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ABSTRACT
We apply a basis function expansion method to create a time-evolving density/potential ap-
proximation of the late growth of simulated N-body dark matter haloes. We demonstrate how
the potential of a halo from the Aquarius Project can be accurately represented by a small
number of basis functions, and show that the halo expansion (HEX) method provides a way
to replay simulations. We explore the level of accuracy of the technique as well as some of
its limitations. We find that the number of terms included in the expansion must be large
enough to resolve the large-scale distribution and shape of the halo but, beyond this, additional
terms result in little further improvement. Particle and subhalo orbits can be integrated in
this realistic, time-varying halo potential approximation, at much lower cost than the original
simulation, with high fidelity for many individual orbits, and a good match to the distributions
of orbital energy and angular momentum. Statistically, the evolution of structural subhalo
properties, such as mass, half-mass radius and characteristic circular velocity, are very well
reproduced in the HEX approximation over several Gyr. We demonstrate an application of the
technique by following the evolution of an orbiting subhalo at much higher resolution than
can be achieved in the original simulation. Our method represents a significant improvement
over commonly used techniques based on static analytical descriptions of the halo potential.
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1 IN T RO D U C T I O N

In the standard cosmological paradigm of structure formation
(�CDM), dark matter haloes are built up through the repeated
hierarchical merging of smaller haloes (White & Rees 1978; Frenk
et al. 1985). These haloes provide the sites in which galaxies form.
Any model of galaxy formation, be it an smoothed particle hydro-
dynamic simulation or a semi-analytical calculation, must include a
description of the evolution of the halo in which the galaxy grows.
These descriptions usually take the form of either N-body simula-
tions, analytical potential profiles or statistical merger trees. In this
paper, we present a new way of characterizing the evolution of dark
matter haloes that can be employed in galaxy formation models or
to explore their small-scale structure.

Nearly all representations of haloes are motivated by cosmo-
logical N-body simulations. These are a powerful tool and have
allowed us to gain insight into the non-linear stages of halo growth.
The initial power spectrum of density fluctuations in the CDM
cosmogony has power on all scales and this affects the internal
evolution of haloes on a wide range of scales. However, investigat-
ing the structure and substructure of haloes requires simulations

�E-mail: b.j.lowing@durham.ac.uk

of ever-increasing resolution and ever-increasing computational
expense. The state-of-the-art are the Aquarius simulations of galac-
tic dark matter haloes, the largest of which achieved a resolution of
∼103 M� (Springel et al. 2008a). From these and other simulations
(Stadel et al. 2009), we have learnt not only about the basic structure
of haloes – that they have approximately universal density profiles
well described by an NFW profile (Navarro, Frenk & White 1996,
1997) or that they are strongly triaxial in shape (Allgood et al. 2006;
Bett et al. 2007; Hayashi, Navarro & Springel 2007) – but also about
the properties of their small-scale structure (Diemand et al. 2008;
Springel et al. 2008a; Vogelsberger & White 2011).

In spite of their impressive resolution, recent simulations have
a number of limitations. First, only a few examples have been
calculated so far. Secondly, their resolution is still below that re-
quired to follow the evolution of the smallest subhaloes, including
those that host the ultrafaint dwarfs of the Milky Way. Finally, they
neglect the effects of baryons in the evolution of the main halo and
its subhaloes.

The high cost of full simulations can be avoided by introduc-
ing approximations. A commonly used one is to assume a static
analytical potential to represent the halo and then perform a live
simulation of just the small-scale component of interest. Computa-
tional resources can then be targeted at that component and large
numbers of resimulations performed. This method has been applied
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to a wide range of problems, such as the orbits and evolution of sub-
haloes (Taylor & Babul 2001; Zentner & Bullock 2003; Peñarrubia
& Benson 2005), the build-up of galactic stellar haloes (Bullock &
Johnston 2005), the formation of streams (Peñarrubia et al. 2006),
or the disruption and heating of discs (Benson et al. 2004).

Using an analytical potential allows the parameters of the dark
matter halo to be varied in a way that cannot be done in full
N-body simulations. The major shortcoming of this approach is
that representing the halo with a simple analytical potential is unre-
alistic. Although recent studies have assumed slightly more compli-
cated forms for the potential, such as axisymmetric NFW profiles
(Peñarrubia et al. 2006) or triaxial NFW profiles (Law, Majewski
& Johnston 2009), they fail to include a realistic time-evolution, as
haloes grow in stages through mergers, or to account for changes in
triaxiality with radius (Hayashi et al. 2007) and time.

In this paper, we present a more advanced approach for represent-
ing the potential of a halo using a series expansion. Our approach is
based on the formulation of the self-consistent field (SCF) method
(Clutton-Brock 1973; Hernquist & Ostriker 1992, hereinafter HO).
The SCF method involves describing a density field as a series ex-
pansion and then using this to self-consistently evolve the field. This
is usually done by representing the density field as an N-body parti-
cle sampling and integrating the orbits of the particles in the series
expansion potential. Previous work has used this method to perform
N-body simulations (Weinberg 1996, 1999) and recently it has been
applied by Choi, Weinberg & Katz (2009) to simulate the potential
of subhaloes. SCF codes (also known as expansion codes) have the
advantage of being efficient, of scaling linearly with the number of
particles and of suppressing small-scale noise. It is desirable that the
lowest order radial basis function resembles the system of interest
so that a large number of terms are not required just to describe the
basic density distribution. This can be avoided by tailoring the basis
functions to the system by numerically solving the Strum–Liouville
equation for the particular density distribution (Weinberg 1999). We
have not done this in this paper; instead, for simplicity, we employ
a radial basis function set based on the common simple analytical
Hernquist halo profile (Hernquist 1990).

