
A trigonometric interpolation approach to mixed-type boundary
problems associated with permeameter shape factors

Harald Klammler,1,2,3 Kirk Hatfield,1,2 Bassel Nemer,1,2 and Simon A. Mathias4

Received 18 March 2010; revised 1 November 2010; accepted 12 January 2011; published 8 March 2011.

[1] Hydraulic conductivity is a fundamental hydrogeological parameter, whose in situ
measurement at a local scale is principally performed through injection tests from screened
probes or using impermeable packers in screened wells. The shape factor F [L] is a
proportionality constant required to estimate conductivity from observed flow rate to
injection head ratios, and it depends on the geometric properties of the flow field. Existing
approaches for determination of F are either based on geometric or mathematical
simplifications and are limited to particular assumptions about the flow domain’s external
boundaries. The present work presents a general semianalytical solution to steady state
axisymmetric flow problems, where external boundaries may be nearby and of arbitrary
combinations of impermeable and constant head type. The inner boundary along the probe or
well may consist of an arbitrary number of impermeable and constant head intervals
resulting in a mixed-type boundary value problem, for which a novel and direct solution
method based on trigonometric interpolation is presented. The approach is applied to
generate practical nondimensional charts of F for different field and laboratory situations.
Results show that F is affected by less than 5% if a minimum distance of 10 probe or well
diameters is kept between the injection screen and a nearby boundary. Similarly, minimum
packer lengths of two well diameters are required to avoid increasing F by more than 10%.
Furthermore, F is determined for laboratory barrel experiments giving guidelines for
achieving equal shape factors as in field situations without nearby boundaries. F for the
theoretical case of infinitely short packers is shown to be infinitely large.
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1. Introduction
[2] Hydraulic conductivity K [L/T] with its horizontal and

vertical variability is a parameter of paramount importance
for the modeling and management of a large number of nat-
ural and engineered processes, including infiltration, irriga-
tion, drainage, groundwater extraction and injection, soil
compaction, landfill impermeabilization, and contaminant
transport [Sedighi et al., 2006; Sudicky, 1986; Hvorslev,
1951]. Under saturated conditions, i.e., below the water
table of an aquifer, classically, pump or slug tests with their
well-known individual advantages and drawbacks are per-
formed for investigations of K at different scales [Weight
and Sonderegger, 2001]. Accordingly, these tests may be
performed on an entire well or on various portions of a well
screen by use of single- or double-packer systems [Butler

et al., 2009; Price and Williams, 1993]. Different types of
small-diameter (i.e., lower centimeter range) drive point
(also called push-in or direct-push) probes have also been
proposed for quick and flexible investigation of K in uncon-
solidated media at highly local (i.e., <1 m3) scales. Because
of the small spatial scale the associated flow systems reach
steady state rapidly and do not require a permanent installa-
tion of an injection well or piezometers around it. Using
such push-in probes with short injection screen intervals
near the probe tips, Hinsby et al. [1992] demonstrate a
‘‘mini slug test’’ method, while Butler et al. [2007] and Die-
trich et al. [2008] apply a ‘‘direct-push permeameter’’ and a
‘‘direct-push injection logger,’’ respectively. The difference
between the latter two direct-push methods is that the injec-
tion logger uses the variability in recorded ratios of injection
pressures and flow rates as a function of depth to estimate
variability in local K without, however, assigning absolute
K values. The ‘‘push-in permeameter’’ uses two additional
head observations along the probe to also quantify absolute
values of K. Whenever the goal is to estimate such absolute
values of K, a so-called shape factor (often denoted by F
[L]) is required, which serves as the proportionality constant
between ratios of observed injection flow rates Q [L3/T] to
injection heads �0 [L] and K. Thus, knowing F and observ-
ing Q=�0; K can be estimated from
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K ¼ Q
�0F

ð1Þ

[3] More precisely, �0 hereby is the excess hydraulic
head at the screen because of pumping with respect to am-
bient (no pumping) conditions, and as used in the sequel, it
is assumed to be constant both in time (steady state) as well
as over the injection screen surface.

[4] Many variants of in situ measurement methods for K
have been developed, and a correspondingly large number
of theoretical models have been invoked for test interpreta-
tion, i.e., determination of F. However, a common feature
of virtually all methods is that an axially (or rotationally)
symmetric potential flow field is generated through injec-
tion or extraction of water from some cylindrical well or
probe surface, which may or may not include the tip of a
well or probe. An important and complicated issue is the
presence of mixed-type boundary conditions, which arises
because of the simultaneous presence of both no-flow and
constant head segments along the inner boundary associ-
ated with the well or probe surface.

[5] Early models which persist until the present day apply
geometric approximations of the cylindrical (constant head)
injection surface by spheroids [Mathias and Butler, 2006;
Hvorslev, 1951]. Other approximations use distributed point
sources along a line [Zlotnik and Ledder, 1996] or over a
cylindrical surface [Peursem et al., 1999]. More recently,
computationally intensive finite difference or finite element
methods have been used to better reproduce geometric and
hydraulic boundary conditions at the injection screen [Liu et
al., 2008; Ratnam et al., 2001]. Another approach that has
proved popular involves conversion of the mixed-type
boundary problem along the well or probe into a single-type
boundary problem by either assuming approximate flux dis-
tributions along constant head boundary segments [Chang
and Chen, 2002, 2003; Rehbinder, 2005; Perina and Lee,
2006; Mathias and Butler, 2007] or assuming approximate
head distributions along no flow boundary segments [Reh-
binder, 1996]. While the analytical approaches of Rehbinder
[1996, 2005] use predefined continuous functions for these
approximations, Chang and Chen [2002, 2003], Perina and
Lee [2006], and Mathias and Butler [2007] use adjustable
functions by making them piecewise constant in a semiana-
lytical approach.

[6] In what follows we take advantage of a general solution
given by Zaslavsky and Kirkham [1964] to derive different
forms of steady state solutions to the axisymmetric flow
problem for all possible combinations of constant head and
impermeable top, bottom, and lateral boundaries at arbitrary
distances. We further present a novel, direct, and simple semi-
analytical method related to trigonometric interpolation to
directly deal with the mixed boundary value problem along
the injection well or probe (i.e., without requiring conversion
into a single-type boundary value problem as done in previous
work) and use the observed convergence behavior to extrapo-
late toward exact solutions. Results are applied to investigate
effects of nearby boundaries on injection test results and to
provide practical charts of shape factors F for different sce-
narios. Validation is achieved by comparison with equivalent
results previously obtained by Mathias and Butler [2007] for
sufficiently distant boundaries such that they can be ignored.
A clarification is also made concerning the divergent series

contained within Mathias and Butler’s [2007] previous ana-
lytical solution for infinitesimally short packers.

