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Abstract

We introduce a novel enriched Boundary Element Method (BEM) and Dual Boundary Ele-

ment Method (DBEM) approach for accurate evaluation of stress intensity factors (SIFs) in

crack problems. The formulation makes use of the Partition of Unity Method (PUM) such that

functions obtained from a priori knowledge of the solution space can be incorporated in the

element formulation. An enrichment strategy is described, in which boundary integral equa-

tions formed at additional collocation points are used to provide auxiliary equations in order to

accommodate the extra introduced unknowns. In addition, an efficient numerical quadrature

method is outlined for the evaluation of strongly singular and hypersingular enriched boundary

integrals. Finally, results are shown for mixed mode crack problems; these illustrate that the

introduction of PUM enrichment provides for an improvement in accuracy of approximately

one order of magnitude in comparison to the conventional unenriched DBEM.

Keywords: BEM, fracture, Partition of unity, enrichment

1 Introduction

Computational fracture mechanics, essentially a subject centred on the problem of modelling the

singularity created by a crack tip, is a topic which has been studied extensively over recent years.

Many methods are available, but all share the common goal of determining accurate stress intensity
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factors (SIFs) for each of the modes of fracture (KI , KII , and KIII). These parameters, which

quantify the strength of the singularity created by the crack tip for a certain geometry and loading,

often need to be determined to high levels of accuracy. In particular, fatigue crack growth laws

which rely on SIFs raised to certain positive powers magnify any errors obtained in KN (where

N = I, II, III is the mode of fracture) further exacerbating the problem.

The vast majority of computational methods developed for fracture analysis are based on

the Finite Element Method (FEM). Watwood [1] demonstrated that if conventional piecewise

polynomial shape functions are used to analyse bodes containing cracks, then very high mesh

densities are required in the region surrounding the crack tip to obtain relatively low errors in

SIFs. Even so, with large numbers of degrees of freedom (DOF), errors in the region of 5% were

encountered with difficulties also presented in obtaining reliable KN values using displacements

and stresses extrapolated to the crack tip. However the implementation did provide a method

to model general fracture problems. Further improvements to the FEM include special crack-tip

shape functions that incorporate the required
√
ρ (where ρ is the radial distance from the crack

tip) variation for displacements around the crack tip and quarter-point elements, independently

formulated by Henshell and Shaw [2] and Barsoum [3]. These simply require the repositioning of

the mid-node to a quarter-point position. However, Ingraffea and Manu demonstrated the size

dependence of quarter-point elements preventing a general strategy for their use being formulated.

Furthermore, the extent of the singular region created by the crack tip is restricted to the size

of the quarter-point element when in reality it may extend further over a larger region. Further

complications arise in the use of quarter-point elements for curved crack geometries.

Other attempts to improve the FEM for fracture include a hybrid-element approach, first

introduced by Tong et al. [5] and more recently extended by Karihaloo et al. [6], while a more

recent approach, known as the fractal finite element method (FFEM) [7] has been developed.

The first uses a complex variable approach in which a special “hybrid” element incorporates the

correct crack tip behaviour. The latter technique models the singular region surrounding the crack

tip as a self-similar mesh in which several layers, progressively decreasing in size, are used. The

large number of unknowns created are transformed into a small number of global unknowns using

appropriate interpolation functions. Both methods exhibit accurate results for relatively coarse

meshes but do exhibit certain disadvantages. In particular, in the case of multiple cracks with

cracks tips in close proximity to one another, problems will occur in the formation of the “hybrid”
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element (hybrid-element method) and singular region (FFEM). This would also be the case for any

geometrical feature that lay near the crack tip. In these cases Boundary Element Methods, in which

only discretisation of the boundary is required, present a distinct advantage in the context of Linear

Elastic Fracture Mechanics (LEFM). One further note is made where, in the implementation of [6]

in which hybrid elements are used, much emphasis is placed on the evaluation of higher-order times

of the Williams expansion. However, current industrial practice in fracture and fatigue assessment

is almost entirely based on the first-order values of KN and it is this approach that is taken in the

present work.

The Boundary Element Method (BEM) is another computational method that, in recent years,

has found a growing popularity. It offers the advantage that the entire method is based on param-

eters on the boundary, essentially reducing the dimensionality of the problem by one. It too suffers

from the same problems encountered in the FEM in that polynomials are insufficient when trying to

model a singular problem such as crack, unless a refined mesh is used. Quarter-point elements have

been successfully applied to the BEM [8] although these too suffer from the same limitations that

have been encountered in the FEM. However, since the BEM represents tractions independently

of displacements, special crack-tip shape functions [9] are required to capture the ρ−
1
2 variation in

tractions seen at the crack-tip. Another technique known as the Subtraction of Singularity Method,

originally introduced by Papamichel and Symm [10], removes the singular field of the crack leaving

the non-singular field to be modelled numerically. This was extended further by Portela et al. [11]

