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Abstract

We study Hartle-Hawking-like states of quantum field theories on asymptotically

AdS black hole backgrounds, with particular regard to the phase structure of interacting

theories. By a suitable analytic continuation we show that the equilibrium dynamics

of field theories on large asymptotically AdS black holes can be related to the low

temperature states of the same field theory on the AdS soliton (or pure AdS) back-

ground. This allows us to gain insight into Hartle-Hawking-like states on large-radius

Schwarzschild- or rotating-AdS black holes. Furthermore, we exploit the AdS/CFT

correspondence to explore the physics of strongly coupled large N theories on asymp-

totically AdS black holes. In particular, we exhibit a plausibly complete set of phases

for the M2-brane world-volume superconformal field theory on a BTZ black hole back-

ground. Our analysis partially resolves puzzles previously raised in connection with

Hawking radiation on large AdS black holes.
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1 Introduction

Quantum fields on black hole spacetimes display a variety of physical phenomena, including

vacuum polarization, particle production etc., see e.g. [1] for a detailed discussion of these

features. However, even for free fields the details of such effects are typically difficult to

calculate; for instance the expectation value of the stress tensor of a free conformally coupled

scalar in the Schwarzschild black hole background has been computed analytically only in a

WKB approximation [2]. The situation is of course much worse for interacting theories.

The one universal feature of quantum fields on black hole spacetimes is that equilibrium

states are thermal. Indeed, for any field theory one can formally define the Hartle-Hawking

state via a Euclidean path integral and, due to periodicity in Euclidean time, it will satisfy
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the Kubo-Martin-Schwinger (KMS) condition; see e.g. [3, 4] for reviews and references. On

asymptotically flat backgrounds, one may use the fact that this construction reduces to

the thermal path integral in flat space in the region far from the black hole to understand

properties of this equilibrium state. For example, the stress tensor in this asymptotic region

will be thermal at the black hole temperature. Of course, non-equilibrium processes are more

difficult to study; cf., [5, 6, 7, 8, 9].

However, not all black holes of interest are asymptotically flat. Indeed, asymptotically

anti-de Sitter (AdS) black holes provide an important theoretical laboratory for study-

ing many aspects of black hole physics. Historically, this was due to the fact that large

Schwarzschild-AdS black holes have positive specific heat and are thermodynamically sta-

ble. In addition, such black holes have recently been of great interest in the context of the

Anti-de Sitter/conformal field theory (AdS/CFT) correspondence [10] and its applications.

For such black holes, the fact that Anti-de Sitter space acts like a confining box means

that physics in the asymptotic region remains coupled to the black hole. As a result, de-

spite the fact that Hartle-Hawking states again satisfy a KMS condition, interesting physical

properties cannot be read off directly, even in the asymptotic region.

Our purpose below is to provide some tools to address this situation, and to better un-

derstand the physics of Hartle-Hawking-like equilibrium states of field theories on both static

and rotating asymptotically AdS black hole backgrounds. We are in particular motivated

by a puzzle raised in [11], which considered N = 4 SU(N) super-Yang-Mills (SYM) the-

ory at large N and strong coupling on Schwarzschild-AdS4 backgrounds. On large-radius

Schwarzschild-AdS4 black holes, [11] described a state where the stress tensor1 was only

O(1) at large N , and which was argued to dominate the thermodynamics. The particular

arguments given in [11] involved the AdS5/CFT4 correspondence, but this fact will play no

role in our main discussion. The puzzle was that, while this theory is known to have an O(1)

density of states at low temperatures on, say, the pure AdS4 background (confinement), it

has an O(N2) density of states (deconfinement) on AdS4 at high temperatures, above the

so-called deconfinement transition [12]. Intuitively this is because the background curvature

of the AdS spacetime provides an IR cut-off for the field theory, effectively putting it in

a box of size `, the AdS radius. (This makes it similar to the theory on S3 × R where

one has a confinement-deconfinement transition at large N [13].) Thus, due to the high

Hawking temperature, one might naively expect similar deconfined behavior on large-radius

Schwarzschild-AdS4 backgrounds and a corresponding O(N2) stress tensor, contrary to ac-

tual findings.

In this paper, we address this puzzle, and the general issue of characterizing Hartle-

Hawking-like states of asymptotically AdS black holes, in several stages. We first review

some basic properties of Schwarzschild-AdS black holes in §2, where we also discuss various

possible notions of confinement/deconfinement for interacting theories on asymptotically

1Apart from a contribution due to the conformal anomaly which is proportional to the background metric.
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AdS backgrounds. Due to the fact that AdS acts like a finite box, these notions are somewhat

more subtle than on asymptotically flat backgrounds.

We then argue in §3 that a particular analytic continuation (specifically a double Wick

rotation) can give a useful perspective on Hartle-Hawking-like states of asymptotically AdS

black holes; we consider both static and rotating black holes. For the special cases of the

3-dimensional Bañados-Teitelboim-Zanelli (BTZ) black holes, this technique provides an

exact map between rotationally-invariant equilibrium states on BTZ backgrounds satisfying

a certain Z2 symmetry and similar such states on pure AdS3 for any quantum field theory.

The interesting point is that this transformation maps states on high temperature BTZ

backgrounds to low temperature states on AdS3 (and vice versa). In higher dimensions, a

similar precise map can be found between U(1)-invariant equilibrium states (again satisfying

a Z2 symmetry) on planar-AdSd black hole backgrounds and such states on AdSd soliton

backgrounds.2 Since large-radius Schwarzschild-AdS4 black holes are well approximated by

the planar AdS4 black hole geometry, these results in particular resolve the puzzle raised in

[11] (at least partially) if the theory ‘confines’ in the sense of having an O(1) vacuum energy

on the AdS4 soliton background.

While the arguments of section §3 hold for any quantum field theory, they only suffice

to relate phases on the above pairs of backgrounds. More input is needed to determine

the actual phases that arise for any particular theory. We therefore turn in §4 to a detailed

investigation of the phases of a particular class of theories related to the puzzle of [11], namely

the 3- and 4-dimensional strongly interacting large N theories which admit an AdS/CFT

correspondence.

We begin with the N = 4 SYM theory studied in [11] (or more generally a large N

field theory with an AdS5 holographic dual). We find evidence that the theory does indeed

confine with O(1) vacuum energy on the AdS4 soliton. As noted above and discussed in

greater detail in §3, this partially resolves the puzzle described in [11]. We also show that

other mechanisms which lead to small stress tensors such as those described in [14, 9] do

not apply to this case. In particular, we find no sign of confinement in the prescribed phase

on the original Schwarzschild-AdS4 background itself. However, finding the classifying set of

phases for d dimensional CFTs on asymptotically AdS backgrounds with d > 3 remains an

interesting open problem.

To better understand the phase structure of similar theories on AdS black holes, we

turn our attention to low dimensional CFTs in §4. Specifically, we also investigate three-

dimensional conformal field theories arising on the M2-brane world-volume [15] or general-

izations thereof, (cf. [16] for recent developments in understanding these theories) on BTZ

black hole backgrounds. In this case, we are able to construct a (plausibly) complete set of

dual gravity solutions by exploiting the conformal flatness of the BTZ black hole. The dual

2The AdS soliton background as we review later is related by a double Wick rotation to the planar

Schwarzschild-AdS black hole.
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bulk geometries are asymptotically AdS4 geometries whose boundary metric is conformal to

BTZ. The relevant dual geometries turn out to be the AdS4 bubble of nothing or the so-

called BTZ black string spacetime. The former spacetime is the dominant saddle point for

low temperature BTZ black holes, while the latter holographically captures the physics on

high temperature BTZ black hole backgrounds. This analysis therefore allows us to identify

relevant phases of the theory for BTZ black holes of any temperature and angular velocity.

The general picture emerging from this detailed analysis again shows that an O(1) stress

tensor in a given phase need not be correlated with other properties familiar from confined

phases in flat space. We close with a brief discussion in §5.

2 Thermodynamics and confinement on asymptotically AdS back-

grounds

We commence our discussion of quantum fields on non-dynamical asymptotically AdS space-

times, by noting some of the key features that are special to these geometries. We will mainly

focus on asymptotically AdS black hole geometries, though we will have occasion to discuss

some non-black hole spacetimes as well. The key point distinguishing asymptotically AdS

spacetimes is of course the timelike nature of I , which in particular implies that one needs

to specify additional boundary conditions in order to discuss classical and quantum fields in

these geometries.3 Relatedly, the global AdS geometry acts as a confining box, regulating

some of the long-distance IR divergences that usually plague discussions of thermal physics

in asymptotically flat spacetimes. In fact, as originally discussed in [17] one could use AdS

as a natural infra-red regulator to study interacting quantum field theories;4 we will have

occasion to discuss this in detail below.

2.1 Thermal behaviour of AdS black holes

It is natural to begin with static spherically symmetric black holes in AdSd spacetimes, whose

metric is given by

ds2 = −fd(r) dt2 +
dr2

fd(r)
+ r2 dΩ2

d−2 , (2.1)

3In this paper we will extensively use the fact that the AdS spacetimes are conformal to half of an Einstein

static universe. This in particular means that we can inherit boundary conditions from the ESU for quantum

fields in AdS, a choice which sometimes is referred to as ‘transparent boundary conditions’. We will employ

these boundary conditions exclusively in the current discussion. A more general discussion of other boundary

conditions will appear elsewhere.
4We would like to thank David Tong for bringing this to our attention and for useful discussions on this

issue.
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with

fd(r) =
r2

`2
+ 1−

(r+

r

)d−3
(
r2

+

`2
+ 1

)
. (2.2)

where ` determines the AdS scale and r+ is the horizon radius. While small AdSd black

holes (those with r+ �
√

d−3
d−1

`) are similar to their asymptotically flat counterparts, the

thermodynamic properties of large AdS black holes are quite different. For example, large

AdS black holes have positive specific heat and are thermodynamically stable, while asymp-

totically flat black holes are thermodynamically unstable. This difference results from the

interaction between the horizon and the asymptotically AdS boundary conditions and has

much to do with the diverging redshift experienced by observers near AdS infinity. This

fact plays an important role in the AdS/CFT correspondence where the large black holes in

AdSd are dual to the high temperature phase of the dual field theory.

