map ansatz. We show that the

vibrations of the radial profiles and the rational maps are decoupled and we consider explicitly the cases

B ¼ 1, B ¼ 2, and B ¼ 4. We then compare our results with the vibration modes obtained numerically by

Barnes et al. and show that qualitatively the rational map reproduces the vibration modes obtained

numerically but that the vibration frequencies of these modes do not match very well.
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I. INTRODUCTION

Proposed by Skyrme as a fundamental theory of strong
interactions, the Skyrme [1] model was later shown by
Witten [2] to be a low energy limit of QCD in the limit
of large color number. In that context, the classical solu-
tions of the Skyrme model correspond to bound states of
QCD. The simplest solution, with baryon number 1, can be
computed analytically up to solving an ordinary differen-
tial equation numerically. For larger baryon numbers, one
must compute the solutions by solving the full classical
equation of the model numerically [3].

Recently, Houghton et al. [4] showed that the solution of
the Skyrme model can be well approximated by the so-
called rational map ansatz. In this ansatz solutions are
approximated by a radial profile function and a rational
map ansatz which only depends on the polar angles’ var-
iables. One then determines the radial profile by solving an
ordinary differential equation while the rational map mini-
mizes an integral defined on the sphere. The configurations
obtained by the ansatz fit the numerical solutions very well.

Once a classical solution has been obtained, one must
still quantize some of the remaining degrees of freedom.
One way to do this is to compute the vibration modes of
these solutions. This was done for the numerical solutions
of the model by Barnes et al. [5,6] for baryon numbers B ¼
2 and 4. In this paper we compute the vibrational mode of
the rational map configuration and compare them to those
obtained numerically.

The Skyrme Model [1] is defined by the following
Lagrangian:

Lp ¼
Z
R3

�
F2
�

16
Trð@�U@�UyÞ þ 1

32e2

� Trð½ð@�UÞUy; ð@�UÞUy�2Þ þ F2
�m

2
�

8p2
TrðUp � 1Þ

�

� d3x; (1)

where U ¼ Uð ~x; tÞ is a SUð2Þ chiral field, F� is the pion

decay constant, m� is the pion mass, and e a parameter of
the model which is determined by fitting the classical
solutions to experimental data. Notice that the last term
in (1) is the so-called mass term where we have used the
generalized mass term proposed by Kopeliovich et al. [7]
where the parameter p is a positive integer.
Rather than using (1), it is convenient to rescale the

space-time coordinates and the mass parameter, ~x� ¼
2x�=F�e, m ¼ m�2=F�e, and use the dimensionless

Lagrangian

L ¼ e

3�2F�

Lp ¼ 1

12�2

Z �
� 1

2
TrðR�R

�Þ þ 1

16

� Trð½R�; R��½R�; R��Þ þm2

p2
TrðUp � 1Þ

�
d3x; (2)

where R� ¼ ð@�UÞUy.
To approximate the solution by the rational map ansatz,

we first introduce the complex coordinate � ¼ tanð�2Þei�
where � and � are the polar angles. Then the rational map
ansatz is given by

U ¼ e2ifðrÞn̂Rð�Þ� ~�; (3)

where ~� are the Pauli matrices and

n̂ Rð�Þ ¼ 1

1þ jRð�Þj2 ð2<ðRð�ÞÞ; 2=ðRð�ÞÞ; 1� jRð�Þj2Þ:
(4)

The degree of the rational map Rð�Þ corresponds to the
baryon number of the configuration (see [4]).
To approximate the classical solution of a given baryon

number B, one would thus take

Rð�Þ ¼ Pð�Þ
Qð�Þ ¼

P
i¼B
i¼0 ai�

iPj¼B
j¼0 bj�

j
(5)

and insert the ansatz (3) into the Lagrangian (2). One must
first determine the parameters ai and bj which minimizes

the integral
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I ¼ 1

4�

Z �
1þ j�j2
1þ jRj2

�
4
��������
dR

d�

��������
4 2id� �d�

ð1þ j�j2Þ2 : (6)

Knowing the value of I , one then uses the Euler-Lagrange
equation to derive the equation that the profile fðrÞ must
solve. In [4], it was shown that the case B ¼ 1 is nothing
but the hedgehog solution computed by Skyrme. For B ¼
2, the configuration is axially symmetric while for B ¼ 4 it
has the symmetry of a cube.