who applied the method in such a way that Stress Intensity Factors (SIFs) were output directly

as unknowns. Excellent results were shown but the method encountered difficulties due to the use

of the Williams solution which is only valid in a near field region. The problem was overcome by

partitioning the domain into near and far-field regions at the cost of ease of implementation. More

recently, Watson [12] developed a method in which special singular shape functions are created

using eigenfunctions from the Williams expansion [13] that describe a crack tip singularity. In the

formation of these shape functions, additional unknowns are introduced requiring the use of aux-

iliary Boundary Integral Equations (BIEs). Certain restrictions are made on the type of elements

used and the implementation of the additional BIEs becomes rather complex, but the method does

show an improvement over other boundary element methods. Probably the most popular BEM

at present used to model fracture problems is the Dual Boundary Element Method originally de-

veloped by Portela et al. [14]. It overcomes the problem encountered when the conventional BEM
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is applied to a model containing coincident crack surfaces, where a singular system results from

collocation at identical nodal positions. The DBEM instead provides a Traction Boundary Integral

Equation (TBIE) that is independent of the conventional Displacement BIE (DBIE) and applies

the TBIE for collocation on one of the crack surfaces while the DBIE is applied for collocation at

all other points. The DBEM is a robust method that can be applied to various crack geometries

while achieving consistently accurate results, though this comes at the cost of a requirement to

evaluate some hypersingular boundary integrals.

Although BEM approaches have advanced to provide better than 1% accuracy with compara-

tively few elements, it is important to strive for greater accuracy still. In particular, SIFs derived

from numerical approximations may be used to determine fatigue lives according to various crack

growth laws. These laws typically give the crack growth rate from expressions containing a term

Km
I , in which the exponent m is typically of value 2 to 4 for metals, but can be considerably

higher for polymers and other materials, e.g. as high as 16 for a polyethylene [15]. More accu-

rate determination of SIFs will therefore be of great value in improving the quality of fatigue life

estimates.

A relatively recent research area that has shown considerable success is the idea of applying

enrichment through the Partition of Unity Method (PUM) [16]. In particular, the Extended Finite

Element Method (X-FEM) [17] has developed into a prominent computational method, with a wide

range of applications and a rapidly expanding research community. Fracture problems, in which

a singularity is found at a crack tip and a discontinuity experienced across the crack face, have

been used to study enrichment with X-FEM. Heaviside functions and a basis that encompasses

the solution space of crack tip displacements are introduced through enrichment providing the a

priori knowledge that leads to higher accuracy. Also, by representing the crack independently of

the mesh, crack propagation simulation times are dramatically reduced without the need to remesh

on each crack increment. The use of level sets to represent the crack has been shown to provide a

useful methodology for crack propagation studies [18].

Fracture mechanics computations have been considered using meshfree methods from the early

papers on methods [19]; Nguyen et al. [20] provide a useful recent review and include a discussion

of the practical use of the methods for cracked bodies. Meshfree algorithms for fracture mechanics

remain a subject of considerable research activity, with recent work focussing on locally enriched

approximations for problems containing material and geometric non-linearity [21, 22]. Liew et al.
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[23] extended enriched meshless schemes to a meshless boundary integral formulation, using similar

enrichment to the current paper.

In this paper enrichment through the PUM is applied to the Boundary Element Method to

allow accurate evaluation of SIFs. The formulation closely follows that of the DBEM to allow

models to contain coincident crack surfaces but does present entirely new terms within the BIEs

to apply enrichment. The technique used to calculate the singular and hypersingular enriched

boundary integrals is shown and the method of introducing additional collocation points to solve for

auxiliary unknowns is described. Finally, Mode I and Mode II SIFs for various crack configurations

are evaluated and comparisons made with the DBEM and other numerical solutions.

2 The Dual Boundary Element Method

The most widely accepted Boundary Element Method to model general fracture problems is the

Dual Boundary Element Method in which the conventional Displacement Boundary Integral Equa-

tion (DBIE) is used for collocation on one of the crack surfaces and the independent Traction

Boundary Integral Equation (TBIE) on the other. We consider a domain Ω ∈ R2, having boundary

Γ ≡ ∂Ω. The DBIE is given by

Cij(x
′)uj(x

′) +−
∫
Γ

Tij(x
′,x)uj(x)dΓ(x)

=

∫
Γ

Uij(x
′,x)tj(x)dΓ(x), i, j = x, y (1)

where Tij and Uij are the traction and displacement fundamental solutions, x′ and x are the source

(i.e. collocation) and field points that lie on the surface Γ, uj and tj are displacements and tractions

and Cij(x
′)uj(x

′) represents a jump term due to the singular integral at x′. All integrals are taken

over the general boundary Γ and the integral −
∫
represents a Cauchy Principal Value integral. The

TBIE is given by

1

2
tj(x

′) + ni(x
′)=

∫
Γ

Skij(x
′,x)uk(x)dΓ(x)