Rather than using the SCF method for the purpose of performing
a complete simulation, we use just the series expansion part of the
technique to approximate a pre-computed evolving density field, in
this case a dark matter halo. This halo expansion (HEX) method
offers us the means to create realistic approximations of an existing
time-varying halo, which can then be employed for resimulations.
Our approach has the distinct advantage of providing a much more
realistic description of a halo potential than a simple static analytical
form, while still being inexpensive. The starting point is a full
N-body simulation. A set of coefficients are calculated that describe
the halo with a chosen set of basis functions. Subsequently, an
estimate of the halo density or potential at any point in space can
be obtained by evaluating the appropriately weighted sum of the
basis functions at that point. In addition, by calculating multiple
independent sets of coefficients at various times in the halo’s history
and interpolating between the sets, we can describe the halo at any
time during this period.

There is a wide range of possible applications of this method. It al-
lows us to create approximations of very expensive halo simulations
and then replay them at will. It can be used to study the evolving
internal environment of the haloes or for the purpose of placing new
objects into the simulations and observing their behaviour as if they
had been present in the original simulation. Problems to which it
is ideally suited include the orbits and stripping of subhaloes, the
response of a light disc to the changing halo potential, the shape and

precession of tidal streams, and the dynamics of satellites galaxies.
In this paper, we focus on the first of these applications; we will
explore the second in a later paper. Comparing orbits within a halo
approximated by a series expansion to orbits calculated from the
N-body halo serves as a demonstration of the method and provides
a test of the accuracy of the approximation.

Limitations of our HEX technique include the lack of back re-
action of the halo potential when new components are added. For
example, if a model of a baryon disc is introduced, the associated
reduction of triaxiality at the centre of the dark halo (Debattista
et al. 2008; Abadi et al. 2010; Bett et al. 2010) cannot be included
in the expansion approximation. At present, the method does not
treat the effect of dynamical friction on objects orbiting within the
halo. Although this can, in principle, be implemented in the method,
Boylan-Kolchin, Ma & Quataert (2008) find that, for subhalo-to-
halo mass ratios less than 0.1, the decay of the subhalo orbit due to
dynamical friction over a few Gyr is small.

This paper is organized as follows. Section 2 describes the theory
behind the HEX technique and how it has been applied to generate
a representation of the density and potential of a simulated dark
matter halo. Section 3 quantifies how well the approximation suc-
ceeds in recreating the orbits of both single particles and subhaloes.
The latter part of the section carries out a comparison between the
evolution of subhaloes in a full simulation and in the approximated
potential. In Section 4, we use the expansion method for adding a
new subhalo into the halo and finally, in Section 5, we summarize
our conclusions.

2 ME T H O D O L O G Y

We start by presenting a brief overview of the theory behind our
HEX method based on the SCF formulation and then describe the
simulated haloes to which it has been applied and the considerations
required in its application.

2.1 Basis function series expansions

The SCF method was originally devised by Ostriker & Mark (1968),
where it was used to find the equilibrium structure of rapidly ro-
tating stars. Clutton-Brock (1972, 1973) applied the SCF method
to computational stellar dynamics to model the potential of simple
galaxies. HO further developed the technique and it is upon their
formulation we base this paper. The idea of the SCF technique is
to expand the density and potential in a set of basis functions. The
coefficients for the density can be found by summing over the parti-
cle distribution of a simulation. The corresponding coefficients for
the potential are then obtained through solving Poisson’s equation.
Differentiation of the potential series gives the acceleration, which
can then be used to self-consistently evolve the particles. We adopt
the SCF method for creating a series expansion for an N-body dis-
tribution, but we do not use it to move the particles; instead, we are
interested in the expansion itself.

We perform our expansion in spherical polar coordinates with r
the radial distance, θ the polar angle and φ the azimuthal angle.
We start by considering the potential and density written as the
biorthogonal series

ρ(r, θ, φ) =
∑
nlm

Anlmρnlm(r, θ, φ), (1)

�(r, θ, φ) =
∑
nlm

Anlm�nlm(r, θ, φ), (2)
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where ρnlm(r, θ , φ) and �nlm(r, θ , φ) are the basis functions labelled
by n, l, m. A pair of biorthogonal series are defined by the property∫

ρ(r)nlm�(r)n′l′m′ dr = δnn′δll′δmm′ . (3)

If the individual basis function series are not orthogonal, then it is
necessary to use a pair of biorthogonal series instead. When taking
the overlap of the density with the potential basis functions, the
biorthogonality property ensures that each coefficient only depends
on a single potential basis function and that there is no contribution
to it from any of the other basis functions. The basis functions are
chosen so that each pair of terms are a solution to Poisson’s equation

∇2�nlm(r, θ, φ) = 4πGρnlm(r, θ, φ), (4)

with G the universal gravitational constant.
While we have a free choice of basis functions, it is desirable that

lowest order terms be a good approximation to the system being
modelled. This reduces the need to expand to high order to obtain
a good fit. We have adopted basis functions from HO, where radial
basis functions are based on the Hernquist profile. A Hernquist
profile is a reasonable fit to a dark matter halo, having an appropriate
slope of r−1 at small radii but differing from the standard NFW
form in its behaviour at large radii. For near-spherical distributions,
it is natural to expand in spherical coordinates and use spherical
harmonics. Equations (1) and (2) then become

ρ(r, θ, φ) =
∑
nlm

Anlmρnl(r)Ylm(θ, φ), (5)