II. VIBRATION MODES

To study the vibration modes of the rational map ansatz
configurations minimizing (2), we add a time-dependant
perturbation to the rational map and the profile function
around their minimizing values. We then insert the per-
turbed ansatz into the Lagrangian (2) and compute the
Euler-Lagrange equation for the perturbation, keeping
only the linear terms.

Denoting f0ðrÞ the minimizing profile function for the
static solution, we take

fðr; tÞ ¼ f0ðrÞ þ gðr; tÞ; (7)

where g is assumed to be a small fluctuation around f0
satisfying the boundary condition gð0; tÞ ¼ gð1; tÞ ¼ 0.

To perturb a rational map, we must perturb all its co-
efficients, even the ones that are null, by adding a small
time-dependant perturbation,

Rð�; tÞ ¼ Pð�; tÞ=Qð�; tÞ; (8)

where

Pð�; tÞ ¼ Xi¼B

i¼0

ðai þ �aiÞ�i ¼ P0ð�Þ þ �Pð�; tÞ;

Qð�; tÞ ¼ Xj¼B

j¼0

ðbj þ �bjÞ�i ¼ Q0ð�Þ þ �Qð�; tÞ:
(9)

Notice that as R is a ratio of P andQ, the coefficients of the
rational map are determined up to an overall constant. If aB
is nonzero, we can divide both P and Q by aBð1þ
�aB=aBÞ to linear order and �aB then can be incorporated
into the other �ai and �bi [if aB is null, one divides P and
Q by bBð1þ �bB=bBÞ]. The rational map perturbations are
thus described by 4ðBþ 1Þ � 2 parameters.

When inserting (8) into (2), the perturbed rational map
only occurs in the integral (6) and in the two expressions

X ¼ 1

4�

Z j _Rj2
ð1þ jRj2Þ2

2id�d ��

ð1þ j�j2Þ2 ;

Y ¼ 1

4�

Z ð1þ j�j2Þ2
ð1þ jRj2Þ4

��������
dR

d�

��������
2j _Rj2 2id�d ��

ð1þ j�j2Þ2 :
(10)

Defining

	0 ¼ jP0j2 þ jQ0j2;
	1 ¼ P0ð� �PÞ þ �P0ð�PÞ þQ0ð� �QÞ þ �Q0ð�QÞ;
	2 ¼ ð�PÞð� �PÞ þ ð�QÞð� �QÞ;

0 ¼ P0;�Q0 � P0Q0;�;


1 ¼ P0;�ð�QÞ � P0ð�QÞ� �Q0;�ð�PÞ þQ0ð�PÞ�;

2 ¼ ð�PÞ�ð�QÞ � ð�PÞð�QÞ�;
�0 ¼ j
0j4;
�1 ¼ 2j
0j2ð
0

�
1 þ �
0
1Þ;
�2 ¼ 4j
0j2j
1j2 þ ð
2

0
�
2
1 þ �
2

0

2
1Þ

þ 2j
0j2ð
0
�
2 þ �
0
2Þ;

(11)

�1 ¼ Q0ð� _PÞ � P0ð� _QÞ; (12)

we have

I ¼ 1

4�

Z ð1þ j�j2Þ2
	4
0

�
�0 þ

�
�1 � 4�0

	1

	0

�

þ
�
10�0

	2
1

	2
0

� 4�0

	2

	0

� 4�1

	1

	0

þ �2

��
2id� �d�;

X ¼ 1

4�

Z j�1j2
	2
0

2id� �d�

ð1þ j�j2Þ2 ;

Y ¼ 1

4�

Z j
0j2j�1j2
	4
0

2id� �d�:

(13)

Notice that the integrals (6) and (13) are at most quadratic
in the parameters �a and �b. To rewrite these integrals in
matrix form, we define

~VðtÞ �
�
�ai
�bi

�
¼

�
�a0
..
.