The temperature of a Schwarzschild-AdSd black hole is

TH =
(d− 1) r2

+ + (d− 3) `2

4π r+ `2
. (2.3)

However, from the point of view of local dynamics in these spacetimes, the diverging redshift

near the boundary ensures that the high temperatures associated with large values of r+ are

not locally observable. In particular, for a free field in the Hartle-Hawking state outside a

large Schwarzschild-AdS black hole, no static observer ever experiences a local temperature

significantly greater than the Unruh temperature associated with their proper acceleration,

despite the fact that the black hole temperature TH diverges as r+ →∞. While the state is

not precisely thermal with respect to freely falling observers, it is nevertheless true that no

local freely falling observer anywhere outside the horizon would find significant excitations

above the AdS scale; see for example [18]. This fact may come as a surprise to readers

most used to thinking about asymptotically AdS spacetimes as the AdS (or bulk) side of the

AdS/CFT correspondence. However, one should recall the key role played in AdS/CFT by

the conformal rescaling performed to obtain field theory observables in the latter context.

By stripping off the leading r2 fall-off in the gravitational potential, the AdS/CFT dictionary

relates local results in the CFT to the global AdS temperature (2.3).

A simple argument that local AdS measurements do not see high temperatures is to

recall that large Schwarzschild-AdSd black holes are well-approximated by so-called planar

AdS black holes with translationally invariant horizons. In particular, for r+ � `, (2.1) with

(2.2) reduces to

ds2 = −r
2

`2

(
1− rd−1

+

rd−1

)
dt2 +

dr2

r2

`2

(
1− rd−1

+

rd−1

) + r2 dx2
d−2 . (2.4)

Now any two such planar black holes are related by a diffeomorphism (see e.g. [19]), since

the parameter r+ can be absorbed by scaling the coordinates t,x. This means that local
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observations are independent of the temperature T = (d−1) r+
4π `2

of the planar black hole and,

since the AdS scale is the only scale in the problem, local observers see no excitations above

this scale. This conclusion was verified in [20] using a simplified model based on spherical

reduction, and in [11] using the Page approximation [2] for a conformally coupled scalar field.

Thus, while from a global perspective large Schwarzschild-AdS black holes become very hot,

locally one might say that they are at most only lukewarm. In what follows we will often

use TH to parameterize the black hole, but in light of the above we refrain from using the

terms ‘hot’ or ‘cold’ to describe the associated ensemble.

Given that large AdS black holes never get really hot from the local perspective, one

might wonder if this result could be enough to resolve the puzzle raised in [11] regarding

the small stress tensor on large Schwarzschild-AdS black holes. Recall that [11] considered

a large N conformal theory with N2 degrees of freedom, such as the SU(N) N = 4 SYM

on asymptotically AdS spacetimes. These theories have a density of states of O (N2) at

large temperatures on AdS4 (which is similar to their behaviour on R3,1). However, a holo-

graphic computation5 revealed that the theory actually has only an O (1) stress tensor in

the Hartle-Hawking state on high-temperature Schwarzschild-AdS4 backgrounds. In [11] this

was interpreted as evidence for a confined phase (in parallel with the suggestion of [14]). The

surprise was that confinement would occur at high temperatures. Given that local observers

do not experience high temperatures, we see that there is no immediate tension. Indeed,

the theory in question is known to have an O(1) density of states on pure global AdS4 at

temperatures below the confinement transition at Tc ∼ `−1, where ` is the AdS scale. How-

ever, our detailed investigation of this phase in §4.2 will show that other expected properties

of confinement fail to hold in this phase. Instead, we will suggest an alternate mechanism

leading to small i.e. O(1), stress tensors.6

To prepare for the above mentioned analysis, we must first address what is meant by

confinement on asymptotically AdS backgrounds, especially in the presence of black holes.

A moment’s thought reveals that this notion is not as straightforward as one might expect.

We now turn to discuss the issue in some detail.

2.2 Notions of confinement in quantum gauge theories

In interacting field theories, phase transitions that change the number of low-energy effective

degrees of freedom are commonplace. As a result, the response of the field theory to long-

5As we review in §4, the holographic dual spacetime is itself a known negatively curved AdS black string

geometry in one higher dimension, whose asymptotic behavior readily yields the corresponding boundary

stress tensor.
6In fact as we describe later the situation is reminiscent of N = 4 SYM on a Scherk-Schwarz circle, where

naively the true vacuum state has an O(N2) stress tensor, while an excited state has O(1) stress tensor at

zero temperature. In this case the resolution is simple: one just measures physical quantities relative to the

true vacuum state.
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wavelength disturbances, such as deformations of the background metric, can differ greatly

between the two sides of the transition. Of particular interest to us are the confinement-

deconfinement transitions, present in certain gauge theories. To understand the distinction

between the phases we will recall several established notions of confinement which are avail-

able and describe their relative merits for applications to quantum fields on our backgrounds.

The upshot of our discussion will be that while the last of the definitions listed below is more

appropriate than the other two for horizon-free asymptotically AdS spacetimes, no conven-

tional definition provides a clean notion of confinement in asymptotically AdS black hole

backgrounds (suggesting that perhaps no such definition exists).

1. The qq̄ potential: For non-abelian gauge theories such as QCD in flat space, confined

phases can be defined in terms of the induced potential between external quarks and anti-

quarks. In a confining theory the external quark can be introduced only at an infinite energy

cost. Correspondingly, the qq̄ potential diverges linearly at long distance, or equivalently the

expectation value of the spatial Wilson loop exhibits an area law. In this context, one can

also define a confinement scale associated with the distance at which the potential transitions

from some (generally softer) short-distance behavior to the long-distance linear potential.

2. Mass gap: An alternative viewpoint on confinement is to phrase the question in terms

of the dynamical generation of a mass gap in theories with no massive fundamental matter.

For instance in large N pure QCD in flat space, due to the non-trivial renormalization group

flow, one expects that the theory dynamically generates a mass scale ΛQCD, though proving

this of course still remains an unsolved problem.

3. The density of states: Yet another way to characterize the physics of confinement

is to consider the density of states D(E) which measures the number of available states in

some small energy band centered at E. This is expected to be small in the confined phase:

for instance, due to the diverging long-distance potential, quarks are bound into a relatively

small number of color-neutral excitations such as hadrons or glueballs. Now if we consider

a SU(N) gauge theory at large N , the number of such singlet states is only O(1) while

the number of charged excitations would have been O(N2). It therefore follows that in the

confined phase the entropy is7 S = logD(E) ∼ O (1), as is the density of states. Of course,

on Minkowski space the actual density of states diverges in either phase, but the density of

states per unit volume is well-defined and behaves as above.

While these notions are inter-related in certain familiar circumstances, it is useful to pick

one definition for use below. In order to do so, we now briefly discuss their relative merits

in the context of current interest.

7A more invariant characterization of this phenomenon is in terms of the central charge c at the UV fixed

point of the theory; in the confined phase the entropy is O (1), while it is O (c) in the deconfined phase.
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2.3 Confinement on asymptotically AdS backgrounds

Characterizing the confined and deconfined phases directly in terms of the density of states

is quite useful when we consider gauge theories on spatially compact manifolds, such as

S3×R, where the notion of a long-distance potential is ill-defined on scales L larger than the

size R of the S3; see e.g. [21]. Field theories on Anti-de Sitter space appear to be another

such context where the long-distance qq̄ potential fails to provide a useful characterization of

confinement (see [17] for an early discussion) and the density of states definition is preferred.

Firstly, we note that any theory in AdS experiences a diverging gravitational potential at

infinity, though this has little to do with the separation of charges. Secondly, we wish to

examine the dynamics of conformal field theories such as N = 4 SYM on these spacetimes,

to make contact with the issues raised in [11].

To elaborate on this second point, recall that AdSd is conformally equivalent to (half of)

the Einstein static universe, ESUd = Sd−1 ×R, and conformal gauge theories confine on the

ESU. The latter statement is in fact a consequence of kinematics; gauge invariance (through

the Gauss law constraint) on compact spatial manifolds forces the low energy excitations to

be singlets. One expects therefore that, with an appropriate choice of boundary conditions,

such theories should also confine on AdSd. However, this confinement will not be associated

with a divergence in the qq̄ potential (other than the diverging gravitational potential noted

above). The point is that the conformal transformation maps the equator of ESUd to the

asymptotic region of AdSd and, as a result, relates the long-distance behavior in AdSd directly

to short-distance properties on the ESU. This is basically controlled by the short-distance

UV fixed point of the theory and should be universal for all states. In fact one finds that the

non-gravitational part of the potential has a finite limit at large AdSd separations in all phases

(confined or deconfined) of the theory. While it is still interesting to ask if the potential in

some phase may display linear behaviour over some range of scales Lmax � L � Lmin, we

will not take this as a fundamental definition of confinement.

As a matter of fact, an early discussion of confinement in AdS spacetimes can be found

in [17] where the authors argue that the negative curvature of the background provides a

natural setting to study infra-red physics of interacting field theories such as QCD. Noting

that the conventional Wilson loop area law (or the static qq̄ potential) doesn’t capture the

essence of confinement (for reasons described above or more heuristically by noting that the

negative curvature implies that areas and volumes scale the same way), the authors of [17]

propose looking at annular Wilson loops separated in the AdS radial direction, i.e., imagining

that the qq̄ pair are situated at r = rq and r = rq + δq respectively with rq � `. One would

then obtain a small subleading contribution to the qq̄ potential on top of the divergent result

(for rq � `) due to the AdS asymptotics. However, since this notion of confinement is a small

effect buried underneath the curvature effects, one expects it to correlate only weakly with

other properties of the state such as the expectation value of the stress tensor. In addition,

since this criterion is only sensitive to the asymptotic behavior of the state, for conformal
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field theories it is again determined entirely by UV properties of the vacuum on the ESU.

On the other hand, because the gravitational potential of pure AdS effectively puts the

theory in a “box” of size set by the AdS scale `, the density of states is finite at finite N .

Its large N scaling thus gives a sharp criterion to define confined versus deconfined phases

which is not determined by a purely UV effect. We will therefore use this property below

to define confinement in horizon-free asymptotically AdS spacetimes. We leave any relation

between the density of states and a possible linear regime in the qq̄ potential as a topic for

future investigation.

While this takes care of horizon-free backgrounds, the most interesting asymptotically

AdS backgrounds will contain black holes. In such cases, the extreme redshift at the black

hole horizon typically introduces new infra-red (IR) divergences. For free fields one can

readily show that the Hamiltonian has continuous spectrum, and one expects a similar result

for any well-defined quantum field theory. As a result, comparing the density of states in

two phases would require some notion of an IR cutoff near the horizon. Of course, this also

makes the notion of the mass gap hard to use to characterize confinement.