= ni(x
′)−
∫
Γ

Dkij(x
′,x)tk(x)dΓ(x), i, j, k = x, y (2)

where Skij and Dkij represent fundamental solutions that are derived by differentiating Tij and

Uij and the integral =
∫
represents a Hadamard finite-part integral. In the crack modelling procedure
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proposed by Portela et al. an assumption is made that all elements on which the TBIE is applied

are discontinuous; these have the property that nodes are not shared between adjacent elements

but are instead placed at interior points. This ensures continuity of displacement derivatives at

the collocation points (a requirement for the evaluation of Hadamard finite-part integrals) and

forces all source points x′ to lie on smooth boundaries. As a consequence of this, the jump term

in (2) has been written as 1
2 tj(x

′). The form Cij(x
′) is retained for the jump term in (1) since the

DBIE is used when collocating over the non-crack portions of Γ, and this may be discretised using

continuous elements.

In the implementation proposed by Portela et al. a large portion of the effort required to employ

the above equations is focused on the evaluation of the strongly singular and hypersingular integrals.

In fact, if flat elements are used along the crack surface these singular terms can be evaluated

analytically using rather simple expressions. Other boundaries can be modelled using continuous

and semi-discontinuous elements thus creating a robust and accurate method for fracture analysis.

3 Formulation

The Partition of Unity Method, which can be attributed to Melenk and Babuška, provides the

basis of enrichment in the present paper. It states, that if a set of functions forms a partition of

unity (that is, the sum of those functions is equal to unity at any point within a domain) then an

arbitrary set of functions can be incorporated within the approximation. Of course, the functions

are chosen to correspond to singularities or discontinuities in the domain from a priori knowledge

of the solution space, thus allowing fewer degrees of freedom to capture the required field. Using

this, displacements for a particular element n can be expressed in the following form

unj (ξ) =
M∑
a=1

Na(ξ)u
na
j +

M∑
a=1

L∑
l=1

Na(ξ)ψ
U
l (ξ)A

na
jl (3)

where ξ ∈ (−1, 1) is the local coordinate, Na is the conventional Lagrangian shape function for

local node a, ψU
l is the set of L basis functions used for enrichment and M is the number of nodes

per element. unaj , formerly a nodal displacement, is now a nodal coefficient along with Ana
jl . In

the present work where crack tip singularities are encountered, the basis functions are chosen to

correspond to Williams’ solution for displacements around a crack tip. If the terms of O(ρ1/2) are
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considered in the expansion, then L = 4 and the following enrichment basis vector can be written

ψU (ρ, θ) =

{
√
ρ cos

(
θ

2

)
,
√
ρ sin

(
θ

2

)
,

√
ρ sin

(
θ

2

)
sin(θ),

√
ρ cos

(
θ

2

)
sin(θ)

}T

(4)

This basis, which incorporates both Mode I and II components, is the same basis vector used by

Moës et al. [17] in the implementation of the XFEM. Thus, displacements are enriched in the

BEM using the same formulation. However, Boundary Element Methods differ slightly in that

tractions are represented independently of displacements creating an opportunity for enrichment

of tractions.

It should be made clear that the enrichment of the displacements in this fashion, using the term

√
ρ whose derivative becomes infinite at ρ = 0, therefore implicitly contains the stress singularity

at the crack tip. It is not necessary to enrich tractions as well as displacements in order to capture

the singularity. Indeed, in the present work only traction free cracks are considered precluding the

need for traction enrichment, but it would be entirely possible, using the appropriate expressions

for stresses around a crack tip given by Williams, to formulate a Partition of Unity using a basis

vector similar in nature to (4).

3.1 Enrichment of the Displacement Boundary Integral Equation

The first step that is required before enrichment can be applied to the DBIE is to express the

integral equation (1) in its discretised form. This is given by

Cij(x
′)uj(x

′) +

Ne∑
n=1

M∑
a=1

Pna
ij u

na
j =

Ne∑
n=1

M∑
a=1

Qna
ij t

na
j (5)

where

Pna
ij =

∫ 1

−1

Na(ξ)Tij [x
′,x(ξ)]Jn(ξ)dξ (6a)

Qna
ij =

∫ 1

−1

Na(ξ)Uij [x
′,x(ξ)]Jn(ξ)dξ (6b)

Ne is the number of elements and Jn(ξ) is the Jacobian of the transformation (x, y) → ξ for

element n. The enriched BIE is then formed by substituting expression (3) for displacements

7



while also expressing the source point displacement uj(x
′) in the same manner. The jump term is

then distributed across nodes within the element containing the source point using the technique

described by Perrey-Debain et al. [24] allowing the enriched BIE to be written as

Cij(x
′)

(
M∑
a=1

Na(ξp)u
na
j +

M∑
a=1

4∑
l=1

Na(ξp)ψ
U
l (ξp)A

na
jl

)