�aB
�b0
..
.

�bB

�
;

_~VðtÞ �
� _�ai

_�bi

�
¼

�
_�a0
..
.

_�aB
_�b0
..
.

_�bB

�
;

(14)

and rewrite (13) as

I ¼ I0 þ ~VTI2
~V; X ¼ _~V

T
X2

_~V;

Y ¼ _~V
T
Y2

_~V;
(15)

where I0 is the value of I for the unperturbed rational map

as given in [4]. Notice that there is no linear term in ~V. This
is because the unperturbed rational map minimizes (6) and
(10).
Inserting the perturbed ansatz (7) and (8) into (2), we get

L ¼ L0 þ L2; (16)

where
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L0 ¼ 1

3�

Z �
�2Bsin2f0 � ð2Bsin2f0 þ r2Þf020 � I0

r2
sin4f0 � 2m2r2

p
½1� cosðpf0Þ�

�
dr;

L2 ¼ 1

3�

Z �
4r2 _ViX2ij

_Vjsin
2f0 þ 2g2Bsin2f0 � 2g2Bcos2f0 þ 4r2 _ViX2ij

_Vjf
02
0 sin

2f0 � 2g02Bsin2f0 þ 2g2Bf020 sin
2f0

� 4gg0Bf00 sinð2f0Þ � 2g2Bf020 cos
2f0 � r2g02 þ 2 _g2Bsin2f0 þ r2 _g2 þ 4 _ViY2ij

_Vjsin
4f0 þ 2g2

r2
I0sin

4f0

� 6g2

r2
I0ðsin2f0Þðcos2f0Þ � 1

r2
ViI2ijVjsin

4f0 � g2m2r2 cosðpf0Þ
�
dr: (17)

Notice that the perturbation of the radial profile and the
rational map are completely decoupled. We can thus study
the radial and angular vibration modes separately. To do
this we must compute the Euler-Lagrange equations for g
and for ~V to linear order and solve the resulting eigen value
equations.

III. RATIONAL MAP VIBRATIONS

The equation for the rational map vibrations ~V is
straightforward to derive from (16) and can be written as

Aij
€Vj ¼ �DijVj; (18)

where

Aij ¼ X2ij�1 þY2ij�2; Dij ¼ I2ij�3; (19)

and

�1 ¼
Z
ðr2sin2f0 þ r2f020 sin2f0Þdr;

�2 ¼
Z
ðsin4f0Þdr; �3 ¼

Z �
1

4r2
sin4f0

�
dr

(20)

are numerical parameters which can be evaluated numeri-
cally. We provide their value for the case m� ¼ 0 and
m� ¼ 0:526 and p ¼ 1 in Tables I and II.

To solve (18), one must first compute the matrices I2,
X2, and Y2 defined in (15). Most of the entries can be

shown to vanish using parity symmetries; we have eval-
uated the others using both MAPLE and MATHEMATICA.

Then we inserted ~V ¼ ~V0 sinð!tÞ into (18) and used
MAPLE and MATHEMATICA to solve the resulting eigen

value problem. We would like to point out that the eigen
vectors, i.e. the vibrations, do not depend on the actual
values on �1, �2, and �3 (or p and m), while the eigen
values, i.e. the vibrations frequencies do. The results are
described separately for the cases B ¼ 1, B ¼ 2, and B ¼
4. We will then compare our results with those of Barnes
et al. [5,6] obtained, in our conventions, for the value
m� ¼ 0:526.