While one could seek a useful construction of such a cut-off, and while one could attempt

to compare various phases in the limit where this cutoff is removed, one does not expect

the result to be particularly convenient as a classification tool. This is because black hole

horizons can be polarized by nearby charges, even if the black hole has no net charge. In

particular, if one envisions charged particle in a confined phase as being connected by string-

like flux tubes, the flux tubes from charges close to the horizon can effectively end on the

horizon instead of on other particles. As a result, separating pairs of charges in the direction

along the black hole horizon requires little energy, so long as the charges are sufficiently

close to the horizon. One therefore expects that the density of states behaves in the same

(deconfined) manner in any state as this IR cut-off is removed, no matter what the local

physics farther from the black hole is. As a result, we will generally avoid speaking of confined

or deconfined phases on black hole backgrounds. We will also avoid discussing the density

of states on these backgrounds, though as advertized we will investigate other features (such

as the qq̄ potential) related to the above concepts of confinement in §4.

3 Field theories on AdS black holes

Having described some basic issues concerning quantum field theory and phase transitions

on asymptotically AdS black hole backgrounds, we now turn to a more detailed discussion

of quantum fields in these backgrounds. We begin with the general structure of equilibrium

states on stationary AdS black hole backgrounds. While we could focus directly on so-called

global black holes such as the Schwarzschild-AdS spacetime (2.1), it is convenient to first

consider the planar black holes (2.4) which approximate (2.1) in the large black hole regime.
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This has the advantage of not only being a bit simpler, but also of drawing out the key

features that distinguish AdS black holes from their flat space counterparts. Furthermore,

to facilitate explicit computations, it is useful to consider the three dimensional BTZ black

hole spacetime, which again offers useful insights. We will however keep both the mass and

the angular momentum of these BTZ black holes as free parameters, in order to explore the

full phase space of such stationary configurations.

Our primary interest is in equilibrium states for the quantum fields (although we allow

for unstable phases), for which the notion of equilibrium implies a time-translation sym-

metry that allows for analytic continuation. We also assume a second spatial symmetry

corresponding to translations for planar AdSd and rotations in the global case and for BTZ.8

Furthermore, we will demand that simultaneous time and parity reversal along the spatial

isometry direction leave the quantum state invariant. This discrete Z2 symmetry allows us

to consider double Wick rotations, which we will use as a crutch to identify some of the

features of interest. We begin with a discussion of quantum fields in BTZ spacetimes in §3.1

and then turn to the higher dimensional examples in §3.2.

3.1 Field theories on BTZ black hole background

Let us first discuss field theories on BTZ black holes. The (rotating) BTZ spacetime is

described by the metric

ds2 = −
(r2 − r2

+)(r2 − r2
−)

`2 r2
dt2 +

r2 `2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2

(
dφ− r+ r−

` r2
dt
)2

, (3.1)

where ` is the AdS scale and r± parameterize the outer and inner horizons of this station-

ary spacetime, in terms of which one can express the mass M and angular momentum J

parameters9 as

M =
1

`2

(
r2

+ + r2
−
)
, J =

2

`
r+ r− . (3.2)

Since we are interested in Hartle-Hawking-like states, it is natural to consider the com-

plexified BTZ spacetimes. Recall that if we consider the static BTZ black hole with r− = 0

then the analytically continued Euclidean geometry can be used to define the Hartle-Hawking

state of the quantum field theory since it naturally implements the KMS condition. The more

8Readers puzzled by our assertion that equilibrium Hartle-Hawking states exist for rotating AdS black

holes (in contrast to their asymptotically flat cousins for which such states do not exist [22]) should see

footnote 13 in §3.2 for an explanation.
9Note that when the coordinate φ is allowed to range over entire R, the metrics (3.1) for all r± are

diffeomorphic to each other and to pure AdS3 [23]. However, the parameters M,J take on invariant meanings

if one defines φ to be periodic. We take this period to be 2π so that M and J are the usual mass and angular

momentum of the BTZ black hole.
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general stationary spacetimes (3.1) are periodic under the combined transformation

(t, φ)→ (t+
i

TBTZ

, φ+
iΩ

TBTZ

) (3.3)

for

TBTZ =
r2

+ − r2
−

2πr+ `2
, Ω =

r−
r+ `

, (3.4)

as well as the original (t, φ)→ (t, φ+2π). Since any choice of TBTZ and |Ω `| ≤ 1 determines a

unique M , |J | ≤M`, thermodynamic quantities on this family of backgrounds are functions

of TBTZ and Ω; e.g., the partition function is Z = Z (TBTZ,Ω).

The key point for us is that each complexified solution above also admits a second inter-

pretation. Specifically, the transformation

t̃ = −i
(r−
`
t− r+ φ

)
, φ̃ = −i

(r+

`2
t− r−

`
φ
)
, r̃ = `

√
r2 − r2

+

r2
+ − r2

−
(3.5)

maps the BTZ spacetime (3.1) to global AdS3

ds2 = −
(
r̃2

`2
+ 1

)
dt̃2 +

dr̃2(
r̃2

`2
+ 1
) + r̃2 dφ̃2 (3.6)

with periodicities:

(t̃, φ̃)→ (t̃, φ̃+ 2π) and (t̃, φ̃)→ (t̃+
i

TAdS

, φ̃+
iΩ

TAdS

), for TAdS =
1− Ω2 `2

4π2 TBTZ `2
. (3.7)

Thus the complexified BTZ metric also represents thermal AdS3 at the new temperature

TAdS and the original chemical potential Ω. (It is for this reason that we do not label Ω with

a subscript.) It follows that the properties of Hartle-Hawking-like states on BTZ are given

by analytic continuation of those on pure AdS3 with the mapping of temperatures given by

(3.7); for instance

ZBTZ(TBTZ,Ω) = ZAdS(TAdS =
1− Ω2 `2

4π2 TBTZ `2
,Ω) . (3.8)

In particular, since in the limit TBTZ → ∞ any thermodynamic quantity on BTZ is deter-

mined by the AdS3 phase at TAdS = 0, if one uses the AdS3 vacuum as a reference point10 it

follows that any thermodynamic quantity will vanish as TBTZ →∞.

There is a geometric way to explain the relation between the BTZ and thermal AdS

geometries as originally described in [24]. The point is that one can view the Euclidean BTZ

10This reference point is a natural one, since, by the maximal symmetry of AdS3, any non-zero answer

can be regarded as the renormalization of some background parameter. For example, any non-zero AdS3-

invariant stress tensor can be regarded as a renormalization of the cosmological constant.
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or thermal AdS spacetimes as hyperbolic three-manifolds whose boundary is a two-torus T 2.

Depending on which one-cycle of the T 2 shrinks to zero in the interior of the spacetime, we

obtain a specific member of the two-parameter family of solutions (3.1) (after appropriate

analytic continuation). In this language the choice of the shrinking cycle is captured by the

complex structure parameter of the T 2 and the map between thermal AdS and BTZ is just

a modular transformation of this complex structure.

The above arguments apply for any field theory. In order to make contact with known

results, it is useful to first discuss free theories. Since AdS3 acts like a confining box of size

`, the low energy states of any free field theory will have energies of order ω ∼ `−1 so that

their contributions to the partition function (or any other thermodynamic quantity) will be

exponentially suppressed for TAdS ` � 1. In particular, the expected stress tensor will be

exponentially small at high TBTZ .

This is precisely the behavior found by explicit calculation in [25] for the expected stress

tensor 〈T µν 〉HH of a conformally-coupled scalar in the Hartle-Hawking state on the BTZ

background. There it was shown that, for the static black hole with r− = 0 (or equivalently

Ω = 0),

〈 T µν 〉HH =
A(r+)

r3
diag{1, 1,−2} for A(r+) =

2

32 π

∞∑
n=1

cosh 2π n r+ + 3

(cosh 2π n r+ − 1)3/2
, (3.9)

which indeed vanishes exponentially for TBTZ ∼ r+ � 1. The stress tensor for free fields in

the general case with r− 6= 0 is described in [25]; we will describe the analogous result for

strongly coupled quantum fields in §4.3.2.

One may also reproduce the results of [25] at small TBTZ by using the analytic continuation

described above and the fact that AdS3 can be mapped conformally into ESU3. Applying

these operations to the stress tensor

〈 T µν 〉S2×R = σ3 T
3diag{−2, 1, 1} (3.10)

on S2 × R yields a result that agrees with (3.9) for small r+. In particular, the interchange

of t and φ under the double Wick rotation for Ω = 0 explains why the stress tensor found in

[25] has a negative energy density (and is in fact proportional to diag{1, 1,−2}). Note that

taking σ3 to be the 2+1-dimensional Stefan-Boltzman constant, i.e., σ3 = 2 ζ(3) the stress

tensor (3.10) describes the thermal state of any free scalar on S2 × R at large T .

Let us now consider interacting theories with non-trivial phase structure, where (3.8)

implies that for a given value of Ω, the high temperature phases on BTZ are in direct

correspondence with the low temperature phases on AdS. One generally expects that there

is a unique such low temperature phase, typified by the ground state. Furthermore, in a

large N confining gauge theory one expects that for small TAdS (below the phase transition),

thermodynamic quantities receive contributions only from theO(1) singlet degrees of freedom

even at large N . In such theories, we see that thermodynamic quantities will be independent

of N at large TBTZ.
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3.2 Field theories on planar AdS black hole backgrounds

The simplest examples of higher dimensional asymptotically AdS black hole spacetimes are

the planar AdS black holes with translationally invariant horizons (2.4). We will also con-

sider field theories on boosted planar AdSd black holes, for they can be studied by precisely

the same methods as in §3.1 and describe the large-radius limit of rotating AdS black holes.

These spacetimes can be obtained from (2.4) by a simple relabeling xd−2 = ` φ and a coor-

dinate transformation which is a boost with rapidity α in the (t, φ) plane, resulting in the

metric

ds2
planar =

r2

`2

(
−dt2 + `2 dφ2 +

rd−1
+

rd−1
(coshα dt− ` sinhα dφ)2

)
+ r2 dx2

d−3 +
`2 dr2

r2
(

1− rd−1
+

rd−1

)
(3.11)

for d > 3, where again we use ` to denote the AdS length scale. When the coordinate φ is

allowed to range over all of R, the metrics (3.11) are diffeomorphic for all r+ and α. However,

the parameters r+ and α take on invariant meanings if one takes φ to be periodic (say, with

period 2π). In that case, choosing a conformal frame in which the length of the φ circle is

also 2π in the boundary metric, the energy and momentum densities are

M

Vd−3

=
1

8G
(N)
d

cosh2 α

(
(d− 1) r+

4

)d−1

,
P

Vd−3

=
1

8G
(N)
d

sinhα coshα

(
(d− 1) r+

4

)d−1

.