�(r, θ, φ) =
∑
nlm

Anlm�nl(r)Ylm(θ, φ), (6)

where Ylm(θ , φ) are usual spherical harmonics. The zeroth-order
radial basis function is just the Hernquist profile

ρ00 = 1

2π

1

r

1

(1 + r)3
, (7)

with potential

�00 = − 1

1 + r
, (8)

when written in dimensionless units where G = 1 and the scalelength
in the Hernquist form a = 1. Higher order terms with n = 0 result
from the assumption that they behave asymptotically as r → ∞ as
would a usual multipole expansion. To construct terms with n 	= 0,
an additional radial function, Wnl(ξ ), is included, the form of which
is found by inserting it into Poisson’s equation. The transformation

ξ = r − 1

r + 1
(9)

maps r from the semi-infinite range to a finite interval and simplifies
the following expressions. Following the derivation from HO, the
final full set of potential and density basis functions are finally found
to be

ρnl(r) = Knl

2π

rl

r(1 + r)2l+3
C(2l+3/2)

n (ξ )
√

4π (10)

and

�nl(r) = − rl

(1 + r)2l+1
C(2l+3/2)

n (ξ )
√

4π, (11)

where

Knl = 1

2
n(n + 4l + 3) + (l + 1)(2l + 1) (12)

and C(2l+3/2)
n (ξ ) are the ultraspherical polynomials (Abramowitz &

Stegun 1964). The expansions can then be rewritten in purely real
quantities as

ρ(r, θ, φ) =
∞∑
l=0

l∑
m=0

∞∑
n=0

Ylm(θ )ρnl(r)(Snlm cos mφ

+ Tnlm sin mφ), (13)

�(r, θ, φ) =
∞∑
l=0

l∑
m=0

∞∑
n=0

Ylm(θ )�nl(r)(Snlm cos mφ

+ Tnlm sin mφ). (14)

For a known density profile, the expansion coefficients Snlm

(or Tnlm) can easily be obtained by multiplying both sides of
equation (13) by [Ylm(θ )�nl(r) cos φ] (or [Ylm(θ )�nl(r) sin φ]) and
integrating over all space. This needs to be modified for N-body
simulations where the density field is represented by discrete par-
ticles. In this case, the integration over space becomes a sum over
the particles, each weighted by its mass. Then, the expansion coef-
ficients are(
Snlm

Tnlm

)
= (2 − δm0)Ãnl

∑
k

mk�nl(rk)Ylm(θk)

(
cos mφk

sin mφk

)
, (15)

where

Ãnl = − 28l+6

4πKnl

n!(n + 2l + 3
2 )[
(2l + 3

2 )]2


(n + 4l + 3)
, (16)

rk is the position of each particle and mk its mass.
Once the coefficients are calculated, they can be used to evaluate

equation (14) and find the potential at any location in space. Ac-
celerations are obtained by differentiating the potential. By taking
the gradient of equation (14), the accelerations can be written in
spherical coordinates as

ar (r, θ, φ) = −
∞∑
l=0

l∑
m=0

∞∑
n=0

Ylm(θ )
d

dr
�nl(r)

(Snlm cos mφ + Tnlm sin mφ), (17)

aθ (r, θ, φ) = − 1

r

∞∑
l=0

l∑
m=0

∞∑
n=0

dYlm(θ )

dθ
�nl(r)

(Snlm cos mφ + Tnlm sin mφ), (18)

aφ(r, θ, φ) = − 1

r

∞∑
l=0

l∑
m=0

∞∑
n=0

mYlm(θ )

sin θ
�nl(r)

(Tnlm cos mφ − Snlm sin mφ). (19)

Both the radial and spherical harmonic basis sets are complete, so
when summed from n = 0 → ∞ and l = 0 → ∞, the expansion
converges to the exact distribution, although non-uniformly near
discontinuities. However, in practice, the expansions are truncated
at some high-order terms, nmax and lmax. Truncated to a finite number
of terms, equations (13) and (14) become

ρ(r, θ, φ) =
nmax∑
n=0

lmax∑
l=0

l∑
m=0

Ylm(θ )ρnl(r)(Snlm cos mφ

+ Tnlm sin mφ), (20)
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�(r, θ, φ) =
nmax∑
n=0

lmax∑
l=0

l∑
m=0

Ylm(θ )�nl(r)(Snlm cos mφ

+ Tnlm sin mφ), (21)

with the number of terms determining the accuracy to which the
expansions reproduce the actual density distribution.

This algorithm is ideally suited to parallel computation. Each
processor can independently calculate the coefficients for disjoint
subsets of particles. A final summation collects together the con-
tributions from each processor to generate the coefficients for the
complete particle set. This ease of parallelism coupled with the al-
gorithm being of O(n) in the number of particles means it is ideally
suited for use on huge data sets. However, the algorithm is to lead-
ing order O(nmaxl2

max) for the number of basis terms included in the
expansion and can quickly become computationally expensive if
too many higher order terms are included.

2.2 Simulations

This work is based on a simulated Milky Way sized dark matter halo
from the Aquarius Project (Springel et al. 2008a,b; Navarro et al.
2010). The Aquarius Project sample consists of six haloes of mass
∼1012 M�, which have each been resimulated at multiple resolu-
tions. The simulations were performed using an improved version
of GADGET (Springel, Yoshida & White 2001b; Springel 2005). The
cosmological model used in the simulations assumes a �CDM cos-
mogony, with the parameters �m = 0.25, �� = 0.75, σ 8 = 0.9 and
ns = 1 and Hubble constant H0 = 73 km s−1 Mpc−1. The six haloes
were selected from the set of all isolated ∼1012 M� haloes from a
lower resolution 9003-particle parent simulation of a 100 h−1 Mpc
box. Isolated means that a halo had no neighbours exceeding half
its mass within 1 h−1 Mpc; this ensured that the haloes were not
members of any massive groups or clusters. Gravitationally bound
substructures orbiting within the main larger Aquarius haloes are
identified using the SUBFIND algorithm (Springel et al. 2001a).