A. B ¼ 1

For the hedgehog solution the unperturbed ration map is
simply R ¼ � and there are 6 perturbed rational maps:

Rrot;xð�Þ ¼ �þ id

1þ id�
; Rrot;yð�Þ ¼ �� d

1þ d�
;

Rrot;zð�Þ ¼ �

1þ id
; Rbtr;xð�Þ ¼ �þ d

1þ d�
;

Rbtr;yð�Þ ¼ �� id

1þ id�
; Rbtr;zð�Þ ¼ �

1þ d
;

(21)

with

d ¼ 
 cosð!tÞ; (22)

where 
 and ! are, respectively, the (small) amplitude and
the frequency of vibration.
Rrot;x, Rrot;y, and Rrot;z are zero modes and correspond,

respectively, to a rotation around the x, y, and z axis. Rbtr;x,

Rbtr;y, and Rbtr;z have the same eigen value !btr ¼ 0:7575

form� ¼ 0 and!btr ¼ 0:9239 form� ¼ 0:526. They form
a 3-dimensional eigen space as they are conjugated to each
other through a 90� rotation. This eigen subspace corre-
sponds to the broken translational invariance of the solu-
tions: while the Skyrme Lagrangian (2) is invariant under
translation, the rational map ansatz breaks that symmetry
by pinning the center of the solution. If one performs the
translation x ! xþ x0, into the hedgehog ansatz, the an-
satz is broken, as the radial profile becomes a function of
the polar angles and the rational map becomes a function of
r. If x0 is small, one can expand the translated expression,
keeping only the linear terms in x0. The rational map then

TABLE II. �1, �2, �3, for m� ¼ 0:526 and p ¼ 1.

B ¼ 1 B ¼ 2 B ¼ 4

�1 3.047 13 5.403 44 8.949 68

�2 0.756 11 0.824 19 0.885 387

�3 0.405 799 0.185 219 0.103 598

TABLE I. �1, �2, �3, for m� ¼ 0.

B ¼ 1 B ¼ 2 B ¼ 4

�1 4.288 69 7.586 51 12.286 8

�2 0.872 418 0.964 29 1.025 77

�3 0.370 159 0.164 19 0.089 533 5
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becomes Rð�Þ ¼ �þ
=r
1þ
�=r . As the energy density of the

Skyrmion is concentrated around a shell of radius r0, we

can take Rð�Þ ¼ �þ
=r0
1þ
�=r0

as an approximation of the trans-

lated rational map, recovering Rbtr;xð�Þ. As we had to make

several approximations to derive that expression of the
perturbed rational map, instead of being a zero mode, it
has a nonzero vibration frequency that does not have any
physical meaning.

We can thus conclude that, as expected, the rational map
of the hedgehog solution does not have any genuine non-
zero vibration mode.

B. B ¼ 2

The unperturbed rational map for the case B ¼ 2 is
given by R ¼ �2 and there are 10 perturbed rational maps.

First we have the 3 rotational zero modes

Rrot;xð�Þ ¼ �2 þ i
�

1þ i
�
; Rrot;yð�Þ ¼ �2 � 
�

1þ 
�
;

Rrot;zð�Þ ¼ �2

1þ i

:

(23)

Then there are 2 iso-rotation zero modes

Riso;xð�Þ ¼ �2 þ i


1þ i
�2
; Riso;yð�Þ ¼ �2 � 


1þ 
�2
: (24)

There are only 2 such modes because the iso-rotation
around the z axis coincides with the proper rotation around
the z axis.

The lowest vibration modes are

Rbtr;xð�Þ ¼ �2 þ 
�

1þ 
�
; Rbtr;yð�Þ ¼ �2 � i
�

1þ i
�
;

Rbtr;zð�Þ ¼ �2

1þ 

;

(25)

but they correspond to the broken translation modes. Their
eigen values !btr are, respectively, 0.69, 0.69, and 0.4766

for m� ¼ 0 and 0.847, 0.847, and 0.584 for m� ¼ 0:526,
but they have no physical meaning.
We are thus left with a 2 parameter class of genuine

vibration modes:

Rs1ð�Þ ¼ �2 þ 


1þ 
�2
; Rs2ð�Þ ¼ �2 � i


1þ i
�2
: (26)

These two perturbed rational maps correspond to lateral
squeezing and stretching of the torus alternating between
elongations along the x and y axis as shown in Fig. 1. This
mode is sometimes referred to as the scattering mode as it
corresponds to two Skyrmions colliding with each other.
Rs2 corresponds to the same deformation but rotated by
45�. By taking a linear combination of Rs1 and Rs2 the
torus can be made to wobble along any axis in the x-y
plane. The eigen value for these 2 modes is !s ¼ 0:9909
for m� ¼ 0 and !s ¼ 1:2255 for m� ¼ 0:526.