(3.12)

As before, we will be interested in complexified spacetimes in order to understand the

Hartle-Hawking states. Apart from the usual (t, φ) → (t, φ + 2π), these are again periodic

under the transformation

(t, φ)→
(
t+

i

Tplanar

, φ+
iΩ

Tplanar

)
, (3.13)

for

Tplanar =
(d− 1) r+

4π `2 coshα
, Ω =

tanhα

`
, (3.14)

which of course captures the basic fact that the boosted planar black hole (3.11) corresponds

to a grand canonical ensemble at temperature Tplanar and momentum chemical potential Ω.

Let us now consider a complex coordinate transformation(
t̃

φ̃

)
= −i 2π Tplanar `

2

1− Ω2 `2

(
Ω −1
1
`2
−Ω

)(
t

φ

)
,

r̃ =

√
1− Ω2 `2

2π Tplanar `
r , x̃ =

2π Tplanar `√
1− Ω2 `2

x , (3.15)

which transforms the metric (3.11) to another familiar solution, the AdSd soliton [19]:

ds2
soliton =

r̃2

`2

(
−dt̃2 +

(
1− r̃d−1

+

r̃d−1

)
`2 dφ̃2

)
+ r̃2 dx̃2

d−3 +
`2 dr̃2

r̃2
(

1− r̃d−1
+

r̃d−1

) (3.16)
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where r̃+ = r̃(r+) as in (3.15). The rescalings employed in (3.15) are in fact the unique ones

such that the spatial circle of the soliton has period 2π. It is now easy to check that the

coordinates in (3.16) are identified as

(t̃, φ̃)→ (t̃, φ̃+ 2π) and (t̃, φ̃)→
(
t̃+

i

Tsol

, φ̃+
iΩ

Tsol

)
,

for Tsol =
1− Ω2 `2

4π2 Tplanar `2
. (3.17)

Thus we learn that the complexification of (3.11) also represents the AdSd soliton, with

the spatial circle having period 2π at a different temperature Tsol and the original chemical

potential Ω. A different way to say this statement is to realize that there is a complex metric

which has two different real Lorentzian sections: one analytic continuation leads to the planar

black hole, while the other leads to a grand-canonical ensemble for the AdS soliton.11

As a result of this analytic continuation, field theories on planar AdSd black holes behave

similarly to those on BTZ as discussed earlier in §3.1. The high-temperature behavior on

the planar black hole is determined by the low-temperature behavior of the field theory on

the AdSd soliton with the spatial circle having fixed period (2π), since the two gravitational

solutions are related by an analytic transformation. In particular, we learn that the high

Tplanar limit of the stress tensor will be finite and will just be the analytic continuation of

the vacuum stress tensor on the AdSd soliton background.

The main difference from the BTZ case is that for d > 2 the AdS soliton differs from AdSd
and this limiting stress tensor need not vanish. However, temperature-dependent corrections

will still come from the low-energy modes on the AdS soliton. For free field theories, one

may expand in modes in the φ, r directions and express the result as a (d− 2)-dimensional

theory (in the t̃, x̃ directions) featuring a tower of massive fields, with the lightest mass

being roughly the AdS scale `−1. So, in parallel with the BTZ case, temperature-dependent

corrections are exponentially suppressed in (Tsol `)
−1 ∝ Tplanar `.

For interacting theories with phase transitions, the high Tplanar phase of the field theory

on the black hole is related to the (presumably unique) phase at low Tsol on the AdS soliton.

In particular, let us consider a large N gauge theory which confines in flat space below some

energy scale Λ. If Λ � `−1, the large Tplanar stress tensor should be independent of N (i.e.,

O(1)) above some critical temperature T ∗planar. For cases with Λ . `, the large Tplanar stress

tensor is again related by analytic continuation to behavior at small Tsol. Since we are then

at low temperatures Tsol in a confined phase, one expects that all thermal corrections remain

independent of N for sufficiently large Tplanar. However, since the confinement and curvature

scales are comparable, there might now be a non-trivial zero point energy on the soliton

11The complex geometry which captures the saddle point has a (complex) T 2 boundary (the (t, φ) plane)

and the mapping to the AdS soliton is once again a modular transformation of the complex structure of this

torus.
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which scales with N , so that the limiting large Tplanar stress tensor does as well.12 We will

see explicit examples of this type of situation below.

As already indicated, the above analysis can be used as a starting point to understand

Hartle-Hawking states on large Schwarzschild- or rotating-AdS black hole backgrounds. One

should be able to treat the states on these black holes with large but finite radius as mild

deformations of states on planar black holes or, under double Wick rotation, of thermal

states on AdS solitons.13

This provides a partial resolution to the puzzle posed in [11], where it was found that

the stress tensor of four dimensional N = 4 SYM theory at large N was only O(1) on

large-radius Schwarzschild-AdS4 backgrounds. This field theory is known to confine when at

least one dimension is compactified with supersymmetry breaking boundary conditions [13],

or subjected to some other infra-red cutoff, for example, on S3 × R, and therefore on AdS4

as defined by a conformal transformation. As a result, it is natural to expect the theory to

confine on the AdS4 soliton as well.14 Thus, as above, one expects purely thermal corrections

at small Tsol to be independent of N , and this confinement may also provide a mechanism

to suppress corrections due to the mild deformation15 required to take the AdS4 soliton to

double Wick rotations of Schwarzschild-AdS4. Now, as with the Λ . ` case discussed above,

there remains the possibility of a large ground state energy on the AdS4 soliton. However,

we will use AdS/CFT to directly argue in section §4.2 that such a large ground state energy

does not arise, and also to confirm the above statements.

12To illustrate the point about non-trivial zero point energy, consider N = 4 SYM on a R2,1 × S1
ss where

we impose anti-periodic boundary conditions for fermions on S1
ss. While there is a unique vacuum state of

this theory which confines, due to the fact that at low energies one essentially has a 2+1 dimensional pure

glue theory [13], explicit computations using holographic techniques described in §4 shows that one has an

O(N2) vacuum energy in this confining vacuum.
13The rotating AdS black holes are expected to have a Hartle-Hawking vacuum [26] (see also [27] for a

recent discussion) which corresponds to thermal equilibrium as long as Ω ` ≤ 1, in contrast to the situation

for asymptotically flat rotating black holes. In the latter case, the existence of superradiant modes makes

the Hartle-Hawking state singular [22]. However, for Ω ` ≤ 1 with asymptotically AdS boundary conditions,

there is a Killing field (the horizon generator) which is timelike everywhere outside the horizon. This leads

to a positive definite conserved quantity which forbids unstable modes and renders the Hartle-Hawking state

well-defined.
14Here it is important to realize that one has to impose anti-periodic boundary conditions for the fermions

along the spatial circle of the soliton, for the periodic boundary condition is not compatible with the circle

being contractible.
15The deformation is small for large TSAdS. However, since the deformation appears to involve changes at

the AdS scale ` which sets the IR cutoff inducing confinement, it remains surprising that the corrections are

so strongly suppressed.
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3.3 Interlude: Other mechanisms for suppressing stress tensors

We have seen that the BTZ and planar AdSd black holes can be related to pure AdS3 and the

AdSd soliton respectively, which led us to argue that thermal corrections to the stress tensor

of weakly coupled large N quantum gauge theory on these backgrounds is O (1) for large

TBTZ and Tplanar. In addition, we have argued that the BTZ stress tensor vanishes in the

limit of large TBTZ. It is interesting to compare our discussion above with other mechanisms

that can lead to small stress tensors for large N theories on high-temperature black hole

backgrounds.

One such mechanism was exhibited in [14] in the context of asymptotically flat black

holes. The idea is that, although the thermodynamically dominant phase at large T in flat

space is deconfined, there is also a meta-stable confined phase. Suppose that the state far

away from the black hole is initially confined. Then at large N a large amount of heat is

required to induce the deconfinement transition. Although the black hole acts as a heat

source, the confined phase conducts heat from the black hole only slowly. As a result, at

least in the limit of large N , such states can perhaps remain in approximate equilibrium for

arbitrarily long times. Under such circumstances, one expects an O(N2) stress tensor near

the black hole, but which becomes small far away.

We recently described another such mechanism in [9]. There we identified cases where

the physical size of excitations in the deconfined plasma appeared to be much larger than

the size of the black hole. This resulted in weak coupling between black hole and plasma,

producing states in which the stress tensor, even if large, decreases rapidly far from the

black hole. This mechanism could function together with that of [14], though it can also act

in cases without a well-defined confinement transition. In particular, we argued that such

situations were possible even for conformal theories such as N = 4 SYM.

The present mechanism of confinement in the double Wick rotated background is rather

different in several ways. Firstly, the mechanisms of [14] and [9] tend to produce O(N2)

stress tensors, which however fall off far from the black hole. In contrast, confinement in

the double Wick rotated background means that the response of the stress tensor to certain

deformations is small everywhere in the spacetime. Secondly, this mechanism does not

require the theory to confine in any sense away from the black hole, nor the thermal plasma

to couple weakly. Indeed, we analyze some example phases in §4 below which demonstrate

that neither of these effects need be associated with confinement in the double Wick rotated

background.

4 Strongly coupled field theories on AdS black holes

Having described some general tools for studying quantum fields on asymptotically AdS

black hole backgrounds in §3, we now investigate the dynamics of certain strongly coupled
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field theories on these backgrounds in detail. Our main interest is in large N conformal

field theories of the type associated with the puzzle of [11]. In particular, we will consider

N = 4 SYM theory studied in [11] and its relatives16, as well as the 3-dimensional theory

of M2-branes. Such theories can be investigated at strong coupling using the AdS/CFT

correspondence.

Our primary goal is to confirm the general expectations for such theories described at

the end of §3.2. Since the analysis of §3 holds for any theory, we can map high temper-

ature phases on BTZ black holes to low temperature phases on pure AdS3, and similarly

in higher dimensions we can map high temperature phases on planar AdS black holes to

low temperature phases on the AdS soliton. We then use the AdS/CFT correspondence to

investigate phases on such static backgrounds and argue that the theories confine for low

TAdS, Tsol respectively. We also contrast the behavior on the black hole backgrounds with

the mechanisms for suppressing stress tenors described in [14, 9]. For the simpler case of the

M2-brane superconformal field theory at large N we construct an apparently complete set

of phases for all (TBTZ,Ω), including the low TBTZ regime which is difficult to study in the

higher-dimensional case. Interestingly, we find that the low TBTZ phase displays a linear qq̄

potential at appropriate values of r, though the stress tensor is O(N
3
2 ).