[7] Although injection tests from push-in probes or pack-
ered-off screen intervals may be limited to local scales not
containing any external boundaries, situations may arise
where proximity to a confining layer, a surface water body,
or the water table has to be accounted for [Lui et al., 2008].
In particular, injection near constant head boundaries may
be strongly distorted because of flow short-circuiting
between the screen and the boundary. Similarly, laboratory
testing in sand barrels is a routine procedure for injection
test calibration, and the effects of nearby impermeable bar-
rel walls deserve particular investigation.

2. General Solution of the Flow Problem
[8] An example of an axisymmetric flow domain is

given in Figure 1, where r [L] and z [L] are the radial and
vertical coordinates, respectively, being delimited by a < r
< b [L] and 0 < z < d [L]. To represent the radius of the
probe or well, a is used, which is assumed to span the entire
distance d between top and bottom boundaries, while b is
the radial distance to a lateral boundary. Moreover, h1
through h4 [L] delimit different boundary type segments
along the well or probe. The governing Laplace equation
for steady state flow and isotropic hydraulic conductivity in
axisymmetric cylindrical coordinates is

@2�

@r2
þ 1

r
@�

@r
þ @

2�

@z2
¼ 0; ð2Þ

Figure 1. Example of axisymmetric flow domain with
double-packer injection from a fully screened well and
nearby boundaries. I, constant head or impermeable lateral
boundary; II, constant head or impermeable top; III, con-
stant head or impermeable bottom; IV and VIII, constant
head open well screen intervals; V and VII, impermeable
packers; VI, constant head injection screen interval. The
flow domain is delimited by two coaxial cylinders between
0 < z < d and a < r < b. For injection from a push-in
probe, boundaries IV and VIII are impermeable as well
(i.e., h1 ¼ 0 and h4 ¼ d).
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where � ¼ �ðr; zÞ [L] is the hydraulic head distribution
in the flow domain. A general solution of equation (2) is
given by Zaslavsky and Kirkham [1964] as

�ðr; zÞ ¼ c1 sinðm1zÞ þ c2 cosðm1zÞ½ � c3I0ðm1rÞ þ c4K0ðm1rÞ½ �
þ c5 sinhðm2zÞ þ c6 coshðm2zÞ½ � c7J0ðm2rÞ þ c8Y0ðm2rÞ½ �
þ c9z lnðr=m3Þ þ c10 lnðr=m3Þ þ c11zþ c12;

ð3Þ

where ci for i ¼ 1, 2, . . . , 12 and mi for i ¼ 1, 2, 3 are arbi-
trary real constants (mi being positive) and I0, K0, J0, and Y0
are Bessel functions of order zero [Dwight, 1947]. By super-
imposing solutions of equation (3) with different sets of
constants, specific boundary conditions, including arrange-
ments of mixed-type boundary conditions (this becomes
clearer in the subsequent discussion), can be met. This will
first be done for external boundaries I, II, and III shown in
Figure 1 and subsequently for internal boundary segments
IV–VIII along the well or probe.

2.1. External Boundaries
[9] While the types of internal boundary conditions along

the probe are defined by the injection test setup, the types of
external boundaries may be different combinations of con-
stant head and impermeable. Both top and bottom bounda-
ries may be considered impermeable, for example, if an
injection test is performed in a (thin) stratum between two
confining layers. In the case of permeability injection test-
ing of a sealing layer under a landfill, for example, both top
and bottom boundaries may be well approximated by two
constant head boundaries. A mix of constant head top and
impermeable bottom boundary may well represent condi-
tions in a (shallow) unconfined aquifer or beneath surface
water bodies. If the distance between injection screen and
one or both of top and bottom boundaries is sufficiently
small, an impact of the nearby boundary (boundaries) onto
the outcome of the injection test may be expected and
accounted for by a respective adjustment in the shape factor
F. Similarly, modeling an impermeable lateral boundary is
of interest for laboratory barrel tests, where either top, bot-
tom, or both boundaries are constant head, while the lateral
barrel wall is impermeable. Thus, the external boundary
conditions in Figure 1 may be represented as follows: I,
constant head (Ic) or impermeable (Ii) lateral boundary; II,
constant head (IIc) or impermeable (IIi) top boundary; III,
constant head (IIIc) or impermeable (IIIi) bottom boundary.
Mathematically, this can be expressed as

Ic � ¼ 0 at r ¼ b for 0 � z � d; ð4aÞ

Ii
@�

@r
¼ 0 at r ¼ b for 0 � z � d; ð4bÞ

IIc � ¼ 0 at z ¼ d for a � r � b; ð5aÞ

IIi
@�

@z
¼ 0 at z ¼ d for a � r � b; ð5bÞ

IIIc � ¼ 0 at z ¼ 0 for a � r � b; ð6aÞ

IIIi
@�

@z
¼ 0 at z ¼ 0 for a � r � b: ð6bÞ

[10] Using extensions of Kirkham [1959] and Boast and
Kirkham [1971], solutions in terms of the hydraulic head �,
which honor equations (4), (5) and (6) under all possible
scenarios of boundary type combinations, may be based on
the following considerations and written as follows.

[11] 1. Considering constant head top and bottom boun-
daries, i.e., �ðz ¼ 0Þ ¼ �ðz ¼ dÞ ¼ 0 for all a � r � b, of
all the terms in z in equation (3), these conditions can be
met by sin(m1z) with m1 ¼ n�=d as well as n and N being
arbitrary positive integers, such that after superposition

�ðr; zÞ ¼
XN

n¼1

Bnf0ðm1rÞ sinðm1zÞ; m1 ¼ n�=d : ð7Þ

[12] Bn are a new set of constants encompassing c1, c3,
and c4, and f0(m1r) is a function to be defined involving
terms of equation (3) containing K0(m1r) and I0(m1r).

[13] 2. Considering impermeable top and bottom boun-
daries, i.e., @�=@z ¼ 0 at z ¼ 0 and z ¼ d for all a � r � b,
of the terms in z in equation (3), these conditions can be
met by cos(m1z) with m1 ¼ n�=d as well as by ln(r/m3)
with arbitrary m3 and by the final (arbitrary) constant,
which may be incorporated into m3. Superposition of these
solutions gives

�ðr; zÞ ¼ B0
lnðb=rÞ
lnðb=aÞ þ

XN

n¼1

Bnf0ðm1rÞ cosðm1zÞ; m1 ¼ n�=d :

ð8Þ

[14] Bn and f0 are analogous to equation (7), and B0 is an
additional constant ; c12 ¼ 0 and m3 ¼ b are chosen such
that the leading term on the right-hand side becomes zero
for r ¼ b, as required for a constant zero head boundary at
radial distance b. The constant term ln(b/a) in the denomi-
nator is added to simplify expressions in the sequel by tak-
ing the ratio to 1 for r ¼ a and allowing for a particular
interpretation of B0.