C. B ¼ 4

The unperturbed rational map for the case B ¼ 4 is

given by R ¼ P0=Q0 where P0 ¼ �4 þ 2
ffiffiffi
3

p
i�2 þ 1 and

Q0 ¼ �4 � 2
ffiffiffi
3

p
i�2 þ 1. There are 18 perturbed rational

maps, including 6 zero modes:

Rrot;xð�Þ ¼ P0 þð2i�x � 2
ffiffiffi
3

p
�xÞ�3 þð2i�x � 2

ffiffiffi
3

p
�xÞ�

Q0 þð2i�x þ 2
ffiffiffi
3

p
�xÞ�3 þð2i�xþ 2

ffiffiffi
3

p
�xÞ�

;

Rrot;yð�Þ ¼
P0 þð2 ffiffiffi

3
p

i�y � 2�yÞ�3 þð�2
ffiffiffi
3

p
i�yþ 2�yÞ�

Q0 þð�2
ffiffiffi
3

p
i�y � 2�yÞ�3 þð2 ffiffiffi

3
p

i�y þ 2�yÞ�
;

Rrot;zð�Þ ¼ P0 þ 4
ffiffiffi
3

p
�z�

2 � 4i�z

Q0 � 4
ffiffiffi
3

p
�z�

2 � 4i�z
;

Riso;xð�Þ ¼ P0 þ 2
ffiffiffi
3

p
�1�

2

Q0 � 2
ffiffiffi
3

p
�1�

2
;

Riso;yð�Þ ¼ P0 � 2
ffiffiffi
3

p
i�2�

2

Q0 ��2�
4 ��2

;

Riso;zð�Þ ¼ P0 � ð1þ i�3Þ
Q0

;

(27)
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FIG. 1 (color online). B ¼ 2, Rs1ð�Þ: 
 > 0 (left); 
 < 0 (right).
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which correspond to the 3 rotations Rrot;x, Rrot;y, and Rrot;z

and 3 iso-rotations Riso;x, Riso;y, and Riso;z.

The lowest vibration modes are the broken translation

Rbtr;xð�Þ ¼
P0 � ð12 þ

ffiffi
3

p
i

2 Þ
�3 � ð12 þ
ffiffi
3

p
i

2 Þ
�
Q0 � ð12 �

ffiffi
3

p
i

2 Þ
�3 � ð12 �
ffiffi
3

p
i

2 Þ
�
;

Rbtr;yð�Þ ¼
P0 � ð

ffiffi
3

p
2 þ i

2Þ
�3 þ ð
ffiffi
3

p
2 þ i

2Þ
�
Q0 þ ð

ffiffi
3

p
2 � i

2Þ
�3 � ð
ffiffi
3

p
2 � i

2Þ
�
;

Rbtr;zð�Þ ¼ P0 þ
ffiffiffi
3

p
i
�2 þ 


Q0 �
ffiffiffi
3

p
i
�2 þ 


(28)

and their eigen values are !tr ¼ 0:4586 for m� ¼ 0 and
!tr ¼ 0:5625 for m� ¼ 0:526.

The first genuine vibration mode is given by

Rtb;xð�Þ ¼
P0 � ð

ffiffi
3

p
2 � i

2Þ
�3 � ð
ffiffi
3

p
2 � i

2Þ
�
Q0 � ð

ffiffi
3

p
2 þ i

2Þ
�3 � ð
ffiffi
3

p
2 þ i

2Þ
�
;

Rtb;yð�Þ ¼
P0 � ð12 �

ffiffi
3

p
i

2 Þ
�3 þ ð12 �
ffiffi
3

p
i

2 Þ
�
Q0 þ ð12 þ

ffiffi
3

p
i

2 Þ
�3 � ð12 þ
ffiffi
3

p
i

2 Þ
�
;