The Aquarius Project haloes are ideally suited for this work as
they are high-resolution simulations of single haloes, that have been
carefully tested for convergence and have a large number of outputs
saved at regular times. We have applied the HEX technique to two
different resolution versions of the Aquarius A halo. The majority
of this work is based on the higher resolution version known as
Aq-A-2, while a lower resolution version, Aq-A-4, is used to check
for convergence. Table 1 details the basic parameters of the simula-
tions and haloes. There is a factor of 28 difference in the resolution
of the two versions, with excellent convergence found between
them. The Aq-A-2 simulation has a total of 1024 outputs, while the
Aq-A-4 simulation has only 128. For this work, we have restricted

ourselves to the same 128 outputs from both versions, giving one
approximately every 155 Myr at late times.

2.3 Application to simulated haloes

To apply the HEX technique to a dark matter halo from the Aquarius
simulation, we expand about the potential minimum, as identified
by SUBFIND by the most bound particle. A summation over all
particles is performed, once for each halo, to yield a set of co-
efficients that describe the halo by the given basis functions. We
limit the expansions to a small number of terms, resulting in a set
of coefficients much smaller in comparison to the number of dark
matter particles in the halo. This truncation of the series smoothes
the density and removes small-scale detail.

Only particles within 1.3 virial radii of the halo centre are in-
cluded in the coefficient summation. At greater distances, the distri-
bution of material is more irregular and not well fitted by spherical
basis functions. While the use of a hard cut-off at the boundary im-
poses a discontinuity in the density profile there, we find this not to
be a problem. We have tested with larger as well as soft boundaries
and find the exact choice makes little difference to our results. We
choose to use a hard boundary for simplicity.

Fig. 1 shows the comparison of the density profile of the main halo
from the Aq-A-2 simulation, obtained by binning the simulation

Figure 1. Upper panel: spherically averaged density profiles ρ(r) of the
main Aq-A-2 halo. The solid line is the profile of the actual halo from
the simulation, while the dotted and dashed lines are the profiles from the
expansion with nmax = 10 and 20, respectively. Bottom panel: residuals of
the density profile fits, 
ρ/ρ ≡ (ρHEX − ρhalo)/ρhalo, where ρhalo is the true
halo density and ρHEX denotes the HEX-approximated density.

Table 1. Basic parameters of the two Aquarius simulations of the A halo. mp is the particle
mass in the high-resolution region, εG is the Plummer-equivalent gravitational softening
length, r200 is the virial radius, defined as the radius enclosing a mean overdensity 200 times
the critical value, M200 is the mass within the virial radius and N200 is the total number of
particles within r200. Also listed is the position (rmax) of the peak (Vmax) of the circular
velocity profile.

Halo mp εG r200 M200 N200 Vmax rmax

(M�) (pc) (kpc) (M�) (106) (km s−1) (kpc)

Aq-A-2 1.370 × 104 66 244.84 1.842 × 1012 134.47 208.49 28.14
Aq-A-4 3.929 × 105 342 245.70 1.838 × 1012 4.68 209.24 28.19
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particles into spherical shells, with its approximation by the HEX
method. The lower panel shows the residuals between the model
and the data. It can be seen that over the radial range 1–100 kpc,
using just 11 radial basis functions, nmax = 10, the rms deviation of
the residuals is 4.2 per cent, decreasing to 2.6 per cent when twice
the number of radial terms, nmax = 20, are included. Even using just
a few radial basis functions the expansion achieves a fit to within a
few per cent to the spherically averaged density profile of the halo,
over a range where the radial density varies by over six orders of
magnitude.

2.3.1 Order of expansion

The accuracy of the approximation of the halo depends on the
number of terms included in the expansion; the use of more terms
allows smaller spatial features to be resolved. The spatial resolution
approximately scales inversely proportional to nmax and l2

max. The
effect on the force of including more terms in the expansion can be
seen in Fig. 2. Here, the radial component of the force for nmax =
lmax = 4, 9, 19 and 39 is compared to the force as calculated directly
from the original N-body simulation.

In the central region of the haloes, the radial force estimated from
the expansion differs from that calculated in the simulations. The
closer to the centre, the larger the disagreement. This divergence is
due to the density of the simulated halo having a logarithmic slope
shallower than −1, while the lowest order Hernquist basis function
having a cusp at the centre with a slope of −1 and not being a good
fit there. Excluding the centre from the comparison, so considering
the region between 5 and 100 kpc, it is found that doubling both nmax

and lmax from five to 10 terms results in a big improvement, with the
fractional rms deviation falling from 4.8 to 1.3 per cent. Doubling
the number of terms again gives further gains, with expansions using
20 and 40 terms resulting in the fractional rms deviations of 0.83
and 0.46 per cent, respectively.

As the expansion is taken to increasingly higher orders, the con-
tribution of individual terms declines. Higher order terms resolve
smaller scale structure, and eventually the very high order terms
model only the shot noise from the discrete particle nature of the
simulation. Following Weinberg (1996), we take the signal-to-noise
ratio on a coefficient as S/N ≡ [S2

nlm/var(Snlm)]1/2, where by consider-

Figure 2. Radial component of the force calculated from the HEX approx-
imation truncated at differing nmax divided by the actual force calculated
directly from the Aq-A-4 simulation.

ing the computation of the coefficients as a Monte Carlo integration
the variance can be estimated. S/N of less than 1 indicates that
the particle distribution does not provide significant information on
the value of that coefficient. We find that terms even of high order
as nmax = lmax = 20 enjoy low levels of noise and contribute to
resolving the halo structure. This is not surprising as the Aq-A-2
simulation has over 100 million particles within the virial radius,
while an expansion with nmax = lmax = 20 contains only 8000 terms.