+

Ne∑
n=1

M∑
a=1

Pna
ij u

na
j +

Ne∑
n=1

M∑
a=1

4∑
l=1

P̃na
ijlA

na
jl

=

Ne∑
n=1

M∑
a=1

Qna
ij t

na
j (7)

where n is the number of the element containing x′ and ξp refers to the local coordinate of the source

point. It will be shown in the next section that the formulation requires collocation at some non-

nodal locations within the element. This is accommodated in (7) by expressing the displacement

component in the jump term in the enriched form (3), and interpolating over element n using

Lagrangian shape functions. In this equation, also, the terms Pna
ij and Qna

ij are unchanged from

Eqns. (6a) and (6b) while the new enriched term P̃na
ijl is given by

P̃na
ijl =

∫ 1

−1

Na(ξ)Tij [x
′,x(ξ)]ψU

l (ξ)J
n(ξ)dξ (8)

By inspecting the terms within this integral it can be seen that, with kernel Tij of O(1/r) (where

r := |x− x′| is the distance between the source and field points) and ψU
l of O(

√
ρ), it is clear that

an appropriate numerical integration procedure is required that is capable of evaluating integrals

which incorporate fundamental solutions which are strongly singular and basis functions which

exhibit infinite gradients at the crack tip. Details of such a routine are given in section 4.2.

It might be noted that the coefficients Ana
jl , that multiply the enrichment functions at the node

a on the element n, are each acting as an alias for the stress intensity factors. It is possible to

adopt a different enrichment strategy in which the functions are more directly related to the stress

intensity factors. Such a basis has been considered in finite element context by Benzley [25] and in a

meshfree context by Duflot & Nguyen-Dang [26] and Fleming et al. [27]. The present authors have

also considered this approach for enrichment of DBEM approximations, and this is the subject

of a different article. It should be noted that the results of the two enrichment approaches are of

comparable accuracy.
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3.2 Enrichment of the Traction Boundary Integral Equation

The Dual Boundary Element Method of Portela et al. makes use of an independent BIE known

as the Traction Boundary Integral Equation (TBIE) formed by differentiating the DBIE. The cost

of this is to produce a BIE that contains not only strongly singular integrals of O(1/r) but also

hypersingular integrals of O(1/r2) that require special consideration. Before enrichment is applied

to the TBIE, the discretised form of the unenriched boundary integral is

1

2
tj(x

′) + ni(x
′)

Ne∑
n=1

M∑
a=1

Ena
kiju

na
k = ni(x

′)

Ne∑
n=1

M∑
a=1

Fna
kijt

na
k (9)

where the terms Ena
kij and Fna

kij are expressed as

Ena
kij =

∫ 1

−1

Na(ξ)Skij [x
′,x(ξ)]Jn(ξ)dξ (10a)

Fna
kij =

∫ 1

−1

Na(ξ)Dkij [x
′,x(ξ)]Jn(ξ)dξ (10b)

The boundary integral equation given in (10a) is hypersingular of O(1/r2) while that in (10b) is

strongly singular of O(1/r) . The enriched form of the BIE is then given by substituting Eqn. (3)

into (9), yielding

1

2

( M∑
a=1

Na(ξp)t
a
j

)
+ ni(x

′)

Ne∑
n=1

M∑
a=1

Ena
kiju

na
k

+ni(x
′)

Ne∑
n=1

M∑
a=1

4∑
l=1

Ẽna
kijlA

na
kl

= ni(x
′)

Ne∑
n=1

M∑
a=1

Fna
kijt

na
k (11)

where

Ẽna
kijl =

∫ 1

−1

Na(ξ)Skij [x
′,x(ξ)]ψU

l (ξ)J
n(ξ)dξ (12)

if element n is enriched, otherwise Ẽna
kijl = 0. Clearly, with the introduction of the term Skij which

is of O(1/r2), the evaluation of the singular integral becomes more involved than that described

in the previous section. However, using a convenient technique to subtract the singularity, it will

be shown that in fact the singular term can be evaluated without undue difficulty. Notice that,
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although enrichment is not applied to tractions, the jump term in (11) is expressed in terms of

nodal tractions and shape functions. This is exactly the same technique which was applied to

the DBIE to allow collocation at any general point. Further explanation of this is given in the

implementation section.

Equations (7) and (11) are fundamental to the enriched BEM where, in the same manner as

the DBEM, one is used for collocation on all boundaries including one of the crack surfaces while

the other is used solely for the opposite crack surface. What is new in this method is the ability to

incorporate functions that are known to model the local displacement field of a crack tip, thereby

increasing accuracy for a given number of degrees of freedom (DOF).