[15] 3. Considering impermeable top and constant head
bottom boundary, i.e., �ðz ¼ 0Þ ¼ 0 and @�=@z ¼ 0 at z ¼
d for all a � r � b, of the terms in z in equation (3), the first
(constant head) condition may be met by sin(m1z), sinh(m2z),
zln(r/m3), and z, where m1, m2, and m3 may be arbitrary.
Among these solutions, however, the second (no flow) con-
dition may only be satisfied by sin(m1z) with m1 ¼ ð2n
� 1Þ�=ð2dÞ such that superposition leads to

�ðr; zÞ ¼
XN

n¼1

Bnf0ðm1rÞ sinðm1zÞ; m1 ¼ ð2n � 1Þ�=ð2dÞ : ð9Þ

[16] It is observed that equations (7), (8), and (9) meet
boundary conditions II and III independent of the choice of
the coefficients B0 and Bn and the function f0. This allows
using f0 to independently satisfy the type of lateral bound-
ary condition I in equations (7), (8), and (9). From equation
(3) and its terms in z retained in equations (7), (8), and (9),
it is evident that f0 has to consist of linear combinations of
K0(m1r) and I0(m1r) as follows.
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[17] 1. For constant head lateral boundary, i.e., � ¼ 0 at
r ¼ b for all 0 � z � d, this can be achieved by imposing
c3I0(m1b) þ c4K0(m1b) ¼ 0 in equation (3) and results in

f0cðm1rÞ ¼
K0ðm1rÞ
K0ðm1bÞ �

I0ðm1rÞ
I0ðm1bÞ

K0ðm1aÞ
K0ðm1bÞ �

I0ðm1aÞ
I0ðm1bÞ

� K0ðm1rÞ
K0ðm1aÞ ; ð10Þ

where additional constants are included to make f0c ¼ 1 at
r ¼ a for later convenience. For later convenience and
knowing that dK0(r)/dr ¼ �K1(r) and dI0(r)/dr ¼ I1(r), we
also introduce

f1cðm1rÞ ¼ � 1
m1

df0c

dr
¼

K1ðm1rÞ
K0ðm1bÞ þ

I1ðm1rÞ
I0ðm1bÞ

K0ðm1aÞ
K0ðm1bÞ �

I0ðm1aÞ
I0ðm1bÞ

� K1ðm1rÞ
K0ðm1aÞ : ð11Þ

[18] 2. For impermeable lateral boundary, i.e., @�=@r
¼ 0 at r ¼ b for all 0 � z � d, this condition may be
achieved by assuring f1i ¼ �(1/m1)df0i/dr ¼ 0 for r ¼ b in
equations (7) and (9). Since f0i has to be a linear combina-
tion of I0 and K0 and because of the respective derivatives
given above, f1i has to be a linear combination of I1 and K1,
such that imposing c3I1(m1b) þ c4K1(m1b) ¼ 0 leads to

f1iðm1rÞ ¼ � 1
m1

df0i

dr
¼

K1ðm1rÞ
K1ðm1bÞ �

I1ðm1rÞ
I1ðm1bÞ

K1ðm1aÞ
K1ðm1bÞ �

I1ðm1aÞ
I1ðm1bÞ

� K1ðm1rÞ
K1ðm1aÞ ; ð12Þ

where additional constants are used to make f1i ¼ 1 for r ¼
a. From this, f0i may be obtained by integration as

f0iðm1rÞ ¼
K0ðm1rÞ
K1ðm1bÞ þ

I0ðm1rÞ
I1ðm1bÞ

K1ðm1aÞ
K1ðm1bÞ �

I1ðm1aÞ
I1ðm1bÞ

� K0ðm1rÞ
K1ðm1aÞ : ð13Þ

[19] In the case of equation (8), where top and bottom
are already impermeable, an impermeable lateral boundary
only makes physical sense if the same flow injected is
again extracted by the well or probe (e.g., vertical recircu-
lation well [Zlotnik and Ledder, 1996; Peursem et al.,
1999]). If this is the case, then it can be shown that B0 ¼ 0,
and hence, @�=@r ¼ 0 for r ¼ b is again met. The approxi-
mations given with equations (10) – (13) are for large val-
ues of b/a and become exact for b ! 1, i.e., laterally
unbounded flow domains (both K0(m1b) and K1(m1b)
approach zero in this case, while both I0(m1b) and I1(m1b)
approach infinity).

2.2. Trigonometric Interpolation Approach to the
Mixed-Type Internal Boundaries

[20] In equations (7), (8), and (9), the values of the coeffi-
cients B0 and Bn do not affect compliance with the external
boundary conditions I, II, and III such that these coefficients
can be used to independently meet the internal (mixed)
boundary conditions along the device (i.e., for r ¼ a).
According to Figure 1, for a double-packer test these boun-
daries are constant head open screen interval at bottom
(IV), impermeable bottom packer (V), constant head injec-
tion screen interval (VI), impermeable top packer (VII), and

constant head open screen interval at top (VIII). Mathemati-
cally, this may be written as

IV � ¼ �IV at r ¼ a for 0 � z � h1; ð14Þ

V
@�

@r
¼ 0 at r ¼ a for h1 � z � h2; ð15Þ

VI � ¼ �0 at r ¼ a for h2 � z � h3; ð16Þ

VII
@�

@r
¼ 0 at r ¼ a for h3 � z � h4; ð17Þ

VIII � ¼ �VIII at r ¼ a for h4 � z � d; ð18Þ

where �IV and �VIII [L] are the constant hydraulic heads in
the bottom and top open screen intervals, respectively. In
order to determine B0 and Bn, the respective ‘‘raw’’ solution
of �ðr; zÞ for a given set of external boundary conditions
from equations (7), (8), or (9) is substituted into equations
(14) – (18). Considering, for example, the case of imperme-
able top and bottom boundaries in combination with a con-
stant head lateral boundary, equation (8) (with f0 ¼ f0c and
f1c from equations (10) and (11)) is used to obtain the fol-
lowing system of equations to impose the internal boundary
conditions.

�ða; zÞ ¼ B0 þ
XN

n¼1

Bn cosðm1zÞ ¼ �IV; 0 � z � h1; ð19Þ

� @�

@r

����
r¼a

¼ B0

a lnðb=aÞ þ
XN

n¼1

Bn
n�
d

f1cðm1aÞ cosðm1zÞ ¼ 0;

h1 � z � h2;

ð20Þ

�ða; zÞ ¼ B0 þ
XN

n¼1

Bn cosðm1zÞ ¼ �0; h2 � z � h3; ð21Þ

� @�

@r

����
r¼a

¼ B0

a lnðb=aÞ þ
XN

n¼1

Bn
n�
d

f1cðm1aÞ cosðm1zÞ ¼ 0;

h3 � z � h4;

ð22Þ

�ða; zÞ ¼ B0 þ
XN

n¼1

Bn cosðm1zÞ ¼ �VIII; h4 � z � d: ð23Þ

[21] To achieve an exact solution, N must be set to infin-
ity, for which equations (7), (8), and (9) become Fourier se-
ries. Although Sneddon [1966] discusses solutions to similar
systems of equations, analytical solutions for the mixed-
type boundary value problems are generally intractable.