Gravity is a long-range force dominated by the large-scale distri-
bution of material. The force on an object is therefore determined
primarily by the overall distribution of mass, and resolving nearby
small-scale fluctuations does not substantially improve the radial
force estimate. Going to higher expansion orders is thus unneces-
sary, as long as we employ sufficient terms to resolve the large-
scale structure. Additional terms do not provide much gain. A force
accuracy of less than 1 per cent can be achieved using nmax =
lmax = 20 and is sufficient for most purposes. We use expansions to
this order in the rest of this paper.

2.3.2 Choosing the scalelength

The adopted set of basis functions contains a single free parameter
corresponding to the scalelength, a, of their underlying Hernquist
profile. This scalelength needs to be pre-determined and chosen so
that the lowest order basis function is a good fit to the halo. We find
that the accuracy of the expansion when approximating the force
is fairly insensitive to the exact choice of scalelength. Examination
of the rms deviation in the radial force as a function of scalelength
shows that very small scalelengths give bad fits to the profile but
any scalelength larger than 10 kpc is acceptable, with a minimum
rms deviation at 33 kpc. As we have already seen, the lowest order
basis function is not a good fit to the halo at the origin due to a
mismatch in central slopes. Reducing the scalelength does not help
this.

The basis functions are primarily constrained by the region where
the number of particles per radial interval is a maximum. This occurs
where the logarithmic slope of the density profile is −2, which is
at the scalelength for an NFW profile and at half the scalelength
for a Hernquist profile. It is in this region that we desire the lowest
order basis functions to fit well in order to minimize the number of
terms needed in the expansion. The Aquarius A halo is very well
fitted at z = 0 by an NFW profile with a scalelength of 15.3 kpc.
It is therefore unsurprising that the optimum scalelength for the
best fit by the lowest order Hernquist basis function is found to be
33 kpc, approximately twice the the best-fitting NFW scalelength.
Using this value obtains an average rms deviation in the radial force
between 5 and 100 kpc of 0.53 per cent, with the force correct to
within 3 per cent down to 2 kpc. In the rest of this paper, we use a
scalelength of 33 kpc when modelling this halo.

2.3.3 Frame of reference

We perform the expansion in a frame moving with the halo. Haloes
are accelerated by surrounding large-scale structure. In the simu-
lation, this results in a halo having a peculiar velocity of several
hundred km s−1, a velocity comparable to the relative motion of the
material within it. We wish to transform into a frame in which we
can treat the halo as stationary. This will allow us to follow the rel-
ative motion of objects within a halo, such as the orbit of particles,
and neglect the halo’s movement through space in their equation of
motion and not to take into account the position or the velocity of

C© 2011 The Authors, MNRAS 416, 2697–2711
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

 at U
niversity of D

urham
 on N

ovem
ber 26, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2702 B. Lowing et al.

the halo at intermediate times. Because of the halo’s finite extent,
this frame is not strictly an inertial frame, but is accelerating due
to the gravitational effects of distant large-scale material. Since the
material within the halo experiences the same acceleration, this is
important only if there are significant differential tidal forces over
the scale of the halo, but this is not the case; the long-range tidal
force, calculated by direct summation, from distant material is less
than 1 per cent the magnitude of the internal halo force within
100 kpc of the halo centre and can be safely ignored.

In order to transform into a stationary halo frame, we must define
an origin that moves with the halo and remove the halo velocity.
The origin of the halo frame is chosen as the halo potential mini-
mum, xpm. This is a well-defined point that follows a smooth path.
The choice of the halo velocity to use for the transformation to a
stationary frame is not obvious. We need to use the instantaneous
halo velocity to make the correct transformation rather than the av-
erage velocity, which we could simply obtain from the motion of the
potential minimum. A sensible choice is to look at the net motion of
the material surrounding the potential minimum. We obtain a cen-
tre of mass velocity that corresponds to the potential minimum’s
velocity by selecting all particles within some bounding radius, R,
of the halo centre. The velocity is then

vc =
∑

i mivi∑
i mi

, (22)

where i denotes all the particles that have |xi−xpm| ≤ R. Restricting
ourselves to the just inner region where the halo is almost static,
we find that the exact choice of R makes little difference to the
centre-of-mass velocity. Varying R between 1 and 20 kpc alters
the velocity by less than a km s−1. Including the entire halo gives
a centre-of-mass velocity some 20 km s−1 different from that of
the inner regions. We therefore choose to use the centre-of-mass
velocity of the particles within 5 per cent of the virial radius, which
for the Aq-A-2 simulation is R = 12 kpc at z = 0.

To show that this is a valid choice, we compare the orbits of
particles integrated within the expansion with the orbits the same
particles took within the original simulation. The next section
describes this in detail. We find that for each subset of particles
there is an optimal choice of velocity for the halo frame in which
to integrate particle orbits in order to match their equivalent orbits
from the Aquarius simulation. This velocity can be found through
a minimization scheme, in which we attempt to minimize the dif-
ference in their final position compared with their position in the
original simulation. While the optimum velocity depends on the set
of particles considered, it only varies within a few km s−1 between
cases, suggesting that the motion of the inner regions of the halo is
almost uniform. A slight difference in motion throughout the halo
is the cause of the small spread and allows us to define a window
of several km s−1 in which we find that any choice of velocity for
the halo frame works satisfactorily. Choosing a different velocity
within this window changes the path of the orbital integration by
only a per cent or two.