4 Implementation

With each basis function in expression (4) incurring an additional DOF, and each enriched node

potentially using four basis functions, it becomes clear that a fully enriched model will lead to

a substantial increase in demand for computing resources. Therefore, to optimise both accuracy

and efficiency a selective enrichment strategy must be employed. We choose to enrich elements on

or near the crack since it is this local region where the basis functions of (4) are valid. Figure 1

illustrates a selective enrichment strategy in which elements that lie within a certain distance from

the crack tip are chosen to apply the basis functions. In Figure 1 the crack surfaces Γ+ and Γ− are

depicted as being separated by a finite crack opening displacement. This is for illustrative purposes

only; in practice the crack surfaces are coincident, as are the nodes that lie on these surfaces. The

system of equations is then formed by using Eqns. (7) and (11) throughout with (11) used for

collocating on Γ− and (7) for all other points.

4.1 Additional collocation points

Displacements that lie within the enrichment region are expressed in terms of unaj and Ana
jl and,

since each term Ana
jl represents an additional degree of freedom, additional boundary integral

equations are required to yield a square system. Watson [12] derived three additional BIEs by

differentiating the fundamental solutions Uij and Tij with respect to the source points x′ but made

the restriction that Hermitian elements are used. The Enriched Boundary Element Method makes

no such restrictions and is therefore much simpler to implement in an existing BEM code. Instead,

10



the method makes use of additional collocation points located on elements where enrichment is

applied, an approach which has been successfully applied to the PUM boundary element analysis

of wave problems [24]. Figure 2 illustrates the additional points applied to four enriched elements

(two on the upper surface and two on the lower) that lie on flat crack elements. In the case of

flat elements aligned with the crack tip, only three additional points are required for each enriched

element. This can be explained by considering the basis functions seen in (3) and referring to the flat

enriched elements illustrated in Figure 2. All nodes either lie at θ = π (on the upper crack surface)

or θ = −π (on the lower crack surface). The constant θ has the effect of reducing the basis to

ψU
l = {√ρ}. As a result, since only one additional DOF is introduced for each enriched node, three

DOF will be introduced for each enriched element, requiring three additional collocation points. In

the general case of curved elements, the full set of four basis functions is available requiring twelve

additional points to be applied to each enriched element.

It should be pointed out that the reduction of the basis to ψU
l = {√ρ} for flat elements causes

the approximation to resemble the use of quarter-point elements. However, the new formulation

is imposing the enrichment in a more general way that can be readily applied to curved cracks,

which will be the subject of another paper, and with multiple enriched elements. Moreover, we will

proceed in Section 5 to show that the new formulation provides for improved accuracy and more

rapid convergence in comparison with quarter-point elements.

Numerous tests were run to investigate the sensitivity of the SIF results to the positions of

these additional collocation points where positions that lay both on the boundary (x′ ∈ Γ) and

external to this boundary (x′ ̸∈ Ω) were tried. These points were also placed on unenriched and

enriched elements to determine the optimum location. It was found that the best results were

obtained by placing the points on enriched elements (on the boundary) and that the location of

the points within these elements had little effect on the results. Increased errors arise if additional

collocation points are located very close to nodes, where collocation also takes place. This is to

be expected, since eventually, in the limit as the additional point approaches a nodal point, two

identical equations are produced leading to a singular system.
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4.2 Numerical integration of strongly singular and hypersingular en-

riched integrals

Much of the effort required to implement the DBEM is focused on evaluating the hypersingular

integrals of the TBIE. The same is true in the Enriched Boundary Element Method but with the

added complication of developing methods for evaluating singular integrals that not only must

cope with collocation points lying at any general position within an element, but must also in-

clude the enrichment functions ψU
l . This is true also of the strongly singular integrals seen in the

DBIE. The evaluation of the non-enriched singular integrals is well documented, with analytical

expressions or other singular numerical quadrature techniques available. There are also various

methods available for the evaluation of singular and hypersingular integrals. Some use quadrature,

for example Ioakimidis [28], but in the present work we use the technique developed by Guiggiani

et al. [29] because it is both computationally efficient and easily adapted, as we show herein, for

the inclusion of general enrichment functions. This draws upon Aliabadi & Hall [30], who were the

first to expand the integrand in a Taylor series, and further works by Guiggiani & Gigante [31] and

Guiggiani & Casalini [32]. Assuming that enrichment is applied to discontinuous elements along

the crack edge, the following formula is used to evaluate the enriched hypersingular integrals (8)

and (12) which are of O(1/r) and O(1/r2) respectively,

I =

∫ +1

−1

[
F (ξp, ξ)−

(
F−2(ξp)

(ξ − ξp)2
+
F−1(ξp)

ξ − ξp

)]
dξ

+ F−1(ξp) ln

∣∣∣∣ 1− ξp
−1− ξp

∣∣∣∣
+ F−2(ξp)

(
− 1

1− ξp
+

1

−1− ξp

)
ξp ∈ (−1, 1) (13)

where the singular integrand F (ξp, ξ) can be expressed as

F (ξp, ξ) =
F−2(ξp)