[22] However, by limiting N to finite values (i.e., truncat-
ing the trigonometric series) and discretizing the device
length 0 � z � d into a number NB (dimensionless) of equi-
distant intervals delimited by zi� and ziþ with i ¼ 1, 2, . . . ,
NB, such that z1� ¼ 0, zNBþ ¼ d, ziþ ¼ z(i þ 1)�, ziþ � zi� ¼
d/NB, and zi ¼ (ziþ þ zi�)/2, equations (19)– (23) may be
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rewritten in a discretized form by simply substituting zi for z
everywhere. With this, equations (19)– (23) constitute a lin-
ear system of NB equations in N þ 1 unknown coefficients.
This system may be regarded in a curve-fitting context,
where it is the goal to determine the unknown coefficients
of equation (8) (for finite N) to best approximate the right-
hand sides of equations (19)– (23) containing punctual in-
formation about � and @�=@r : For NB > N þ 1, this may
be done in a linear regression (i.e., least squares) sense,
while for NB ¼ N þ 1, curve fitting becomes exact and thus
transitions into the field of trigonometric interpolation. For
NB < N þ 1, the system is underdetermined. In the present

work, NB is set equal to the number of unknown coeffi-
cients, i.e., N þ 1 or N, depending on whether B0 is present
or not. Note that the discretized well flux approach pre-
sented previously by Mathias and Butler [2007] represents a
special case of the more general approach presented above.

[23] Before solving the resulting system it is noted that
�IV and/or �VIII in equations (19) – (23) are only known if
the top and bottom open screen intervals are connected to
constant head top and/or bottom boundaries. For imperme-
able top and bottom boundaries, �IV and �VIII are initially
unknown, but instead, two additional equations can be
formulated imposing zero total (i.e., integrated over z)
inflows or outflows QIV and QVIII [L3/T] from the open
screen intervals below and above the packers, respectively:

QIV

2�aK
¼ �

Zh1

0

@�

@r

����
r¼a

dz ¼ B0h1

a ln b
a

þ
XN

n¼1

Bnf1cðm1aÞ sinðm1h1Þ ¼ 0;

ð24Þ

QVIII

2�aK
¼ �

Zd

h4

@�

@r

����
r¼a

dz ¼ B0 d � h4ð Þ
a ln b

a

�
XN

n¼1

Bnf1cðm1aÞ sinðm1h4Þ ¼ 0:

ð25Þ

[24] The result is an extended system of NB þ 2 linear
equations in NB þ 2 unknowns, for which many standard
methods are available for the solution. For example, equa-
tions (19) – (25) may be converted from summation into
matrix form [A] � [B] ¼ [C], giving

such that matrix division immediately results in the
required vector [B] ¼ [A]�1[C] of unknown coefficients B0
and Bn from equation (8) as well as �IV and �VIII. Note that
the index ‘‘Nx’’ with z in equation (26) stands for the num-
ber of discretization points zi between z ¼ 0 and the top of
the boundary segment denoted by ‘‘x’’ in Figure 1 (e.g.,
zNIV is the last discretization point at the top of boundary
segment IV, and zNIVþ1 is the first one in boundary segment
V; also NVIII ¼ N). Appendix A gives further details about
the convergence behavior for increasing N and shows that
resulting flow field parameters, including F, may be hyper-
bolically extrapolated to the exact solutions corresponding
to N ! 1. Thus, the problem is solved in a novel and
direct way without the need for previous conversion of the
mixed-type into a single-type boundary value problem.

[25] For the simpler configuration of injection from a
push-in probe (i.e., in the absence of open screen intervals
above and below the packers), equations (19), (23), (24), and
(25) become irrelevant. The system reduces to equations

1 cosð�z1=dÞ cosð2�z1=dÞ � � � cosðNz1=dÞ �1 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 cosð�zNIV=dÞ cosð2�zNIV=dÞ � � � cosðNzNIV=dÞ �1 0
1

a lnðb=aÞ
�
d f1cð�a

d Þ cosð�zNIVþ1

d Þ 2�
d f1cð2�a

d Þ cosð2�zNIVþ1

d Þ � � � N�
d f1cðN�a

d Þ cosðN�zNIVþ1

d Þ 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

1
a lnðb=aÞ

�
d f1cð�a

d Þ cosð�zNV
d Þ 2�

d f1cð2�a
d Þ cosð2�zNV

d Þ � � � N�
d f1cðN�a

d Þ cosðN�zNV
d Þ 0 0

1 cosð�zNVþ1=dÞ cosð2�zNVþ1=dÞ � � � cosðN�zNVþ1=dÞ 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.
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(20), (21), and (22) with h1 ¼ 0 and h4 ¼ d, which further
corresponds to a respective reduction of equation (26). In the
opposite case of infinitesimally short packers such that h1 ¼
h2 and h3 ¼ h4, all boundary segments along the probe are of
the constant head type, and the problem reduces to a single-
type boundary value problem. Under this scenario (and
known �IV and �VIII) the present trigonometric interpolation
approach becomes identical to performing the discrete Fou-
rier (in particular sine or cosine) transform on �ða; ziÞ. The
discrete Fourier transform is again known to become identi-
cal to the (classic) Fourier decomposition of a continuous
periodic function if NB!1. The latter is performed in Ap-
pendix B to obtain a fully analytical solution and discussion
of the infinitesimally short packer problem.

2.3. Shape Factor F

[26] Integrating local radial fluxes qpr ¼ �@�=@r leav-
ing the probe (i.e., for r ¼ a), the injection flow rate Q [L3/
T] may be written as

Q ¼ �2�aK�0

Zh3

h2

@�u

@r

����
r¼a

dz; ð27Þ

where �u ¼ �ðr; zÞ=�0 (dimensionless). By substituting
equation (27) into equation (1) a general expression of F is
obtained.

F ¼ �2�a
Zh3

h2

@�u

@r

����
r¼a

dz: ð28Þ

[27] In the simpler case of injection through a single
screen from a push-in probe (or packers extending to top and
bottom boundaries) and in the case of using shorter packers
between impermeable top and bottom boundaries the inte-
gration limits in equation (28) may be set from zero to d, for
which the following simplified expressions are found.