Not only does this show that an approximately stationary frame
does exist, but we also find that the centre-of-mass velocity that we
chose earlier lies within this window. This is true for the Aquarius
A, B and C haloes and demonstrates itself to be a valid choice for
the halo frame, especially as it can be easily determined in advance,
whereas the optimum velocity for a particular case can only be
located retrospectively. The resulting procedure for placing objects
within the expansion approximation frame is to find their initial
position relative to the halo potential minimum at the start time and
their initial velocity with respect to the defined halo velocity, vc.

Figure 3. The variation of low-order coefficients as a function of time for
the last 5 Gyr of the Aq-A-2 halo evolution.

The motion of the objects can then be followed totally within this
frame and there is no need to further consider the overall motion of
the halo.

2.3.4 Time-variation

Due to the fact that such a large amount of data is generated, the
output of N-body simulations is usually recorded only at a few snap-
shots. Between these snapshots, information on the exact evolution
of the halo is lost. However, it is usually sufficient to use simple
interpolation to approximate it. The HEX technique is ideal for this
because at each snapshot a new set of coefficients are calculated to
describe the halo at that time. An approximation to the state of the
halo at any intermediate time can be recovered by linearly inter-
polating the coefficient of each basis function between the directly
preceding and following snapshots.

Fig. 3 illustrates the variation in a selection of low-order coef-
ficients over the last 5 Gyr of the Aq-A-2 halo’s growth, with a
time-resolution set by the snapshot spacing of 155 Myr. The coef-
ficient of the lowest order basis function varies very little, initially
showing a slight increase until 11 Gyr, followed by a slight decline.
The variation corresponds to the slight fluctuation in mass of the in-
ner ∼100 kpc of the halo. The higher order coefficients have greater
variation. The fluctuations on short time-scales, of the order of the
time-spacing of the snapshots, are generally small, while the larger,
more important, variations, such as the oscillation in the n = 2, l =
1, m = 0 coefficient, occur on longer time-scales. The time-spacing
we use is sufficient to capture large-scale changes in halo structure.
Smaller, quicker changes, such as those from substructure, may be
missed but this does not matter as these are not spatially resolved
by the expansion anyway.

3 R ESI MULATI NG AQUARI US

Once we have obtained a time-varying set of coefficients for a
HEX approximation of an Aquarius halo potential and density, it is
straightforward to use this to integrate orbits of test particles within
the evolving halo potential. In order to test the accuracy of the HEX
method, we examine how closely we can reproduce the properties of
existing objects already present in the Aquarius simulations along
their orbits. Based on the findings of the previous section, we use
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Approximating haloes with the HEX technique 2703

a potential expansion including terms up to order nmax = 20 and
lmax = 20, with a fixed scalelength of 33 kpc and summed over
all particles within 340 kpc of the halo centre, to approximate the
Aq-A-2 halo. A set of coefficients are generated for each snapshot,
approximately every 155 Myr.

3.1 Integrating orbits

Ideally, if the potential is approximated accurately, test particles
placed in the evolving halo potential will behave in the same manner
as particles in the original simulation. This should be the case as
long as the particles are not bound to any subhalo, since we are
not attempting to resolve this level of detail. Therefore, by setting
up a test particle with initial conditions matching the instantaneous
state of a simulation particle and integrating the orbit within the
HEX approximation, a comparison can be made between the path
that the simulation particle actually followed and the one recreated
using the HEX method. Differences in the orbital path or properties
provide a guide to the accuracy of the HEX approximation.

Fig. 4 shows an example of an orbit that is particularly well
reproduced. The orbit of the particle extracted from the Aq-A-4
simulation is compared with one integrated for 1 Gyr in the HEX
potential. The recreated orbit closely matches the actual particle
path, though it slightly diverges over time. By the end of the in-
tegration, there is some displacement between the final positions.
While the orbit shape is well reproduced, the progress of the parti-
cles along their orbits is slightly out of phase. This discrepancy was
introduced during the third apocentre passage, when the resimu-
lated particle took a slightly wider orbit so that it subsequently lags
behind the actual particle. An increasing divergence in paths is not
unexpected as once a particle has even slightly different phase-space
coordinates it will subsequently follow an increasingly different or-

Figure 4. The orbit of a single particle in the Aq-A-4 simulation. The
blue line shows the result of using the HEX approximation. The black line
shows the actual path of the same particle followed through the Aquarius
simulation. The particle positions were recorded only at limited points which
have been joined by the straight lines. Both paths start from the same point
on the right-hand side and are integrated for 1 Gyr.

bit. The energy of the two particles is matched to within 1.3 per cent
throughout the entire orbit.

Once paths start to diverge, the particles will travel through dif-
ferent parts of the halo and it is therefore unsurprising that the
properties of the original and recreated orbits become increasingly
uncorrelated. It is more interesting to consider the properties of the
particles over short time-periods, while the paths are still very sim-
ilar. We do this for a set of 100 particles, randomly selected from
the Aq-A-2 simulation from within 140 kpc of the halo centre at a
redshift z = 0.5. We extract their orbits over 5 Gyr by finding their
positions through 33 successive snapshots.