(ξ − ξp)2
+
F−1(ξp)

(ξ − ξp)
(14)
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The terms F−2(ξp) and F−1(ξp) are regular functions determined by a Taylor series expansion of

the integrand about the source point, and are given by

F−2(ξp) =DS−2(ξp)Na(ξp)ψ
U
l (ξp) (15a)

F−1(ξp) =D

[
S−2(ξp)

(
Na(ξp)h(ξp)

dψU
l (ξp)

dξ

+ ψU
l (ξp)

(
h(ξp)

dNa(ξp)

dξ
+Na(ξp)g(ξp)

))
+ S−1(ξp)Na(ξp)h(ξp)ψ

U
l (ξp)

]
(15b)

where D is a constant and the functions S−1(ξp), S−2(ξp), h(ξp) and g(ξp) are algebraic expressions

involving the components r,i, n,i and the Jacobian of transformation Jn(ξp). A full definition of

these terms is given in the Appendix. Once these expressions are substituted in, the first term in

expression (13) then becomes regular and can be evaluated using standard quadrature formulae

while the latter two are analytical expressions for evaluating the singular components. Conveniently,

expression (13) can be modified easily to cope with integrals of O(1/r) by letting F−2(ξp) = 0.

This allows it to be used for all strongly singular and hypersingular integrals within the enriched

boundary element method.

One feature of using Eqn. (13) to evaluate singular integrals is that, due to its general nature,

there are no restrictions on the type of element over which the integral is being taken. Thus, when

implementing the method, it is entirely possible to use curved elements along the crack faces.

A common feature among PUM implementations is the effect seen on the conditioning of the

system due to enrichment. This was also the case in the present work where it was found that as

the number of enriched elements was increased, the conditioning deteriorated. For example, in the

typical case containing a crack modelled with four elements on each of Γ+ and Γ− and enrichment

only applied to the crack-tip elements, a condition number of 7.9 × 109 was experienced. When

all elements along the crack edge were enriched this increased to 2.6 × 1014. In the case of a

fully enriched BEM model, the problem is a serious issue. However, by implementing the selective

enrichment strategy described previously, the situation is much improved.

The above scheme differs from standard integration schemes used for singular integrations over

quarter-point boundary elements, which use a vanishing Jacobian to cancel the singularity. It is

important to note that the above scheme allows for collocation of the BIE at non-nodal points on

the element, which is a feature of our algorithm, and for the distribution of the associated jump

13



term to the nodes.

5 Results

5.1 Mode I problems

To illustrate the improvements seen by enriching elements around the crack tip an edge crack in

a square plate was modelled using a geometry a/w = 0.5 and h/w = 0.5 as shown in Fig. 3.

All elements are 3-noded, quadratic, discontinuous boundary elements. Initially enrichment was

applied to elements adjacent to the crack tip, but the enrichment region was increased beyond this

to other crack elements in subsequent tests. The J-integral technique, as originally developed by

Rice [33], was applied to find stress intensity factors. The boundary of the model was split into lines

where, in each step of refinement, additional elements were added to each line with equal element

divisions. The crack itself had a minimum of two elements on each surface up to a maximum of

eight, with no grading towards the crack tip. This is in contrast to the previous study by Portela

et al. [14] in which all models were graded; it is expected that similar grading would improve the

results of the current algorithm. After varying the enrichment region it was found that optimum

results were obtained by enriching only the elements adjacent to the crack tip. As the number of

enriched elements was increased beyond this, the conditioning of the system degraded adversely

affecting the accuracy of the results. Furthermore, by adopting the strategy of solely enriching

crack tip elements, the number of additional DOF introduced was also kept to a minimum. We

note that the conditioning may be related to the relationships between the coefficients Ana
jl and

the SIFs. The errors in normalised SIFs are given by

ε =

∣∣∣∣∣KNnorm −Kref
Nnorm

Kref
Nnorm

∣∣∣∣∣× 100% (16)

where

KNnorm =
KN

σ
√
πa

(17)

and Kref
Nnorm

denotes the normalised reference solution. For the edge crack, results evaluated using

the DBEM and the enriched BEM with elements adjacent to the crack tip enriched are illustrated

in Figure 4. For only twelve additional DOF it can be seen that enrichment provides a substantial
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increase in accuracy of approximately one order of magnitude. For example, with forty nine ele-

ments on the boundary, an error of 0.03% is achieved while the DBEM exhibits an error of 0.49%.

Both methods were found to converge to the reference value of 3.0103 [34] while errors for the

enriched BEM were consistently lower than those for the DBEM.

The performance of the PUM enriched DBEM is compared, in Figure 5, against the unenriched

DBEM and against the use of quarter-point boundary elements, in converging to the reference

solution of Civelek and Erdogan [34]. This comparison shows the use of PUM enrichment to have

a striking improvement over both earlier algorithms.