[28] Constant head top and bottom boundaries

F ¼ 4�a
XN

n¼1

Bnuf1ðm1aÞ; m1 ¼ ð2n � 1Þ�=d ; ð29Þ

[29] Impermeable top and bottom boundaries

F ¼ 2�d

ln b
a

B0u ; ð30Þ

[30] Impermeable top and constant head bottom bound-
ary

F ¼ 2�a
XN

n¼1

Bnuf1ðm1aÞ; m1 ¼ ð2n � 1Þ�=ð2dÞ ; ð31Þ

where B0u ¼ B0=�0 and Bnu ¼ Bn =�0; i.e., dimension-
less coefficients for unit injection head. As above, f1 in
equations (29) and (31) is chosen from equations (11) and
(12) to honor a constant head or impermeable lateral bound-
ary, respectively. Interesting to note is that equation (30)
only depends on B0u, which by inspecting equation (8) with

r ¼ a in a Fourier series context, is seen to represent the
mean head along the device (for unit �0). In other words, B0
is the head required at a fully screened probe to inject an
equal flow rate Q as from a partially screened probe using
an injection head �0. Also, for a fully screened probe, Bn
for n > 0 in equation (8) become zero, and the solution cor-
rectly collapses to radial flow toward a fully penetrating
well in a confined aquifer with a constant head outer bound-
ary. Equation (30) further reflects that b/a needs to be finite
in order to achieve flow (i.e., F > 0) for a finite injection
head if both top and bottom boundaries are impermeable.

3. Results and Validation
[31] For the example configuration of equations (19) –

(25) (and NB ¼ 1280), Figure 2 depicts resulting dimen-
sionless head �p=a and dimensionless radial flux qpr/K
distributions along a fully screened well with injection
between two packers. Solid lines correspond to the case of
both top and bottom boundaries impermeable, while dashed
lines are for constant head top and bottom boundaries; the
lateral boundary is constant head in both cases. Compliance
with prescribed constant head and no flow boundary condi-
tions over their respective intervals may be easily verified
in both cases along with the fact that �p is constant but
larger than zero in the open screen intervals beyond the
packers if the adjacent boundaries are impermeable. Fur-
thermore, Figure 2b suggests (in agreement with Figure
A1) that local fluxes at the transitions between constant
head and impermeable boundary segments along the probe
or well become locally very large or infinite. Finally, it
may be correctly observed that flow along the open screen
intervals is negative (i.e., inward) if top and bottom boun-
daries are constant head (dashed line), while the direction
of flow along the open screen intervals is inward and then
outward for impermeable top and bottom boundaries (solid
line) to meet the condition of zero total inflow and outflow
over those segments as imposed by equations (24) and (25).
Figure 3 further illustrates and validates solutions by show-
ing contour plots of �ðr; zÞ for different internal and exter-
nal boundary conditions. Figures 3a and 3b correspond to
the solid and dashed lines of Figure 2, respectively. Com-
pliance with external boundary conditions is verified by
observing constant head lines approaching impermeable
boundaries perpendicularly and by constant head lines
becoming parallel to constant head boundaries in their vi-
cinity. Figures 3c and 3d represent two cases of injection
from a probe (i.e., packers extend to top and bottom boun-
daries) where the lateral boundaries are impermeable (e.g.,
as in laboratory barrel experiments). In Figure 3c both top
and bottom are constant head, while in Figure 3d, only the
top is constant head and the bottom impermeable.

3.1. Injection From a Probe (Field Conditions)
[32] As shown in Figure A1 of Appendix A, the conver-

gence behavior of F with increasing N is of the same hyper-
bolic type as with other flow field parameters and may,
hence, be conveniently extrapolated to exact solutions for
N ! 1. For an error margin of 1% in extrapolated F val-
ues, Figure 4 summarizes the resulting shape factors from
equations (29), (30), and (31) for injection from a probe
with h1 ¼ 0 and h4 ¼ d in Figure 1 as a function of s/a
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(where s ¼ h3 – h2 [L] is the length of the injection screen
vertically centered between boundaries), d/s, and different
top and bottom boundary types (thick solid line, constant
head top and bottom; thin solid line, impermeable top and
bottom; dashed line, constant head top and impermeable
bottom or vice versa). Typical for field conditions, the con-
stant head lateral boundary is located at b/a ¼ 1000, which
is large enough to not affect the outcome if at least one of
top and bottom boundaries is constant head. In case both top
and bottom boundaries are impermeable, as stated above, a
finite value of b/a is required for F > 0. As to be expected,
for a given geometric configuration, i.e., s/a and d/s, F/a is
always largest if both top and bottom are constant head and
smallest if both are impermeable. For increasing values of
d/s, however, it is seen that the types of top and bottom
boundaries have a decreasing effect on F/a, i.e., the three
curves for a given value of s/a converge to a shape factor,
whose value increases with s/a and which corresponds to an
infinite flow domain, where the types and distances of top
and bottom boundaries do not matter anymore. On the other
hand, for small values of d/s approaching 1 such that top
and bottom boundaries approach the injection screen
extremes, F/a approaches infinity if at least one of the boun-
daries is constant head (flow short-circuiting; see Appendix
B). If both boundaries are impermeable, then F approaches
a minimum equal to 2�d = lnðb=aÞ; which corresponds to
the case of a fully penetrating well in a confined aquifer.

[33] While Figure 4 is limited to injection screens verti-
cally centered between top and bottom boundaries, Figure 5
displays F/a for different values of screen length s/a and dis-
tance h1/s to a single nearby boundary. In Figure 5, d/s ¼ 50
is set to be large enough for the distant boundary to not
have a significant impact on results (compare Figure 4),
and the lateral boundary is located at infinity. Thick lines

correspond to the injection screen approaching a constant
head boundary, while thin lines are for nearby impermeable
boundaries. It is seen that for large values of h1/s, values of
F/a agree with those from Figure 4 for large values of d/s; as
h1 decreases, the screen approaches one of the boundaries.
As to be expected, if the approached boundary is constant
head, the thick lines indicate that F/a increases (up to a theo-
retically infinite value for h1 ¼ 0; see Appendix B), and if
the boundary is impermeable, then F/a decreases to
a minimum value. In general, it may be observed from Fig-
ure 5 that the proximity of the injection screen to an imper-
meable or constant head boundary does not significantly
affect F by more than an absolute value of 6a as long as h1/s
> 5. By multiplying the abscissa by s/a of each line, F/a is
obtained as a function of h1/a. The double arrows in Figure 5
are located at h1/a ¼ 20, which appears to be the limit, below
which the relative impact on F because of a nearby boundary
exceeds approximately 5%. As conductivity measurements
may vary over several orders of magnitude, the latter inter-
pretation in terms of h1/a seems to be more useful in practice.