In order to compare the acceleration of these particles in the HEX
approximation to the acceleration they experienced in the original
GADGET simulation, we must remove the overall halo acceleration
from the GADGET values. This is necessary as the integration in the
HEX approximation is performed in a moving halo frame. The
linear component of the overall halo acceleration is easy to remove
and shows up as a systematic offset in the accelerations between the
two cases. Calculating the mean acceleration difference in the final
z = 0 snapshot finds a clear offset of 18.2 km s−1 Gyr−1. Once this
component is removed, we find a close match in the accelerations,
with a median acceleration difference of 1.2 per cent for the 100
particles over 33 snapshots.

A comparison between the HEX approximation and a direct
N-body force summation of the same material included in the HEX
expansion gives a slightly better agreement for the median force
differences of 0.9 per cent. The differences between this N-body
summation and the GADGET force arise from a combination of the
higher order acceleration components not being removed, possible
errors in the force calculated by GADGET which come from a TreePM
method, also an approximation, and the fact that the box containing
the simulation is treated as periodic by GADGET. Regardless of these
slight differences, both the comparison with the GADGET-calculated
force and the direct summation demonstrate that there is in general
an average force/acceleration error of approximately 1 per cent for
the HEX approximation. In certain situations, there can be much
larger errors; in one case, we find a difference of 90 per cent, when
a particle comes within 500 pc of a large subhalo. Differences of
this size are expected for the HEX potential near subhaloes, since
such subhaloes are not well resolved in the approximation.

Integrating the orbits of the test particle set over the short time-
period between snapshots allows us to measure the distance be-
tween the final positions and the actual particle positions in the
Aquarius simulation. The integration is done by treating the parti-
cles as non-interacting and placing them at the same initial position
with appropriate relative velocity, and using a simple drift-kick-
drift leapfrog integrator with a fixed time-step of 1 Myr. By using
the difference in forces at the snapshot times as an estimate for the
average force error, we are able to calculate the expected divergence
of orbits between snapshots and compare this with the divergence
obtained from the HEX integration. Over the short time-scale be-
tween snapshots of ∼155 Myr, the displacements are small, usually
a few hundred pc. We find that the error in the displacement of the
integrated paths is consistent with the estimated error.

3.1.1 Energy changes

Examining how well the HEX approximation reproduces the inte-
grals of the motion can be more indicative of differences in orbits
than looking at the differences in the final position. Position is
an instantaneous phase-space coordinate that rapidly varies along
an orbit, and absolute differences in position are dependent on a
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Figure 5. Energy change for selected particles between snapshots in the
Aquarius simulation compared with the energy change for the same particles
when their orbits are integrated over the same period in a HEX approximation
of the Aq-A-2 halo.

particle’s current radial distance from the halo centre. In contrast,
energy, although not an integral of the motion since the poten-
tial is time-varying, changes slowly along the orbit. In a spheri-
cal potential, angular momentum would also be an integral of the
motion. However, the Aquarius haloes are strongly triaxial, particu-
larly in the centre, so contain a significant number of box-type orbits
(Binney & Tremaine 1987). For these orbits, the angular momentum
varies rapidly over very short time-scales, which makes a compar-
ison between the Aquarius simulation and the orbits integrated in
the HEX approximation less useful. In this section, we therefore
only consider energy.

By again integrating the particle orbits between snapshot times
in the HEX approximation, we can obtain a change in the orbital
energy for each particle. We have checked that the change in energy
is equal to the integral of the time-variation of the potential along
the path to within 1 per cent. Using a smaller step size has a neg-
ligible effect on our results, confirming that the changes in energy
are not due to the numerical integration. Fig. 5 shows the correla-
tion between the changes in the particles’ energy in the Aquarius
simulation and their energy change in the integrated HEX potential.
There is a clear correlation between the two cases, with a Pearson
correlation coefficient of 0.75. The HEX approximation does well
at reproducing energy changes even though the particles may not
follow exactly the same paths. As well as path differences, the linear
interpolation between coefficients will give a different variation in
the potential at intermediate times; however, this does not seem to
be important.

3.1.2 Encounters

Some of the test particles’ orbits are significantly different from their
Aquarius counterparts; they initially follow the Aquarius orbits but
suddenly diverge and take very different paths. This occurs primarily
for particles with low angular momentum on nearly-radial orbits.
The pericentric passages of these orbits are very close to the centre of
the halo. As the particles approach the centre, the separation distance
between the reconstructed orbits and the Aquarius paths becomes
of the same scale as the pericentric distance. The large relative path
separation results in paths having substantially different approach
angles and substantially different impact parameters, even in some

cases passing opposites sides of the centre. Since the centre is very
strongly triaxial, the change in the angular momentum during the
encounter with the non-spherical centre is sensitive to the direction
of the incoming objects and will cause the pairs of particles to be
diverted in radically different directions.

As well as the centre, which is responsible for the majority of
these divergences, encounters with subhaloes can have a similar
effect. Particles can either be deflected by subhaloes or become
bound to them. To properly resolve a subhalo 1 kpc in size and
50 kpc from the centre would require at least an expansion with
nmax = 150 and lmax = 150, over three million terms.

3.1.3 Population distribution

Even though individual orbits integrated in the HEX approximation
may not always match their counterparts, the overall distributions
of the energy and the magnitude of the angular momentum are
well reproduced. This can be seen in Fig. 6, the distribution of total
energies of 10 000 randomly selected test particles, and in Fig. 7, the
distribution of the magnitude of the orbital angular moment. Both
figures include the initial distributions and the final distributions
from both the original Aquarius simulation and HEX resimulation
over 5 Gyr.