The problem of a central crack was also considered where, due to symmetry, only half the

rectangular sheet was meshed for analysis. Figure 6 illustrates the central crack problem along

with a mesh used for analysis indicating the line of symmetry. SIF results are compared to the

unenriched DBEM in Table 1. In a similar fashion to the edge crack problem, the normalised SIFs

are consistently more accurate than those evaluated using the DBEM. Even with a coarse mesh of

17 elements, the enriched BEM is capable of evaluating the SIF to within 1%. The improvement

offered by the PUM enrichment is not so striking in this example. However, this is not a general

feature of enriched DBEM solutions for centre-cracked plate problems, and we will proceed to show

some clearer improvements in section 5.2.

5.2 Mixed mode problems

In the previous two studies all cracks were subject to purely mode I loading while in many cases,

mixed mode loading is more realistic. Before mixed mode problems can be analysed however,

certain modifications are made to the J-integral to allow the decomposition into each of the modes

of fracture. This decomposition technique, illustrated by Aliabadi [36] allows the J-integral to be

split into the following components

JI =
K2

I

E′ , JII =
K2

II

E′ (18)

where E′ represents modified Young’s Modulus for plane strain or plane stress. In this way, each

of the two SIFs can determined.

The first example used to illustrate the accuracy of the enriched BEM for mixed mode fracture

is that of an oblique edge crack as studied by Wilson [37] using the boundary collocation technique.
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The geometry of the problem is illustrated in Fig. 7 where crack angles, β, of 45◦ and 62.5◦ were

analysed with crack lengths varying from a/w = 0.3 to 0.6. An analytical solution is not available

for this problem. Therefore instead of undertaking an error analysis, the results are compared

graphically against those presented by Wilson. Both Mode I and II normalised SIFs are plotted in

Fig. 8 for the varying crack lengths where excellent agreement with Wilson’s results is observed.

Finally, a mixed mode problem of an inclined centre crack (see Fig. 9) in a finite plate was

analysed with accurate results published by Murakami [38] and additional results given by Portela

et al. [14] using the DBEM. In the analysis, various J-integral paths were used to test the robustness

of the method where in each, the path described a circular contour centred at the crack tip starting

and finishing on nodal points lying on the crack surface. This is illustrated in Fig. 10 along with the

path numbering used in the analysis. Using a crack length of a/w = 0.5 inclined at 45◦, normalised

KI and KII values were determined for J-integral paths 2 to 5. Two meshes were used with four

and six elements on each line where, in contrast to the work carried out in [14], no grading of

the mesh was used. The results for Mode I and Mode II SIFs are illustrated in Figs. 11 and 12

respectively along with the results obtained using the unenriched DBEM in [14] using six elements

on each crack line.

For the Mode I and II results, it can be seen that in all but one case the enriched BEM gives

more accurate results for both meshes. Bearing in mind that in both meshes uniform grading is

used, it is expected that even more accurate results would be obtained if grading was used. It can

also be seen from the plots that the results of the enriched BEM are more consistently accurate as

the J-integral path is varied in comparison to the DBEM, so that no particular strategy is required

in order to determine the optimum J-integral contour.

For the above results, only one crack tip was enriched, but improved results can be gained by

enriching the elements at both crack tips. Figure 13 shows the convergence behaviour of the mode

I SIF results for the case h/w = 2, a/w = 2, β = 45◦, comparing the unenriched dual BEM, and

the two cases of the enriched dual BEM, i.e. with one tip enriched and with both tips enriched. It

is evident that the convergence rate is markedly improved when both tips are enriched. This leads

us to suggest that this is a very promising approach for multi-site damage problems.
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6 Conclusions

The Enriched BEM shows an improvement in accuracy over the DBEM for evaluating SIFs at

the cost of only a small number of additional DOF. The inclusion of enrichment terms requires

the implementation of singular and hypersingular enriched integrals at general collocation points;

a general procedure is given for their evaluation. By using this method, a general basis that is

known to model a discontinuity or singularity can be included within the BEM which will return a

more accurate solution. The enriched BEM, combined with the path independent J-integral, also

presents an attractive method for obtaining accurate SIFs for general crack problems using meshes

that are considerably coarser that those used in polynomial based element formulations. It has been

demonstrated that the method is accurate for both Mode I and II fracture problems. The natural

extension of the work will be the adaptation of the algorithms presented for the evaluation of SIFs

for 3D problems, which the authors believe will be enabled by using the enrichment approach of

Sukumar et al. [39].
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APPENDIX

The procedure outlined in [29] is used to allow the evaluation of the hypersingular integrals arising

in the present method where, for illustration purposes, the kernel Skij is used. For 2D elastostatics,
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Skij is given by

Skij =
µ

2π(1− ν)r2

{
2
∂r

∂n
[(1− 2ν)δijr,k

+ ν(r,jδik + r,iδjk − 4r,ir,jr,k]

+ 2ν(nir,jr,k + njr,ir,k)

+ (1− 2ν)(2nkr,ir,j + njδik + niδjk)

− (1− 4ν)nkδij

}
(A.1)

All hypersingular integrals involving this term are multiplied by the shape function Na(ξ) and the

Jacobian of transformation Jn(ξ). We are then left with an integral of the form

∫ +1

−1

Na(ξ)Skijψ
U
l (ξ)J

n(ξ)dξ (A.2)

which is of O(1/r2) when the source and field point coincide. The method is based on expressing

the integrand seen in (A.2) in a Taylor series form where definitions are made to simplify later

expressions.