[34] For the absence of any nearby boundaries, Figure 6
gives a graphical validation of the present approach against
previous ones defined by Hvorslev [1951] (spheroidal
approximation),

F ¼ 2�s

ln s
2aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s

2a

� �2
q� � ¼ 2�s

a sinh 2
sa

� � ; ð32Þ

by the American Society for Testing and Materials
(ASTM) [Chapuis and Chenaf, 2003] (equal surface area
spherical approximation),

F ¼ 2�
ffiffiffiffiffiffiffi
2sa
p

� 8:9
ffiffiffiffiffi
sa
p

; ð33Þ

Figure 2. (a) Hydraulic head �p=a and (b) radial flux qpr/K distributions along fully screened well for
injection between two packers. Solid lines are for the example configuration of Appendix A where top
and bottom boundaries are impermeable. Dashed lines are for the same configuration but with constant
head top and bottom boundaries.
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and by Ratnam et al. [2001] (finite element plus curve fitting),

F ¼ 0:5691sþ 7:4144
ffiffiffiffiffi
sa
p

: ð34Þ

[35] For Mathias and Butler’s [2007] full semianalytical
approach as well as Rehbinder’s [2005] long packer approx-
imation, no simple expressions are available. Figure 6 illus-
trates that the ASTM formula is in good agreement down to
s/a � 1, while Hvorslev’s formula begins to significantly
overestimate F/a below s/a � 2. The latter is a known short-
coming and is discussed by Mathias and Butler [2006], who
offer an improvement for Hvorslev’s formula for s/a < 2.
Equation (33) is based on a spherical equal surface approxi-
mation of the screen and, hence, becomes increasingly inac-
curate as s/a grows. While equations (32) and (33) are
based on geometrical simplifications, the other approxima-
tions try to honor the exact geometry of the boundaries and
rely on more complex mathematical approximations. The

agreement of the results of Ratnam et al. [2001] and Reh-
binder [2005] (thin black line) with the present results is
seen to be good over the entire range depicted. Excellent
agreement (with, in fact, indistinguishable lines in Figure 6;
thick black line) is achieved with the results of Mathias and
Butler [2007]. Yet another independent validation of the
present method may be obtained by comparison with results
from a large numerical model for a direct-push permeame-
ter of Liu et al. [2008], who report hydraulic heads at two
locations along a probe for injection from a short screen.
Agreement is good (within 5% of injection head) when
assuming impermeable top and bottom boundaries and even
better (within 0.5% of injection head) when assuming con-
stant head top and bottom.

3.2. Injection From a Probe (Laboratory Conditions)
[36] Calibration of injection probes under field conditions

is problematic, as true values of hydraulic conductivity are

Figure 3. Solutions of �ðr; zÞ for �0=a ¼ b=a ¼ d =a ¼ 10 and (a) injection between double
packers with impermeable top and bottom and constant head lateral boundaries, (b) injection between
double packers with constant head top, bottom, and lateral boundaries, (c) injection from probe with con-
stant head top and bottom and impermeable lateral boundaries, and (d) injection from probe with con-
stant head top and impermeable bottom and lateral boundaries.
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generally not available. Laboratory barrel experiments are
convenient because the entire barrel packed with test mate-
rial above a bottom gravel pack may be used as a column in
a constant or falling head conductivity experiment for
obtaining independent and relatively reliable measurements
of K. Figure 7 depicts F/a for different screen and barrel
geometries (s/a, d/a, and b/a) as well as boundary condi-
tions at the barrel bottom (gravel pack or not). The top
boundary is always constant head (i.e., water level above
test material), while the barrel wall represents an imperme-
able boundary. The thick black line is the same as in Figure
6 and corresponds to a field situation where external boun-
daries do not have a significant impact. For the remaining
lines, two lines with a particular color and pattern are given
to correspond to the same boundary and barrel geometries
(see legend). The top line of each pair of lines corresponds
to a constant head bottom boundary, while the bottom one
corresponds to an impermeable bottom. Obviously, the
particular barrel geometry and type of bottom boundary
condition significantly affect F, and hence, they need to be
accounted for explicitly in the test interpretation. However,
it is interesting to note that barrels of d/b ¼ 1 with imperme-
able bottoms (bottom blue lines) as well as barrels of d/b
¼ 2 with constant head bottoms (top green lines) lead to
shape factors very close to field conditions in the absence of
nearby boundaries (black line). For b/a > 25 this holds with
high accuracy for s/a < 10 and up to an approximate error
of 10% for s/a < 20. Thus, designing a barrel test of known
Klab such that its shape factor is equal to F under field con-
ditions allows for an extremely simple injection test inter-
pretation as Kfield ¼ KlabQfield�0lab=ðQlab�0fieldÞ : This
avoids dealing with probe specific shape factors in labora-
tory and field practice.

Figure 4. F/a for injection from vertically centered single-screen probe (no open screen intervals
except for injection screen) as a function of s/a and log10(d/s) and for different top and bottom boundary
conditions (constant head lateral boundary at b/a ¼ 1000). Thick solid line, constant head top and bot-
tom; thin solid line, impermeable top and bottom; dashed line, constant head top and impermeable bot-
tom (or vice versa).

Figure 5. F/a for injection from noncentered single-
screen probe (no open screen intervals except for injection
screen) as a function of s/a and distance to boundary h1/s
(d/s ¼ 50 and lateral boundary at infinity). Thick solid line,
approaching constant head boundary; thin solid line,
approaching impermeable boundary. Double arrows indi-
cate locations of h1/a ¼ 20.

W03510 KLAMMLER ET AL.: TRIGONOMETRIC INTERPOLATION FOR MIXED-TYPE PROBLEMS W03510

9 of 14



3.3. Injection Using Single or Double Packers
[37] The solid lines in Figure 8 summarize shape factors

F/a from the present solutions for cases of injection from a
screen interval of length s delimited by two impermeable
packers of finite (and equal) length p with open screen
intervals above and below the packers. While F/a is a func-
tion of b/a even if b/a >> 1 when both top and bottom
boundaries are impermeable, Figure 8 considers all boun-
daries constant head with b/a >> 1 and d/s ¼ 50, i.e., far
away from the screen. Shorter packers (smaller p/s), as
expected, increase F/a in an approximately constant man-
ner, which indicates that changes in packer length only
affect the flow fields in the vicinity of the screen ends, thus
being essentially independent of s/a unless s/a is very
small. It is interesting to note for practice that above p/s
� 1, F is only slightly affected by the finite length of the
packers ; especially for s/a > 5, the difference in F to lon-
ger packers is consistently smaller than approximately a.
By multiplying the values of p/s in Figure 8 with s/a from
the abscissa, lines of F/a over s/a for constant values of p/a
are obtained. The circles and squares represent points on
such lines for p/a ¼ 1 and 4, respectively. Similar to Figure
5, it may be observed that the influence of packer length on
F may be more conveniently expressed in relative terms
using p/a instead of the perhaps more intuitive first choice
p/s. In particular, it can be inferred from the circles and
squares in Figure 8 that p/a ¼ 1 and 4, for example, corre-
spond to increases in F by approximately 20% and 10%,
respectively, with respect to p >> a. The influence of
nearby top or bottom boundaries on double-packer injec-
tion tests depends on a series of parameters (s/a, p/a, h1/a,
and type of boundary approached) and is best evaluated
individually for a given test configuration (i.e., s/a and/or
p/a). For injection between a packer and an impermeable

bottom layer (single packer test), F/a may also be found
from Figure 8 by entering the chart with p/(2s) instead of p/
s and 2s/a instead of s/a and then halving the respective
outcome for F/a. This is a consequence of the fact that the
flow field for a single-packer injection test corresponds
exactly to one half of the flow field of a double-packer
injection test.