4.1 Prelude: A framework to explore strong coupling

As stated above, we will use the holographic AdS/CFT correspondence [10, 28, 29] to in-

vestigate dynamics. While we will not review such techniques in detail here, the essential

idea is that in the limit of large N and large ’t Hooft-like coupling states of certain field

theories on given d-dimensional spacetimes Bd are dual to solutions of supergravity theories

that asymptotically approach AdSd+1×X, where X is a compact manifold, whose isometries

(if any) are realized as global symmetries of the field theory. Below, both Bd and the holo-

graphic dual will be asymptotically AdS spacetimes. To avoid confusion, we refer to Bd as

the field theory spacetime or the field theory black hole, distinguishing it from the higher

dimensional ‘bulk’ spacetime which may also contain a (bulk) black hole.

Though the methods of §3 can also be used for any stationary axisymmetric phase, we

consider phases below which preserve the full set of field theory global symmetries. This

restriction suppresses dynamics in the internal space X. As a result, it is natural to look

for the associated bulk solutions in the sector where the bulk spacetime takes the form

Md+1×X for an appropriate X , whereMd+1 satisfies the Einstein equations with negative

16Here we have in mind the N = 1 super-conformal quiver gauge theories which are constructed in terms

of D3-branes probing various singularities.
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cosmological constant Λ = −d (d−1)
2

L−2
d+1 as described by the action17

Sbulk =
1

16π G
(d+1)
N

∫
dd+1x

√
−g (R− 2 Λ) . (4.1)

This captures the universal behavior of a large class of field theories. To describe the theory

on the particular background Bd, we require thatMd+1 admit a conformal compactification

with conformal boundary Bd. The (d + 1)-dimensional Newton’s constant is related to the

central charge of the conformal field theory via:

c =
Ld−1
d+1

16π G
(d+1)
N

. (4.2)

Of course, d = 4 for theories defined by D3-branes and d = 3 for M2-brane theories.

4.2 Four dimensional SCFTs on large Schwarzschild-AdS4 black holes

We now specialize to four-dimensional large N conformal field theories obtained from D3-

branes, which we place on asymptotically AdS4 backgrounds. Our aim will be to construct

5-dimensional spacetimes M5 whose conformal boundary is the prescribed asymptotically

AdS spacetime B4 with metric γµν . Let us begin with the following observation. Given an

asymptotically AdSd Einstein metric on Bd with cosmological constant set by the curvature

scale `d, we can immediately construct one particular solution to the bulk equations of motion

(4.1). Specifically, we can simply warp Bd in an extra bulk-radial direction R, as in [30].

Then the d+ 1 dimensional metric

ds2 = dR2 +
L2
d+1

`2
d

cosh2

(
R

Ld+1

)
γµν dx

µ dxν =
L2
d+1

cos2 Θ

(
dΘ2 +

1

`2
d

γµν dx
µ dxν

)
(4.3)

solves the equations of motion arising from (4.1) as long as γµν satisfies the same equations

in one lower dimension (and with cosmological constant set by `d, i.e. Λbdy = − (d−1)(d−2)

2 `2d
).

As noted in [11], this result implies that the so-called Schwarzschild-AdS black string

spacetime in d+1 dimensions is a bulk solution describing the AdS/CFT dual of a rotationally-

invariant equilibrium state of CFTs on Schwarzschild-AdSd. The explicit bulk Schwarzschild-

AdSd+1 black string solution with Schwarzschild-AdSd boundary metric takes the form (4.3)

with γµν given by (2.1) i.e.,

ds2 = dR2 +
L2
d+1

`2
d

cosh2

(
R

Ld+1

) (
−fd(r) dt2 +

dr2

fd(r)
+ r2 dΩ2

d−2

)
. (4.4)

with fd(r) as in (2.2). The large r+ limit yields a similar black string constructed using the

planar black hole (2.4) instead of (2.2). Now, generically the black string geometries (4.4)

17To avoid confusion we will use Ld+1 to denote the bulk AdSd+1 length scale of the holographic dual,

reserving `d for the AdS length scale on the field theory background Bd.
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could suffer from Gregory-Laflamme type instablities. However, for large r+ it can be shown

that the Schwarzschild-AdS black string is stable to linearized gravitational perturbations

[31], suggesting that it describes the equilibrium Hartle-Hawking state of the field theory.18

However, any state dual to a bulk metric of the form (4.3) has an O(1) field theory stress

tensor at large N .19 This follows directly from the analysis of [11] for the Schwarzschild-AdS

black string and one arrives at the same conclusion for more general boundary metrics by

noting that the form of (4.3) constrains the fall-off of the bulk metric asymptotically as

R → ∞ (or equivalently as Θ → π
2
). The basic construction clearly generalizes to rotating

AdSd black holes as well, and one expects similar stability results at large radius so long as

|Ω `d| < 1.20

To understand the situation better, in parallel with the discussion of §3.2, we consider

analytic continuations of the large r+ Schwarzschild-AdS black string. It is clear that one

need only apply these operations to the metric γµν on Bd and then insert the result into

(4.3). The double Wick rotation of (2.1) is the AdS bubble of nothing whose large r+ limit

is simply the AdS soliton of [19].

Let us therefore consider the “AdS soliton-string” metric21 given by taking γµν in (4.3)

to be the AdSd soliton (3.16). The resulting d+ 1 spacetime is static and horizon-free. The

metric has a non-compact translational symmetry x̃k → x̃k + ξx̃k for k = 1, · · · , d − 2 with

no fixed points, and a U(1) symmetry φ̃ → φ̃ + 2π which acts trivially on the surface r̃ =

constant. Furthermore, the gravitational potential grows steeply in the R and r̃ directions,

for in each of these we attain an AdS asymptopia. As a result, metric perturbations are

described by a (d − 2) + 1 dimensional effective theory with mass scale m ∼ `−1
d . While

the density of states diverges due to the non-compact translational symmetry in the Rd−2,

the density of states per unit x̃-length is finite and moreover is of O(1). Thus, for d = 4

this solution is dual to a confining phase of the large N SCFT (e.g., the N = 4 SYM)

on the zero-temperature AdS4-soliton background as previously predicted. In making this

final statement, one is making the reasonable assumption that the zero-temperature phase

is unique. The generalization to rotating black holes is also straightforward22 since in the

18Note that this is in contrast with the AdS black strings of [32] with the boundary metric being asymp-

totically flat. There, the only scale is given by the boundary black hole size r+, so the string is unstable for

any r+ [33]; from the bulk point of view this is because the string becomes arbitrarily thin near the Poincare

horizon. On the other hand, in the present situation of interest, the minimal bulk thickness attained by our

Schwarzschild-AdS black string is given by r+, rendering the stability for r+ > Ld+1 natural. The analysis

of [31] also demonstrates explicitly that the Schwarzschild-AdS black string is unstable when r+ ≤ `d as one

would expect in analogy with Schwarzschild black strings in Kaluza-Klein geometries.
19One can obtain the stress tensor for the geometries (4.3) using the counter-term method outlined in [34]

or using holographic renormalization techniques [35].
20In d > 4 rotating AdSd black holes can carry angular momenta in different rotating planes and one

requires that |Ωi `d| ≤ 1 for all these rotations.
21This solution was recently examined in the braneworld context in [36].
22In the rotating case, it is natural here to Wick rotate the time direction t and the azimuthal direction
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large r+ regime we can use the boosted planar black hole discussed in §3.2.

It is also clear by the usual arguments that this phase describes a ‘linear qq̄ potential’.

In particular, consider a timelike Wilson loop in the field theory on the AdS4 soliton (3.16)

at some fixed value of r̃, say r̃ = r̃+ and separated in the single spatial direction x̃ by an

amount large compared with the period of φ̃. In the bulk AdS soliton-string spacetime i.e.,

in (4.3) with the metric γµν taken to be the AdS4 soliton metric (3.16), the expectation value

of this Wilson loop is dual to the (regulated) area of the string world-sheet anchored on this

Wilson loop. The piece of string along this surface gives rise to the linear potential at large

separations in x̃. Thus, as usual in horizon-free static spacetimes with simple asymptotics,

here the two notions of confinement agree.

In contrast, there are no signs of confinement for the five dimensional Schwarzschild-AdS

black string. Instead, the density of states diverges due to the presence of a horizon. In

addition, Wilson lines with large separations are dual to string world-sheets that sink down

close to the bulk horizon and which therefore cost very little energy to separate.

This behavior is clearly very different from the confined-state physics associated with

the mechanism described in [14] for obtaining small stress tensors on high temperature

black holes. It is also very different from the mechanism described in [9], which stems from

an unusually weak coupling of the field theory plasma to the field theory black hole. As

discussed in [9], the dual description of such a weakly coupled setting is a so-called black

droplet horizon. Such horizons cap off smoothly in the bulk and thus allow bulk gravitons

(or even hypothetical massive bulk particles) to pass “under” the horizon without interacting

strongly. In contrast, the 5-dimensional Schwarzschild-AdS black-string horizon continues

all the way through the bulk, ending only on a second asymptotically AdS boundary on the

opposite side.

In fact, the Schwarzschild-AdS black string has rather more in common with the so-called

black funnel solutions which were also introduced in [9]. Such solutions were argued to pro-

vide bulk duals to Hartle-Hawking states for which the field theory plasma couples strongly

to the black hole. The definition of black funnels given in [9] was limited to asymptotically

flat boundaries Bd (and closely related spacetimes), in which context they are characterized

by having a single connected horizon which connects the boundary black hole in Bd with an

asymptotic region dual to a deconfined plasma far from the field theory black hole.

However, at least in the presence of an appropriate Killing field, we can offer a better way

to characterize the difference between the droplet and funnel horizons which does not rely

on Bd having particular asymptotic behavior. Suppose that Md+1 has a rotational Killing

φ. The result is a locally stationary axi-symmetric bubble of nothing spacetime with observer-dependent

horizons, which again approaches the 5-dimensional AdS soliton (3.16) in a certain large-radius limit. These

solutions differ somewhat from the AdS-Kerr bubbles obtained in [37], which follows [38] in Wick rotating

the polar angle θ instead of the azimuthal angle φ. Of course, these two analytic continuations define the

same bubble spacetime (in different coordinates) for static, spherically symmetric black holes.
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field which also induces a rotational Killing field on Bd. Now consider bulk geodesics which

are ‘boundary-radial’ in the sense of having vanishing angular momentum with respect to

this isometry. This class of geodesics is most relevant to our considerations because such

trajectories most closely mimic plasma excitations in the boundary theory ‘aimed at’ the

black hole. We may then define horizons connected to the boundary black hole to be black

funnels if all boundary-radial geodesics cross the horizon, while they are black droplets if

there is an open set of boundary-radial geodesics which avoid falling through the horizon.