If the components of the field and source point locations are expressed as xi and yi respectively

(in keeping with the notation of [29]), then the following Taylor series expansion about the point

ξp can be written

xi − yi =
dxi
dξ

∣∣∣∣
ξ=ξp

(ξ − ξp) +
d2xi
dξ2

∣∣∣∣
ξ=ξp

(ξ − ξp)
2

2
+ · · ·

= Ai(ξ − ξp) +Bi(ξ − ξp)
2 + · · ·

= Aiδ +Biδ
2 +O(δ3), (A.3)

which defines the constants Ai and Bi along with the term δ := ξ − ξp. The constants A and C

are also defined as

A :=

(
2∑

k=1

A2
k

)1/2

(A.4)

C :=

2∑
k=1

AkBk (A.5)

21



However, to determine Ai and Bi (and therefore A and C), the first and second derivatives about

the source point must be found. This is achieved by utilising the relevant shape functions and the

nodal coordinates in the following way

dxi
dξ

=
dNa

dξ
xai (A.6a)

d2xi
dξ2

=
d2Na

dξ2
xai (A.6b)

Now the derivative r,i can then be expressed as

r,i =
xi − yi
r

=
Ai

A
+

(
Bi

A
−Ai

AkBk

A3

)
δ +O(δ2)

=: di0 + di1δ +O(δ2) (A.7)

while the term 1/r2 can also be rewritten as

1

r2
=

1

A2δ2
− 2C

A4δ
+O(1) (A.8)

=:
S−2

δ2
+
S−1

δ
+O(1) (A.9)

It is also useful to express the Jacobian of transformation in terms of its components Ji(ξ) where

Jn(ξ) =
√
J1(ξ)2 + J2(ξ)2 and

J1 = A2 + 2B2δ +O(δ2) (A.10a)

J2 = −A1 − 2B1δ +O(δ2) (A.10b)

As a generalisation, these are written as

Jk = Jk0 + Jk1δ +O(δ2) (A.11)

Finally, we express the shape functions Na and the enrichment functions ψU
l as Taylor expansions

Na(ξ) = Na(ξp) +
dNa

dξ

∣∣∣∣
ξ=ξp

(ξ − ξp) + · · ·

= Na0 +Na1δ +O(δ2) (A.12)
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and

ψU
l (ξ) = ψU

l (ξp) +
dψU

l

dξ

∣∣∣∣
ξ=ξp

(ξ − ξp) + · · ·

= ψU
l0 + ψU

l1δ +O(δ2). (A.13)

The integrand in (A.2) can now be expressed as a Taylor series by substituting in expressions (A.7),

(A.8), (A.11), (A.12) and (A.13) while also noting that Ji = niJ
n. By collecting all the terms that

contain 1/δ2 and 1/δ where, due to the use of quadratic shape functions, any higher order terms

are zero, the following expression can be written for the integrand

Na(ξ)Skijψ
U
l (ξ)J

n(ξ) = D

{
S−2(ξp)Na0h(ξp)ψ

U
l0

δ2

+
[
S−2(ξp)

[
Na0h(ξp)ψ

U
l1

+ ψU
l0 (Na1h(ξp) + g(ξp)Na0)

]
+ S−1Na0h(ξp)ψ

U
l0

]
/δ

}
(A.14)

where the constant D is defined as µ/2π(1− ν), and the terms h(ξp) and g(ξp) are given by

h(ξp) = 2ν(Ji0dj0dk0 + Jj0di0dk0)

+ (1− 2ν)(2Jk0di0dj0 + Jj0δik + Ji0δjk)

− (1− 4ν)Jk0δij (A.15)

g(ξp) = 2(dl1Jl0 + dl0Jl1)
[
(1− 2ν)dk0δij

+ ν(dj0δik + di0δjk)− 4di0dj0dk0
]

+ 2ν
[
Ji0(dj1dk0 + dj0dk1) + Ji1dj0dk0

+ Jj0(di1dk0 + di0dk1) + Jj1di0dk0
]

+ (1− 2ν)
[
2(Jk1di0dj0 + Jk0(di1dj0

+ di0dj1)) + Jj1δik + Ji1δjk
]

− (1− 4ν)Jk1δij (A.16)

where the summation rule is applied to the first two terms in expression (A.16).
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