[38] Figure 8 is also valuable for the situation of injec-
tion from a probe if p is taken to represent the impermeable
probe tip length under the injection screen. For this case, a
lower bound for F/a is found by assuming that the inner
boundaries above and below these fictitious packers are
impermeable, while an upper bound for F/a is found by
assuming that the inner boundaries above and below the
fictitious packers are constant head, i.e., infinitely conduc-
tive. In reality, the inner boundary above the top packer is
impermeable (probe casing), and below the bottom packer
(i.e., below the probe tip) is the transition to a cylinder of
some finite conductivity. From this, it may be concluded
that errors in F because of the conceptual assumption of a
long probe tip beneath the injection screen become less
than a for p/s � 1 (given s/a � 5) or less than 10% for p/a
� 4.

[39] The scenario of double-packer injection with distant
boundaries is also considered by Mathias and Butler [2007]
and by Rehbinder [1996] for a short-packer approach, and
their results are used for additional validation of the present
results in Figure 8. While Rehbinder’s short-packer solu-
tion (shown as dashed lines for p/s ¼ 0.05 and 1) presents
moderate agreement, the results of Mathias and Butler
[2007] are again indistinguishable from the present ones.
However, as shown in Appendix B, Mathias and Butler’s
[2007] result for infinitesimally short packers contains an
unsatisfactorily divergent infinite series. The 10,000 terms

Figure 6. F/a from different approaches for injection from probe and different injection screen geome-
tries. All boundaries are constant head and distant with d/s ¼ 50 and b/a >> 1.
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Figure 7. F/a for injection in laboratory barrel setups of different geometries s/a, d/a, and b/a as well
as different bottom boundary types. Top and lateral boundaries are always constant head and imperme-
able, respectively. For each line pattern and color, there are two lines; the top line is for constant head
bottom boundary (e.g., gravel pack hydraulically connected to constant head upper boundary), and the
bottom line is for impermeable bottom boundary (no gravel pack). The bottom dashed blue and top
dashed green lines are practically indistinguishable, which is also true for the bottom solid green and top
solid red lines.

Figure 8. F/a for different injection screen (s/a) and packer (p/s) geometries from the present approach
with all boundaries constant head and distant at d/s ¼ 50 and b/a >> 1 (solid lines; indistinguishable
from the full solution of Mathias and Butler [2007]). Dashed lines are Rehbinder’s [1996] short-packer
approximation for p/s ¼ 0.05 and 1. Circles indicate locations of p/a ¼ 1, and squares indicate p/a ¼ 4.
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used to approximate the infinite series in their equations
(21) and (31) are insufficient to achieve convergence for
very small values of p/s. However, the regression relation-
ship given in their equation (40) accurately approximates
the case when p/s ¼ 0.005 and should be assumed for p/s ¼
0.005 (as opposed to p/s ¼ 0, which is what is currently
stated in their paper). Fortunately, this does not impair the
validity and relevance of Mathias and Butler’s [2007]
results for all practical purposes.

3.4. Anisotropic Conductivity
[40] In practice it is common to encounter situations

where hydraulic conductivity in the horizontal direction Kr

[L/T] is significantly different (e.g., several orders of magni-
tude larger) than its vertical counterpart Kz [L/T]. Given the
respective anisotropy ratio �2 ¼ Kz=Kr (dimensionless), a
scaling of the horizontal coordinate to r0 ¼ r� while main-
taining z0 ¼ z allows for treating the resulting flow domain
as isotropic with conductivity Kr (such that continuity of
flows after scaling is assured [Hvorslev, 1951]). Thus, the
present approach remains generally valid if hydraulic con-
ductivity is axially anisotropic with the principal anisotropy
axes being horizontal and vertical. In particular, results for
F/a reported above remain directly applicable if a0 ¼ a� is
used instead of a such that equation (1) estimates Kr to sub-
sequently obtain Kz ¼ �2Kr : However, � is generally not
known before hand and needs to be assumed or measured
independently.

4. Summary
[41] Subsurface hydraulic conductivity K is a fundamental

hydrogeological parameter whose in situ measurement is
generally performed through injection tests from screened
probes or well screen intervals delimited by impermeable
packers. While K is directly proportional to an observed ratio
of injection flow rate Q to injection head �0, it is also pro-
portional to the shape factor F, which is determined by the
geometry of the injection flow field and, hence, the geometry
of the injection device (internal boundary conditions) as well
as the flow domain (external boundary conditions). For the
purpose of evaluating F over a wide range of scenarios, the
present work presents general solutions to the axisymmetric
steady state flow problem for arbitrary combinations of
external boundary types and distances. The internal bound-
ary may consist of an arbitrary number of impermeable and
constant head intervals. The resulting mixed-type boundary
value problem is solved directly in a novel and relatively
simple way using a trigonometric interpolation approach.
This avoids previous conversion into a single boundary type
problem as required with recent alternative approaches and
allows for a simple (hyperbolic) extrapolation from approxi-
mate to exact results. Through an adequate scaling of the ra-
dial coordinate the approach becomes generally valid for
flow domains with anisotropic conductivity, where K is dif-
ferent between the vertical and horizontal directions.

[42] A series of dimensionless charts is given to allow
for a quick determination of F for different injection screen
geometries s/a under a range of scenarios: (1) injection
from a probe (or using long double packers) centered
between different combinations of impermeable and con-
stant head top and bottom boundaries at different distances,

(2) injection from a probe (or using long double packers)
near a single impermeable or constant head boundary, (3)
injection in laboratory barrel experiments with all bounda-
ries nearby, the lateral being impermeable, and (4) injec-
tion between double packers of different lengths and
distant external boundaries. Interesting findings include F
being affected by less than 5% if a minimum distance of
approximately 10 times the probe diameter is maintained
to an impermeable or constant head horizontal boundary
(Figure 5). Similarly, using a minimum packer length of
twice the well diameter does not affect F by more than
10% compared to longer packers; the latter also applies to
the length of impermeable tips of push-in probes below the
screen. For injection tests in sand barrels (e.g., for probe
calibration) it is found that shape factors within 10% of
those of field situations (in the absence of nearby bounda-
ries) may be created by using d/b ¼ 1 for impermeable bar-
rel bottoms and d/b ¼ 2 if a gravel pack at the barrel
bottom is deployed to establish a constant head boundary
(with water freely draining out of barrel).