This revised definition coincides with that of [9] when Bd has a rotational Killing field. It also

coincides with that of [39] for the cases studied there (which in general had no well-defined

asymptotics for Bd). In the above sense, both Schwarzschild-AdS- and rotating-AdS black

strings are clearly black funnels in the sense that all excitations couple strongly to the field

theory black hole.

This completes our analysis of N = 4 SYM and its cousins on Schwarzschild-AdS back-

grounds. As argued in [11], the stability of this solution for large TSAdS suggests that it

describes the dominant high-temperature phase. However, the instability at low TSAdS ar-

gues that some other phase dominates in this regime. We were unable to determine the

nature of this phase, nor could we determine if there are additional bulk solutions which

give rise to further phases of the boundary CFT on high temperature AdSd black holes.

One could attempt to find a more general class of solutions numerically, but we now turn

to the simpler case d = 3 where we believe that we can construct a full set of bulk geome-

tries. For this simple case, we will see that the field theory has a unique phase on high

temperature black hole backgrounds, and that this phase is again described holographically

by Schwarzschild-AdS (or rotating-AdS) black strings.

4.3 Three dimensional SCFTs on BTZ black hole background

We argued in §3 that the phases of a field theory on AdSd black holes can be related to

the phases on either pure AdS3 (for d = 3) or the AdS soliton (in d > 3) by an appropri-

ate analytic continuation. We have also seen above that while the holographic AdS/CFT

correspondence is useful to elucidate some of the properties of CFTs on AdS black hole back-

grounds, we are somewhat crippled in being unable to determine the full phase structure

owing to lack of knowledge regarding the complete set of solutions with the given boundary

conditions. In what follows we will focus on the d = 3 case, where we believe can find all the

relevant four dimensional bulk geometries M4 which are holographically dual to strongly

coupled CFTs on the BTZ background.

The crucial fact that we exploit to construct the relevant geometriesM4 for B3 = BTZ is

the observation that by a suitable conformal transformation one can map the (complexified)

BTZ spacetime to a known boundary metric. First of all we recall that AdS3 with length

scale ` is conformally related to (half of) the Einstein-static universe S2 ×R of radius ` and
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moreover under this conformal mapping one typically uses the same time coordinate on both

AdS3 and S2 × R, and thus also the same notion of temperature. As in §3.1, it is related

to the temperature TBTZ of the associated BTZ black hole (with the same AdS length scale

`) by (3.7) when one transforms thermal AdS3 to BTZ by the appropriate Wick rotation.

Second, the dynamics of CFTs on S2 ×R is well studied in the AdS/CFT literature and we

can exploit this to understand the various possible phases of the field theory.

Before turning to the actual discussion from the bulk AdS4 viewpoint, we pause to recall

some of the salient features about 2 + 1 dimensional CFTs which are known to have holo-

graphic duals. A large class of such field theories can be constructed as the world-volume

theories on a stack of N M2-branes probing various singularities, see [16] for explicit descrip-

tion of such theories. The central charge of these theories in the holographic regime scales

as c ∼ N
3
2 and the holographic dual spacetimes are of the form AdS4×X7 where X7 is an

Einstein manifold.23

Rotationally-invariant equilibrium states of these CFTs on S2×R are dual to stationary

axisymmetric bulk solutions. Allowing for a chemical potential for rotation in the S2, for

states preserving the full global symmetry of the field theory (i.e., no variation in the internal

space X), the relevant solutions are presumed to be those given by the rotating-AdS4 black

holes [43] of mass M and angular momentum J (or equivalently by their temperature T and

angular velocity Ω). Here we explicitly include the pure AdS4 metric defined by the limit

M, J → 0. We begin in §4.3.1 by discussing the canonical ensemble where J = 0, so that we

are considering the M2-brane theory on the non-rotating BTZ black hole background given

by (3.1) with r− = 0. Subsequently, we will analyze the more general situation allowing for

non-zero J in §4.3.2.

In the following since we only discuss three dimensional boundary geometries (d = 3) we

will drop the subscripts on the bulk and boundary AdS scales L and ` to keep the notation

clean.

4.3.1 Static BTZ black hole

To understand the behavior of 3-dimensional CFTs on the static BTZ spacetime, we will

start with the known behavior of thermal CFTs on S2×R. The relevant asymptotically AdS4

solutions which (plausibly) capture the phases holographically are the Schwarzschild-AdS4

black holes parameterized by their mass M . As described above, this set of solutions can be

mapped via appropriate analytic continuation to obtain the relevant bulk geometries when

the boundary spacetime is BTZ of a given temperature TBTZ.

While the transformations from S2 × R to BTZ can be applied directly to the bulk

23 By explicit computation using the M2-brane near horizon geometry we find the central charge for the

N = 8 M2-brane world-volume theory with SO(8) R-symmetry to be c =
(

2
3

)4
π3(2N)3/2.
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solution, we find it conceptually simpler to use dS2 × S1 as an intermediate step, where dS2

is 1 + 1 de Sitter space. In particular, we will:

• Analytically continue the Einstein static universe S2 × R to dS2 × S1.

• Conformally map dS2×S1 to BTZ. This transformation maps the cosmological horizon

of dS2 into the black hole horizon of BTZ.

Let us therefore start with a static, spherically symmetric, asymptotically AdS4 spacetime

in global coordinates:

ds2 = −f(ρ) dT 2 +
dρ2

f(ρ)
+ ρ2

(
dθ2 + sin2 θ dΦ2

)
(4.5)

for some f(ρ) which asymptotes as ρ→∞ to ρ2

L2 + 1−O (ρ−1). A double Wick rotation

T = i χ , Φ = i t̃ (4.6)

then casts the metric (4.5) into the form

ds2 = f(ρ) dχ2 +
dρ2

f(ρ)
+ ρ2

(
−(1− r̃ 2) dt̃ 2 +

dr̃ 2

1− r̃ 2

)
(4.7)

where we have also performed a coordinate change cos θ = r̃. This metric is an asymptotically

AdS4 geometry whose boundary is now dS2 × S1, with dS2 size L inherited from the AdS4

scale, and the S1 size determined from the original black hole temperature.

To further recast (4.7) into a form which has conformally BTZ boundary metric, we

merely need to let

t̃ =
r+

`2
t , r̃ =

r+

r
, χ =

L

`
r+ φ , (4.8)

which yields the following bulk metric:

ds2 =
ρ2 r2

+

r2 `2

[
−
r2 − r2

+

`2
dt2 +

`2

r2 − r2
+

dr2 + r2 L
2 f(ρ)

ρ2
dφ2

]
+

dρ2

f(ρ)
. (4.9)

Since as ρ → ∞, the factor in parenthesis is the standard BTZ metric with radius r+ and

AdS3 scale `, it is clear that the boundary is conformal to BTZ. The rescaling of the χ

coordinate used in (4.8) was performed to ensure that the φ circle has period 2π. Assuming

that after our analytic continuation the χ circle has period ∆χ, this identifies r+ = `
L

∆χ
2π

.

Note that both the pure AdS4 and the Schwarzschild-AdS4 geometries may be written in

the form (4.9), and that these are the only static spherically symmetric asymptotically AdS

solutions with S2 × R boundary metric [44]. This observation justifies the choice of the

ansatz (4.5).
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For the special case where the initial seed metric was pure AdS4, taking f(ρ) = ρ2

L2 + 1,

by an appropriate change of coordinates24 the result (4.9) can be written in the form (4.3)

with γµν the static BTZ black hole of radius r+; the result is just a BTZ black string.25

One can equivalently obtain the solution (see [46, 47, 48]) by writing AdS4 in an AdS3

slicing and applying the quotient construction [23] that turns AdS3 into BTZ. Such solutions

are free of naked singularities for all choices of the period ∆χ, since the circle stays non-

contractible everywhere in the spacetime; as a result we find solutions for all values of r+ or

equivalently for all TBTZ, cf., (3.4). These solutions are also the 4-dimensional analogue of

the asymptotically AdS5 Schwarzschild-AdS black strings studied in [11] and §4.2.

In contrast, for the Schwarzschild-AdS4 black hole where

f(ρ) =
ρ2

L2
+ 1− µ

ρ
, µ = ρ+

(
1 +

ρ2
+

L2

)
, (4.10)

the circle is contractible, since the function f(ρ) vanishes at ρ = ρ+. It follows that χ is an

angular variable and its period fixes r+ to be

r+ =
`

L

2

f ′(ρ)

∣∣∣∣
ρ=ρ+

=
2 ρ+ ` L

3 ρ2
+ + L2

, (4.11)

so that TBTZ = 1
4π2 ` LTSchw-AdS4

, where TSchw-AdS4 is the original temperature of the bulk

Schwarzschild-AdS4 black hole. As one would expect, this relation differs from (3.7) only by

the factor of `/L required to relate the bulk and boundary AdS length scales. As a result the

Schwarzschild-AdS4 geometries limit themselves to providing bulk duals for BTZ geometries

with r+ ≤ √̀
3
, i.e., only for small (and thus low temperature) BTZ black holes. Note also

that this relation is double valued; there are two different values of ρ+ ∈ R+ both of which

lead to the same r+. In the case of ρ+ 6= 0, (4.9) describes the static region of the AdS4

bubble of nothing studied in [37].

In summary, we find that for TBTZ ≤ Tc = 1
2π
√

3 `
; we have three possible solutions. The

first is the BTZ black string, and the other two are the bubble solutions arising from the

Schwarzschild-AdS4 black hole. Since the Euclidean action of a bubble is the same as that

of the corresponding Schwarzschild-AdS4 black hole, we readily identify the larger bubble

as a local minimum of the free energy and the smaller bubble as an unstable saddle point

corresponding to a local maximum of the free energy. Furthermore, there is a first order

phase transition at some TBTZ = T?.
26 The large bubble solution dominates the free energy

for TBTZ < T?, while the BTZ black string dominates for TBTZ > T?.