Rtb;zð�Þ ¼ P0 þ
ffiffiffi
3

p

�2 � i


Q0 � i
�4 � ffiffiffi
3

p

�2

(29)

and its eigen value is !tb ¼ 0:6093 for m� ¼ 0 and !tb ¼
0:7508 for m� ¼ 0:526. To picture it, one has to think of
the cube as two tori stacked on top of each other. Then each
torus oscillates like the scattering mode of the B ¼ 2
solution but in phase opposition. This results in a cube
which is somewhat squeezed into a toroidal shape as shown

-1
0

1

-1

0

1

-1

0

1

-1
0

1

-1

0

1

-1
0

1

-1

0

1

-1

0

1

-1
0

1

-1

0

1

FIG. 2 (color online). B ¼ 4, Rth;zð�Þ: 
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 < 0 (right).
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in Fig. 2. This can also be thought of as the scattering of
four Skyrmions in a tetrahedral configuration.

The last triplet mode corresponds to the pinching and
stretching of two opposite edges of the cube so that two of
the opposite faces of the cube are deformed into a rhom-
bus:

Rrhomb;xð�Þ ¼
P0 þ ð12 þ

ffiffi
3

p
i

2 Þ
�3 þ ð12 þ
ffiffi
3

p
i

2 Þ
�
Q0 � ð12 �

ffiffi
3

p
i

2 Þ
�3 � ð12 �
ffiffi
3

p
i

2 Þ
�
;

Rrhomb;yð�Þ ¼
P0 þ ð

ffiffi
3

p
2 þ i

2Þ
�3 � ð
ffiffi
3

p
2 þ i

2Þ
�
Q0 þ ð

ffiffi
3

p
2 � i

2Þ
�3 � ð
ffiffi
3

p
2 � i

2Þ
�
;

Rrhomb;zð�Þ ¼ P0 �
ffiffiffi
3

p
i
�2 � 


Q0 � 
�4 þ ffiffiffi
3

p
i
�2

:

(30)

The energy density plots are presented in Fig. 3. The eigen

value of the rhombus mode is!rhomb ¼ 0:7395 form� ¼ 0
and !rhomb ¼ 0:9113 for m� ¼ 0:526.
The doublet mode

Rscat1ð�Þ ¼ P0 � 2
ffiffiffi
3

p

�2

Q0 þ i
�4 þ i

; Rscat2ð�Þ ¼ P0 þ i
�2

Q0 � i
�2
;

(31)

corresponds to a deformation where the cube is alterna-
tively stretched and then flattened along one of the sym-
metry axes going through the center of the cubes’ faces. A
combination of a stretch along two of the (perpendicular)
axes is equivalent to a stretch along the third axis. This
corresponds to the scattering mode of two tori along their
axis of symmetry as shown in Fig. 4. The eigen value for
this class of modes is !str ¼ 0:818 for m� ¼ 0 and !str ¼
1:0064 for m� ¼ 0:526.
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The singlet mode

Rtet ¼ P0

Q0ð1� 
Þ (32)

corresponds to a tetrahedral deformation of the cube as
illustrated in Fig. 5. Its eigen value is !tet ¼ 1:1355 for
m� ¼ 0 and !tet ¼ 1:4026 for m� ¼ 0:526.

IV. RADIAL VIBRATIONS

The Euler-Lagrange equation for the radial perturbation
g can be easily derived from (16):

ð €g� g00Þð2Bsin2f0 þ r2Þ � ð2rþ 2Bf00 sinð2f0ÞÞg0
� ð�2B cosð2f0Þ þ 2Bf020 cosð2f0Þ þ 2Bf000 sinð2f0Þ
� I0

r2
½6ðsin2f0Þðcos2f0Þ � 2sin4f0�

�m2r2 cosðpf0ÞÞg ¼ 0; (33)

where g0 ¼ @
@r and _g ¼ @

@t . Taking a perturbation of the

form

gðr; tÞ ¼ g0ðrÞ sinð!tÞ (34)