[43] Comparison and validation of results is performed
against a number of existing approximate, semianalytical,
and numerical approaches available for scenarios where the
influence of external boundaries is negligible. Notably, re-
spective shape factors of the present approach are identical
to those obtained by the method of Mathias and Butler
[2007]. However, for extreme cases of very short packers,
Mathias and Butler’s [2007] solution was found to be
incomplete. We present a respective correction in the form
of a fully analytical solution for the limit of infinitesimally
short packers (see Appendix B).

Appendix A: Convergence Behavior
[44] For the wide range of boundary configurations inves-

tigated, it was observed that the Bn coefficients always con-
verge to zero as n increases and that particular flow field
parameters (e.g., F or local heads and fluxes) converge
hyperbolically toward a stable value for NB ! 1 (such
hyperbolic convergence is also observed by Boast and Kirk-
ham [1971]). Figure A1 represents examples of the latter
for arbitrarily chosen b=a ¼ d =a ¼ �0=a ¼ 10; h1/a
¼ 4, h2/a ¼ 5, h3/a ¼ 7, and h4/a ¼ 8, i.e., for injection
from a screen of length 2a delimited by two packers of
length a, which are asymmetrically located in a stratum
between two confining layers. Depicted as functions of 1/
NB are the relative heads �=a (dashed lines) and relative
fluxes q/K (dot-dashed lines) for z/a ¼ 4.5, 6, and 8 (indi-
cated in the indices), i.e., for the center of the bottom
packer, the center of injection interval, and the top extreme
of top packer, respectively. NB is increased from an initial
value of 10 through consecutive multiplication by 2 until
1280 (circles). It is observed that all �=a and q/K approach
a relatively straight line toward the left when plotted over
1/NB. This allows for simple linear extrapolation of two
consecutive data points onto 1/NB ¼ 0, i.e., the exact solu-
tions for NB ! 1, and a sufficiently large value of NB is
reached when two consecutive extrapolated values are
within a prescribed margin. An exception to this is q8/K,
which provides some evidence that flow is singular (infinite
flux) at the transitions between impermeable and constant
head boundaries along the well or probe. As infinite fluxes
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are physically impossible, the governing equation (equation
(3)) of the present approach appears to be invalid near the
extremes of well casings and packers. However, F con-
verges to a finite value, indicating that injection flow does
remain finite (integrable). Successful validation of F against
independent (e.g., numerical) methods, which do not pro-
duce these flow singularities, demonstrates that equation (3)
is, indeed, physically valid everywhere else (i.e., at all non-
singular locations) in the flow domain. Although not a nec-
essary requirement, maximum convergence with NB is
achieved if the screen and packer limits coincide with dis-
cretization interval limits and if average values over discre-
tization intervals are used for any location inside a
respective interval. An attempt to lower required NB by
enlarging interval spacing distant from the screen and pack-
ers (as done by Mathias and Butler [2007]) leads into the
context of trigonometric interpolation for unevenly spaced
data and was not further pursued as computational time was
found not to act as a limiting factor.

Appendix B: Analytical Solution for Infinitesi-
mally Short Packers

[45] If h1 ¼ h2 and h3 ¼ h4 in Figure 1, the impermeable
packers become infinitesimally short, and the internal
boundary conditions are all of the constant head type,
which is a significant simplification with respect to the gen-
eral mixed boundary problem. A fully analytical solution is
found for this case and provides some interesting theoreti-
cal insight on whether total injection flow becomes infinite
or not, a topic which Rehbinder [1996] and Mathias and
Butler [2007] are in disagreement about. For the sake of
concurrence with these previous studies, consider constant
head top, bottom, and lateral boundaries, such that equa-

tions (7) and (10) apply. Equation (10) is identical to 1 for
r ¼ a (i.e., along the well surface), and if N!1, the coef-
ficients Bn in equation (7) become the coefficients of a
sine-Fourier series of the known head distribution along the
well (�ða; zÞ ¼ 0 for 0 � z � h2 and h3 � z � d ;
�ða; zÞ ¼ �0 for h2 � z � h3), which may be found as

Bn ¼
2�0

n�
cos m1h2ð Þ � cos m1h3ð Þ½ �; m1 ¼ n�=d ; ðB1Þ

such that the analytical solution of the problem is complete.
By using equation (28) a general expression of F is
obtained as

F ¼ 4a
X1
n¼1

f1cðm1aÞ
n

cos m1h2ð Þ � cos m1h3ð Þ½ �2 : ðB2Þ

[46] From equation (11) it may be seen that f1c(m1a) con-
verges to 1 as n increases and the squared term in brackets
is always positive. This and the fact that

P1
n¼1

1
n!1 is

sufficient to prove that equation (B2) does not converge;
that is, F and, hence, Q are infinitely large in the case of
infinitesimally short packers (the only exception to this is
the case of h2 ¼ h3, i.e., when the injection screen interval
itself becomes infinitesimally short). Clearly, infinitesimally
short packers and infinite injection flows are beyond physi-
cal reality; however, the result bears some significance in
that practitioners are warned from arbitrarily minimizing
packer sizes as, depending on particular site conditions, the
governing equation (3) based on Darcy flow may not hold
over significant portions of the flow domain near the short
packers. These conclusions are also applicable to injection
screens immediately next to a top or bottom constant head

Figure A1. Hyperbolic convergence of F/a, �=a, and q/K with NB for injection using double packers
between two confining layers, where indices indicate locations z/a ¼ 4.5, 6, and 8 along the well. Here
b=a ¼ d =a ¼ �0=a ¼ 10; h1/a ¼ 4, h2/a ¼ 5, h3/a ¼ 7, and h4/a ¼ 8.
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boundary where the geometric distance (flow paths) between
source (screen) and sink (boundary) is even shorter. Note,
however, that flow singularities discussed in Appendix A do
not share the property of causing F and Q to be infinite.

[47] In contrast, if both top and bottom boundaries are
impermeable, equation (30) dictates that F has to be finite at
steady state even for infinitesimally short packers since B0u
was found to be the (naturally finite) mean head along the
well. Also, the same flow entering the open screen intervals
needs to leave them again and reenter the aquifer flow field
until meeting the lateral constant head boundary. Using a sim-
ilar procedure as in equations (B1) and (B2) for constant head
top and bottom boundaries, it may be shown that the head dif-
ference between the injection screen and the open screen
intervals above and below the infinitesimally short packers
becomes infinitesimally small, such that the whole well
behaves as if injection was uniformly applied along all of it
(no packers present). For a given set of parameters a, b, and d
the shape factor F is then a maximum, independent of s.
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