24Specifically,

cosh2 R

L
= 1 +

r2
+ ρ

2

L2 r2
, r̂2 = r2

+

(
1 +

ρ2

L2

) (
1 +

r2
+ ρ

2

L2 r2

)−1

with r̂ being the radial coordinate for the BTZ part of the metric γµν in (4.3).
25Here we use the terminology of [45], where the solution was obtained as a special case of the AdS

C-metric.
26The value of T? can be easily computed by comparing the free energies of the solutions. One finds that
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We would like to better understand the physics of each phase of the field theory on BTZ

black holes. Let us start with the high TBTZ phase dual to the 4-dimensional BTZ black

string. Since the bulk metric takes the form (4.3) (see previous footnote) the large N stress

tensor vanishes, i.e., it is of O(1) in the large N limit. Furthermore, even at finite N the

TBTZ →∞ stress tensor is just the double Wick rotation of that on pure AdS3. Since AdS3

is conformally flat (and since there is no d = 3 conformal anomaly), this vanishes exactly in

any conformally-invariant renormalization scheme. Further analysis of the BTZ black string

phase is similar to that of the Schwarzschild-AdS black string discussed in §4.2. The bulk

solution is again a black funnel in the sense described in §4.2, and the qq̄ potential in the

field theory displays no linear regime.

However, the bubble-of-nothing phases are quite different. At large N , we may compute

the stress tensor either by double Wick rotation of known results for phases on AdS3 or by a

holographic computation of the boundary stress tensors for the relevant 4-dimensional bulk

duals (4.9) with f(ρ) given as in (4.10). We find

T ν
µ = c

µ

L `3

r3
+

3 r3

{
1, 1,−2

}
(4.12)

to leading order in large N , with c ∼ O(N
3
2 ). For the M2-brane world-volume theory the

central charge c is given in footnote 23. Furthermore, µ = µ(r+) is defined by (4.10) and

(4.11):

µ(r+) =
4L `3

27 r3
+

[
1 +

(
1 +

3 r2
+

2 `2

) √
1− 3 r2

+

`2

]
. (4.13)

As noted in §3, (4.12) describes a negative energy density in parallel with known results [25]

for free fields.

This result might suggest that the phase is deconfined. Recall, however, that in the

limit ρ+ → ∞ the large Schwarzschild-AdS4 black hole becomes the (unboosted) planar

hole (3.11). As a result, in the limit TBTZ → 0 the large AdS4 bubble of nothing obtained

by double Wick rotation becomes just the AdS4 soliton,27 a static solution which is the

prototypical example of the bulk dual to a confining phase [13]!28 As is well known, there

is no tension between the confining properties of this state and its O(N3/2) stress tensor.

For TBTZ small but non-zero, the bubble of nothing spacetimes have much in common with

the solutions exchange dominance at ρ+ = L which implies that r+ = `
2 and thence T? = 1

4π ` . See also

Fig. 1, Fig. 2.
27This is the same AdS4 soliton spacetime which appeared as a boundary spacetime in §4.2, where it played

the role of a background for a 4-dimensional field theory in a context where gravity was not dynamical. In

contrast, here the 4-dimensional soliton approximates the bulk AdS4 dual of a state of a 3-dimensional CFT

on the BTZ background. In particular, here the 4-dimensional soliton arises as the solution of the bulk

gravitational equations of motion.
28The phase transition for field theories with Scherk-Schwarz boundary conditions was also discussed in

[40, 41], which are all similar to the Hawking-Page transition originally described in [42].
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those discussed29 in [14] in which the horizon extends from the boundary down to an AdS-

soliton-like IR floor.

The AdS4 soliton of radius 2π `LTBTZ and AdS length scale L is a useful approximation

to the AdS4 bubbles of nothing in the region far from the bulk horizon. There it leads

immediately to a linear qq̄ potential30 on scales much smaller than ` but much larger than

r+.

4.3.2 Rotating BTZ black hole

Having understood the story for the static BTZ black hole, we can now turn to the more

general case allowing rotation. Since much of the analysis is similar, we will be brief, em-

phasizing only the salient points of interest in the rotating case.

Our starting point will be the family of bulk asymptotically AdS4 geometries dual to

stationary equilibrium configurations of CFTs on S2×R with a non-zero chemical potential

for rotation. The gravity duals of strongly coupled CFTs are believed to be the rotating-

AdS4 black holes discovered in [43] whose metric in conventional Boyer-Lindquist coordinates

takes the form:

ds2 = −∆ρ

ζ2

(
dT − a

Ξ
sin2 Θ dΦ

)2

+
∆Θ sin2 Θ

ζ2

(
a dT − ρ2 + a2

Ξ
dΦ

)2

+
ζ2

∆Θ

dΘ2 +
ζ2

∆ρ

dρ2, (4.14)

with various metric functions given by

∆ρ(ρ) = (ρ2 + a2)

(
1 +

ρ2

L2

)
− µ ρ , µ =

1

ρ+

(ρ2
+ + a2)

(
1 +

ρ2
+

L2

)
∆Θ(Θ) = 1− a2

L2
cos2 Θ , ζ2(ρ,Θ) = ρ2 + a2 cos2 Θ , Ξ = 1− a2

L2
. (4.15)

This yields a two parameter family of solutions, with conserved charges E = µ/Ξ2 and

J = a µ/Ξ2, corresponding to the energy and angular momentum respectively. They reduce

to Schwarzschild-AdS4 when a = 0, and to pure AdS4 when µ = 0 (which is however

expressed in rotating coordinates when a 6= 0). The solutions have a horizon (for a certain

range of the parameters µ and a) at the largest root of ∆ρ, which we denote as ρ+. Note that

in order for (4.14) to describe a Lorentzian metric, the parameter a is constrained to take

values in a finite domain 0 ≤ a2 ≤ L2. (Without loss of generality we will take 0 ≤ a ≤ L.)

These geometries have a conformal boundary which is a rotating ESU3. One can map

this to a static ESU3 by a coordinate transformation [26] (see (4.17) below) which allows

29Or, at least, the analogous solutions obtained by removing the so-called UV brane.
30The coefficient of this linear relation has a mild position dependence that varies on length scales of O(`).
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one to read off the angular velocity of the rotating AdS black holes with respect to a static

frame at infinity. The result is

ΩAdS4 =
a

L2

ρ2
+ + L2

ρ2
+ + a2

. (4.16)

The solutions are expected to be stable for all |ΩAdS4 L| ≤ 1 [49], as there exists a Killing

field which is timelike everywhere outside the horizon.31

We now want to apply the double Wick rotations described in §3 to construct four

dimensional geometries which have the rotating BTZ black holes as their conformal boundary.

This is achieved by the two step coordinate transformation,

y cos θ = ρ cos Θ ,

y2 =
1

Ξ

(
ρ2 ∆Θ + a2 sin2 Θ

)
,

Φ̃ = Φ +
a

L2
T , (4.17)

followed by

T = −i L
(r−
`2
t− r+

`
φ
)
,

Φ̃ = −i
(r+

`2
t− r−

`
φ
)
,

tan θ =

√
r2 − r2

+

r2
+ − r2

−
, (4.18)

which one can check reduces to the one employed in §4.3.1 when r− = 0, i.e., when the black

holes on the boundary and bulk are static, cf. (4.6) and (4.8).

The first of these transformations is the one described in [26], which has the effect of

mapping the rotating AdS4 black hole (4.14) to a frame where the conformal boundary is a

static ESU3. The second step then simultaneously implements a conformal transformation

of the boundary to AdS3 and (the inverse of) the double Wick rotation (3.5). As one can

readily tell, the net coordinate transformation is quite messy and we will not write down the

final bulk metric explicitly.

In writing the transformation (4.18) we have introduced two new parameters r±. These

are however not independent parameters but are rather determined by the parameters of

the four dimensional spacetime (4.14). This can be understood as follows: the coordinates

(T,Φ) in the rotating AdS4 geometry have certain periodicity conditions to ensure regularity

of the spacetime:

(T,Φ)→ (T,Φ + 2π) , (T,Φ)→
(
T +

i

TAdS4

,Φ + i
ΩAdS4

TAdS4

)
. (4.19)

31In terms of the coordinates introduced in (4.17) which makes the metric conformal to ESU3, this is the

horizon generator ∂T + ΩAdS4 ∂Φ̃.
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For the rotating AdS4 black hole, the angular velocity ΩAdS4 is given by (4.16) and the

temperature is

TAdS4 =
ρ+ (1 + a2 L−2 + 3 ρ2

+ L
−2 − a2 ρ−2

+ )

4π (ρ2
+ + a2)

, (4.20)

while for pure AdS4 (i.e. µ = 0), TAdS4 and ΩAdS4 can be freely chosen. In either case,

given TAdS4 and ΩAdS4 , the coordinate transformations (4.17) and (4.18) then induce definite

periodicities on the BTZ coordinates (t, φ). Inverting the reasoning of section §3 we find

TBTZ =
1− Ω2

BTZ `
2

4π2 TAdS4 ` L
, ΩBTZ =

L

`
ΩAdS4 (4.21)

where the BTZ temperature and angular velocity are related to r± as in (3.4). In particular,

for the solutions obtained from the rotating AdS black hole we find

r+ =
2 `

ρ+ L

ρ2
+ + a2

1 + a2 L−2 + 3 ρ2
+ L

−2 − a2 ρ−2
+

,

r− =
2 a `

L2 ρ+

ρ2
+ + L2

1 + a2 L−2 + 3 ρ2
+ L

−2 − a2 ρ−2
+

. (4.22)

On the other hand, if we consider the transformations (4.17) and (4.18) applied to pure AdS4

by starting with (4.14) with µ = 0, we may obtain any values of r+ ≥ r− ≥ 0 by choosing

appropriate TAdS ≥ 0 and 1 ≥ LΩAdS ≥ 0. Alternately, one can pick r+ arbitrarily and then

fix r− by matching the angular velocities.