and inserting it into (33) leads to a Sturm-Liouville equa-
tion where !2 is the eigen value.
Notice that when !>m, any perturbation is radiated

away and there are no genuine vibration modes. When the
pion mass m� is too small, there are thus no genuine radial
vibration modes. On the other hand, the Skyrmion still has
so-called pseudovibration modes, as studied by Bizon et al.
[8], where the excitation energy is radiated away relatively
slowly. In a quantum theory these modes would correspond
to resonances.
We have solved (33) numerically for several baryon

numbers and several values of the pion mass and the
parameter p. Our results are summarized in Fig. 6 where
we present the vibration frequency ! as a function of the
pion mass for different baryon number values.
In Table III we present the critical value of the pion mass

below which there is no genuine vibration mode. Notice
that the case B ¼ 1 is the exact hedgehog solution and
corresponds to a single nucleon. The critical value of the
mass for that case can thus be interpreted as an upper
bound for the pion mass when it is taken as an adjustable
parameter [9,10], as the proton has no stable excited state.

V. COMPARISON

Several years ago, Barnes et al. [5,6] computed the
vibration modes of the B ¼ 2 and B ¼ 4 Skyrmion solu-
tions numerically. In their work, they only considered the
standard mass term, p ¼ 1, and the pion mass that they

TABLE III. Critical mass as a function of B and p.

B n p 1 2 3 4

1 1.60 1.19 0.96 0.85

2 1.10 0.82 0.71 0.65

4 0.77 0.59 0.53 0.51

6 0.60 0.47 0.44 0.43

7 0.56 0.44 0.42 0.41

9 0.47 0.38 0.36 0.36

17 0.33 0.28 0.27 0.27
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used in our parametrization is given by m� ¼ 0:526. By
comparing their results with ours, we will be able to asses
the quality of the rational map for the estimation of the
vibration modes.

The method used by Barnes et al. consists of solving
numerically small fluctuations of the Skyrme field around a
static solution obtained numerically too. To solve the
Skyrme equation numerically, one has to invert a matrix
that is field dependant. To improve the efficiency of their
code, and motivated by the fact that they only studied small
vibrations, Barnes et al. set that matrix to the one obtained
from the stationary field. This effectively pinned the posi-
tion and iso-orientation of the Skyrmion, thus breaking the
translation and iso-rotation zero modes. On the other hand,
the rotations symmetry was preserved, apart from the
symmetry breaking introduced by the square lattice and
the periodic boundary conditions.

We compare our results with those of [5,6] in Tables IV
and V. One can identify the various vibration modes by
comparing the dimension of the subspace they span, i.e. the
dimension of the representation they belong to, as well as
their symmetries and the deformation induced in energy

density plots. Figures 2 in [5] match exactly those we have
obtained for the vibrational modes of the rational map of
B ¼ 4. Figure 3 in [6], once translated to what is plotted in
Fig. 1, also matches our observation for B ¼ 2.
For B ¼ 2, we had to read the values of ! from Fig. 1 in

[6]. There is only one genuine vibration mode, the so-
called scattering mode. The frequency obtained from the
rational map for that mode is much higher than the one
obtained numerically, but the frequency obtained from
Barnes et al. indicates that it is a genuine vibration mode.
The mode described as a dipole breathing motion in [6]

turns out to be a broken translation. Notice also that the
breathing mode is a pseudovibration mode for both the
numerical and the rational map results. The radiative
modes observed in [6] are the results of the numerical
method used and are excluded from the rational map
ansatz, except from the mode with symmetry A1u which
happens to be a broken translation mode.
For B ¼ 4, the modes that we obtained match those

obtained in [5]. The mode with !num ¼ 0:655 in [5] turns
out to be a broken translation mode rather than a proper
vibration mode. This is supported by comparing the energy

TABLE IV. Comparison of vibrational frequency between the numerical results and the rational map ansatz, B ¼ 2.

Numerical [6] Ansatz

! Degeneracy Description Symmetry ! Degeneracy Description Symmetry

0.03 2 broken rotational modes

(around x and y axes)

E1g 0 3 x, y rotational modes ðRrot;x;Rrot;yÞ
and z (iso)rotational mode ðRrot;zÞ

E1g þ A2g

0.31 2 2 Skyrmions scattering mode E2g 1.225 536 2 2 Skyrmions scattering mode

ðRs1; Rs2Þ
E2g

0.49 1 radiative mode A1u

0.583 500 1 broken z translation ðRbtr;zÞ A1u

0.52 2 radiative mode E2g

0.75 1 breathing mode A1g 0.76 1 breathing mode (A1g)

0.84 2 a dipole ‘‘breathing’’ motiona E1u 0.846 727 2 broken x, y translation ðRbtr;x; Rbtr;yÞ E1u

aIts description of the energy density matches that of the broken x, y translational zero mode obtained from the rational map ansatz;
however, this representation, E1u, coincides with the doublet of x, y translational zero mode of the 2-monopole toroidal BPS solution.

TABLE V. Comparison of vibrational frequency between the numerical results and the rational map ansatz, B ¼ 4.

Numerical [5] Ansatz

! Degeneracy Description Symmetry ! Degeneracy Description

0 2 iso-rotation ðRiso;x; Riso;yÞ
0.070 3 broken rotation F1g 0 3 iso-rotation ðRrot;x; Rrot;y; Rrot;zÞ
0.367 2 deuteron scattering mode Eg 1.006 370 2 deuteron scattering mode ðRscat1; Rscat2Þ
0.405 1 tetrahedral mode A2u 1.402 608 1 tetrahedral mode (Rtet)

0.419 3 rhombus mode F2g 0.911 260 3 rhombus mode ðRrhomb;x; Rrhomb;y; Rrhomb;zÞ
0.513 3 4 Skyrmions mode F2u 0.750 841 3 4 Skyrmions mode ðRtb;x; Rtb;y; Rtb;zÞ
0.545 2 radiative mode Eg

0 1 iso-rotation (Riso;z)

0.587 1 radiative mode A2u

0.605 1 breathing mode A1g 0.64 1 breathing mode

0.655 3 broken translation F1u 0.562 538 3 broken translation ðRbtr;x; Rbtr;y; Rbtr;zÞ
0.738 3 diagonal mode F2g

0.908 3 lowest nonzero radiative mode
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densities for that mode, not presented in this paper, and the
one given in [5], as well as the symmetry of that mode.
Apart from that, the rational map ansatz predicts 5 non-null
vibration modes out of 6 (the diagonal mode, with !num ¼
0:738, is missing). Symmetry considerations suggest that
the radiative mode with !num ¼ 0:587 might be a pseudo-
iso-rotational mode, but it is difficult to be conclusive as
one would need to know more about this numerical mode
to make a definite statement. If the vibration modes ob-
tained from the rational map ansatz match the one obtained
numerically rather well, the predictions for the frequencies
of these modes are rather poor and are not even in the
correct order. Overall, the rational map ansatz appears to be
stiffer than real Skyrmion solutions.

VI. CONCLUSION

The rational map ansatz has been shown to be a good
approximation to the shell-like solutions of the Skyrme
model, i.e. when the pion mass is null or relatively small, or
when the baryon number is small. In this paper we have
shown that the rational map ansatz can also be used to

study the vibration modes of the Skyrmion solutions and
that qualitatively it produces the correct vibration modes.
For B ¼ 1, for which the ansatz is actually the exact
solution, and B ¼ 2, the vibration modes are all predicted,
but for B ¼ 4 they are all predicted except for one, the one
with the largest vibration frequencies.
On the other hand, the vibration frequencies obtained

from the rational map ansatz are quite poor when compared
to the frequencies obtained numerically in [5,6]. The rela-
tive order is not even correct. We interpret this result by
saying that the rational map ansatz is too stiff and that the
configuration is restrained to vibrate in a subspace that is
too narrow.
Our study has also shown that some of the modes

observed by Barnes et al.were mistakenly taken as genuine
vibration modes when they are actually broken vibration
modes.
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