The parameter space of rotating-AdS4 black holes: We have parameterized rotating

AdS4 black holes by two parameters, ρ+ and a; however, physically sensible solutions exist

only in part of this parameter space. Furthermore, we are interested only in those AdS4 black

holes for which the coordinate transformations (4.17) and (4.18) yield a 4-dimensional bulk,

free of naked singularities, which induces a physically sensible BTZ black hole metric on the

boundary. The resulting constraints can be understood easily by examining the temperature

TAdS4 and angular velocity ΩAdS4 . For instance, the positivity of temperature (4.20) requires

ρ+ ≥ ρmin
+ (a) where

ρmin
+ (a) =

L√
6

√
−1− a2

L2
+

√
1 + 14

a2

L2
+
a4

L4
. (4.23)

This is the extremal locus for rotating AdS4 black holes. In addition, noting that ΩBTZ ` =

ΩAdS4 L, the constraint ΩBTZ` ≤ 1 implies that

a ≤ min

(
L,

ρ2
+

L

)
. (4.24)

While for ρ+ > L this is just the constraint a ≤ L required to ensure the correct signature

of (4.14), for ρ+ < L it is in fact stronger than both this signature constraint and the
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extremality constraint (4.23). As a result of (4.24), one finds that at most two AdS4 black

holes define bulk solutions consistent with a given BTZ metric on the boundary. Furthermore,

we comment that at most one of these black holes has ρ+ > L. The particular region in

the (r+, r−) plane where bulk black holes exist is shown in Fig. 1. This can be determined

analytically by eliminating a/L from (4.22) and then extremizing r−
`

( r+
`
, ρ+
L

) over ρ+
L

for fixed
r+
`

.

Thermodynamics: Recall that for any boundary BTZ black hole (3.1) with given values

of r+ and r−, a Wick rotated vacuum AdS4 metric with appropriate identifications is always

an allowed saddle point of the bulk gravity path integral. In addition, we have the solutions

constructed from AdS4 black holes as above. Thus, for a given boundary BTZ black hole

we have either: (i) a single bulk solution which is pure AdS4 or (ii) three solutions, the

additional two of which are analytic continuations of rotating AdS4 black holes with µ > 0.

The final question we need to address is the dominance of the saddle points. Which of the

solutions at hand provides the correct bulk dual can be understood by looking at the free

energy difference between the rotating-AdS4 black holes and pure AdS4. This was computed

carefully in [50] with the result

∆I = Irot-AdS4 − IAdS4 = − π

ΞL4

(ρ2
+ + a2)2 (ρ2

+ − L2)

(3 ρ4
+ L

−2 + (1 + a2 L−2) ρ2
+ − a2)

. (4.25)

In particular, from (4.25) with the constraint (4.24) we see that ∆I < 0 if and only if ρ+ > L;

the rotating AdS4 black holes contribute when they are larger than the AdS scale. We can

find the boundary between the rotating AdS4 black holes and the pure AdS4 geometry for

given values of r± by looking at the locus of points where ρ+ = L in (4.22). This region is

also indicated in the r± plane in Fig. 1, and is given by r+ =
r2−+`2

2`
. A corresponding picture

for the (TBTZ,ΩBTZ) plane is shown in Fig. 2. In terms of (TBTZ,ΩBTZ), a bulk black hole

dominates when

2π ` TBTZ ≤
(1− Ω2

BTZ `
2)
(

1−
√

1− Ω2
BTZ `

2
)

Ω2
BTZ `

2
; (4.26)

i.e., for small TBTZ in parallel with the static case discussed earlier.

The quantum stress tensor in rotating BTZ background: An interesting question is

the nature of the expectation value of the quantum stress tensor for a strongly coupled theory

on the rotating BTZ black hole background. One could directly compute this by using the

coordinate transformations given above (4.17), (4.18), but that is rather cumbersome given

the nature of the coordinate transformations. Rather, we will use the fact that (4.18) is a

bulk coordinate transformation that acts as a boundary conformal mapping. In particular,

it maps the static ESU3 with metric

ds2 = −dT 2 + L2
(
dθ2 + sin2 θ dΦ̃2

)
(4.27)
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Fig. 1: Regions in the (r+, r−) plane where the bulk solution is allowed to be (the double Wick

rotation of) a rotating-AdS4 black hole spacetime. Two such solutions are allowed for values

of r± in the union of the two shaded regions, but none are allowed outside these regions. One

of the (Wick rotated) black hole solutions has ρ+ > L only in the left shaded region. For

boundary BTZ black holes lying in this region the dual bulk spacetime is the rotating-AdS4

solution (4.14) to which the transformations (4.17) and (4.18) have been applied.

to the BTZ background (3.1) up to a conformal factor

e2ω =
L2 (r2

+ − r2
−)

`2 (r2 − r2
−)

. (4.28)

This means that we can take the known stress tensor for the rotating AdS solution (TAdS4)
µν

and use the coordinate change (4.18) together with the conformal transformation (4.28) to

obtain the boundary stress tensor on the rotating BTZ background. We have in particular,

T µν = e5ω (TAdS4)
µν . (4.29)

The stress tensor of the rotating AdS4 geometry (4.14) with conformal boundary taken
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Fig. 2: Regions in the (TBTZ,ΩBTZ) plane where the bulk solution is allowed to be (the double Wick

rotation of) a rotating-AdS4 black hole spacetime. As in Fig. 1 two black hole solutions exist

in the union of the shaded regions. In the lower of the shaded regions we have rotating AdS4

black holes with ρ+ > L.

to be the non-rotating ESU3 is given as [51]:

(TAdS4)
TT =

µ

16π G
(4)
N

1

L2
γ5 (3− γ−2)

(TAdS4)
T Φ̃ = 3

µ

16π G
(4)
N

1

L3
γ5 ΩAdS4

(TAdS4)
Φ̃Φ̃ =

µ

16π G
(4)
N

1

L4
γ5 (3 Ω2

AdS4
L2 + γ−2 csc2 θ)

(TAdS4)
θθ =

µ

16π G
(4)
N

1

L4
γ3 (4.30)

where

γ =
1√

1− Ω2
AdS4

L2 sin2 θ
. (4.31)

Note that we have written the stress tensor adapted to the ESU3 metric given in (4.27). We

can use the holographic relation (4.2) to express the answer for the stress tensor in terms of

the central charge of the field theory c.

Implementing the transformations described above we then obtain the following stress

tensor on the rotating BTZ background in the coordinates (t, r, φ) of (3.1):

T ab = c
µ

L `3

r3
+

r3

 1 0 0

0 1 0

3 r+ r−
` r2

0 −2

 , (4.32)

where c is the central charge. For the maximally supersymmetric M2 brane world-volume
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theory, c is given in footnote 23. Note that the schematic form of the quantum stress tensor

agrees qualitatively with the result of [25].

5 Discussion

Our main point was to use double Wick rotation to relate Hartle-Hawking-like states on

certain asymptotically AdS black holes to thermal states on horizon-free backgrounds. In

particular, states on BTZ black holes are related in this way to thermal states on AdS3,

and states on planar AdS black holes are related to thermal states on AdS soliton. States

on high temperature black holes are mapped to low temperature states on the horizon-free

backgrounds with the same chemical potential Ω. As a result, thermodynamic quantities

have well-defined limits as TBTZ, Tplanar → ∞ determined by the AdS3 and AdS soliton

ground states. For large N field theories with phase transitions, the fact that one expects a

unique low-temperature phase on pure AdS3 or the AdS soliton suggests that there is also a

unique phase on high temperature BTZ or planar black holes.

Any finite temperature corrections to the above limit are also determined by low-temperature

physics on AdS3 and the AdS soliton. For free theories, this means that the corrections are

exponentially small. For confining theories at large N , the corrections vanish at leading

order in the large N expansion.

We also argued that double Wick rotation provides insight into Hartle-Hawking-like states

on Schwarzschild-AdS black holes. This provided a partial resolution of a puzzle raised in

[11], which found O(1) stress tensors on high-temperature black holes for 3+1 N = 4 SYM.

The resolution is partial in the sense that the double Wick rotated phase is a mild deformation

of a confining phase on the AdS soliton background, where the theory has an O(1) stress

tensor. This confinement may provide a mechanism to ensure that the stress tensor remains

O(1) under the above deformations, though we were not able to complete this argument.

A second part of our work above used AdS/CFT to explore in detail certain example

phases of strongly-coupled theories on asymptotically AdS black hole backgrounds. In par-

ticular, we studied the phase described in [11] for N = 4 SYM (dual to the Schwarzschild-

AdS-black string) and a similar high-temperature phase of the M2-brane theory on BTZ

black holes. This allowed us to contrast the above double Wick rotation mechanism with

other situations [14, 9] where one may find small stress tensors on high temperature black

hole backgrounds. More specifically, despite the small stress tensors these examples showed

no evidence of a confining quark/anti-quark potential on any length scale. In addition, field

theory excitations coupled strongly to the black hole in a manner similar to that found in

the black funnel states of [9, 39]. We also showed that a similar phase exists for M2 brane

world-volume theory on BTZ backgrunds, though it dominates only at high TBTZ. In con-

trast, on low-temperature BTZ backgrounds we found both a O(N3/2) response of the stress
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tensor to changes in the metric and a linear quark/anti-quark potential over a large range

of distance scales.

Though we did not study them explicitly in this work, it is clear that similar remarks

also hold for certain higher-dimensional backgrounds. In particular, BTZ black strings are

double Wick rotations of AdS4 and similarly BTZ black p-branes are double Wick rotations

of AdSp+3. Furthermore, when considering conformal field theories, one may use similar

techniques (up to global issues) on any conformally flat black hole background. For example,

by writing Sd−1 in terms a warped product of S2 and Sd−3, e.g. using the metric

ds2
Sd = dθ2 + sin2 θ dΦ2 + cos2 θ dΩ2

d−3, (5.1)

one may use the sequence of Wick rotations (on T,Φ) and conformal transformations de-

scribed in §4.3 to map the d-dimensional Einstein static universe (R× Sd−1) to BTZ×Sd−3.

This allows one to consider a large class of CFTs on BTZ black hole backgrounds. At least

in strongly coupled planar limits, we expect the resulting phase structure to be similar to

that described here for the M2 brane world-volume theories.

The examples studied in this work show that Hartle-Hawking-like states on asymptoti-

cally AdS black holes can simultaneously display behaviors commonly associated with both

confined and deconfined phases of the given field theory. As noted in §2.3, even at large N ,

it appears difficult to give a useful definition of confined vs. deconfined phases on asymp-

totically AdS black hole backgrounds. However, it would be interesting to pursue this issue

further. In particular, let us again consider a case where the stress tensor is small due to

confinement in the double Wick rotated spacetime. In that case, one might like to under-

stand if the theory admits some analogue of a Boulware vacuum state with large negative

energy, so that the small Hartle-Hawking stress tensor could then be understood as a pre-

cise cancellation of this negative vacuum energy against a large positive contribution from a

deconfined plasma. In contrast, an analogue of a Boulware vacuum where the stress tensor

remains O(1) would suggest that a deeper notion of confinement remains to be found.
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