The final energy distributions are very similar. A Kolmogorov–
Smirnov (K–S) test gives a probability of 0.24 that the energy
distributions are drawn from the same parent distribution. There-
fore, the null hypothesis that the energy distributions of the orbits
from the Aquarius simulation and HEX resimulation are the same
is not rejected at a statistically significant level. There is equally
good agreement for the angular momentum, with a 0.42 K–S test
probability. The very similar distributions suggest that while indi-
vidual orbits may not be exactly reproduced, there is no systematic
difference in orbits integrated in the HEX approximation and those
found in the Aquarius simulation. There is, however, a significant
difference between the final and initial distributions, with a K–S
test probability of less than 1.3 × 10−12 that the samples of orbital
energies are drawn from the same distribution. The halo is accret-
ing new material and evolving over the period of consideration,
changing the overall distribution of energy. The fact that we match

Figure 6. The distribution of the total energies of the 10 000 test particles.
The dotted line shows the initial energy distribution, while the dashed line
is the distribution of their energies in the simulations after 5 Gyr. The solid
line is the energy distribution in the HEX resimulation.
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Approximating haloes with the HEX technique 2705

Figure 7. The distribution of the magnitude of the angular momentum of
the 10 000 test particles. The dotted line shows the initial distribution, while
the dashed line is the distribution in the Aquarius simulations after 5 Gyr.
The solid line is the distribution in the HEX resimulation.

the final simulation distribution using the HEX approximation
clearly demonstrates that the method correctly reproduces this evo-
lution.

Focusing on orbits confined near to the centre of the parent halo,
we find an even better match than ones with larger apocentric dis-
tances. This is a consequence of both the fact that the basis func-
tions used in the HEX approximation have lower spatial resolution
at larger radii and thus structure is not resolved as clearly in the
outer regions, and the fact that the halo is dynamically older and
more stable towards the centre. Restricting our attention to particles
confined to a region near the centre of 3–20 kpc, where the HEX ex-
pansion is very successful, selects particles on near-circular orbits.
When we consider the energy and angular momentum distributions
for these orbits, we find that there is little evolution in the distribu-
tions, with significant K–S probability of 0.14 for energy and 0.76
for angular momentum that the population properties of the initial
and final simulations have not changed. There is also very good
agreement between the HEX and the simulation distributions, 0.97
for energy and 0.37 for angular momentum. Orbits in this region
are of particular interest when considering galactic discs.

3.2 Subhaloes

Having studied the orbits of individual particles, we now turn our
attention to the dynamics and evolution of subhaloes. These are
large, gravitationally bound, extended bodies undergoing tidal evo-
lution as they orbit within the parent halo. We compare the orbits
of subhaloes resimulated within different HEX potentials, treating
the subhaloes as extended objects, with the orbits of subhaloes from
the Aquarius simulation. To model a subhalo as an extended body,
we select the subhalo from the Aquarius simulation and identify
all the particles that SUBFIND assigns to it. The same particles
are extracted from subsequent snapshots and SUBFIND is run on
just this particle set to calculate those that are still gravitationally
bound. This results in a complete orbital path and record of the
subhalo’s evolutionary history. The resimulation of the subhaloes
is done using a version of GADGET modified to allow additional
HEX external potentials. The subhaloes are composed of multi-
ple particles allowed to interact gravitationally. From the Aq-A-2

simulation, we selected all 1507 subhaloes with 100 or more par-
ticles that are within 90 kpc of the centre of the parent halo at z =
0.5. Their orbits and evolution are then integrated for 5 Gyr in the
HEX potential.

The contribution to the potential from a subhalo needs to be re-
moved from the halo expansion that is used to resimulate its orbit.
Not excluding the self-contribution would lead to a double count-
ing of the subhalo, because the gravitational effects of the subhalo
are already included in the potential expansion. The double count-
ing would generate an unrealistic self-attraction to the resimulated
counterpart. Since the coefficients are just linear sums, it is easy to
remove the contribution from the subhalo by separately calculating
the coefficients of just the subhalo particles from the original sim-
ulation and subtracting them from the total coefficients. This does
not remove the entire presence of the subhalo from the HEX ap-
proximation, as the halo response (i.e the dynamical friction wake)
is still part of the expansion. While a resimulated subhalo closely
follows the same orbit as in the original simulation, the wake can
be an additional source of drag. However, an estimate of the dy-
namical friction on a subhalo based on the Chandrasekhar model
(Chandrasekhar 1943) shows that it is negligible for the majority of
subhaloes and only really important for the most massive ones.

In contrast, there can be no new halo response to the subhaloes in
the resimulation, due to the fixed nature of the expansion; therefore,
there is no direct dynamical friction on the subhaloes. This is a po-
tential limitation of the HEX technique, but if necessary dynamical
friction could be added to the equation of motion. To do so would
require an estimate of a subhalo’s size and mass, which informa-
tion is not easily available until the simulation is post-processed by
SUBFIND or unless some subhalo evolutionary model is assumed.
Since the majority of our samples are small subhaloes of mass
∼106 M�, the dynamical friction from both effects can therefore
be discounted as a significant source of error in reproducing subhalo
orbits.

The success of recreating orbits of subhaloes resimulated within a
full HEX approximation is similar to that of single particles; most or-
bits are very well matched while others are not. We find that there is
minimal difference between the orbits of subhaloes when treated as
point masses and when treated as extended bodies. Over 99 per cent
of subhaloes have a difference of less than 10 per cent (82 per cent
less than 1 per cent) in their final energy when treated as a point
mass rather than as an extended object, and over 90 per cent have a
difference of less than 10 per cent (43 per cent less than 1 per cent)
in their final radial distance from the centre. This suggests that the
extended nature of the subhalo has a minor effect on its motion,
even though mass is being continuously stripped from the subhalo,
forming leading and trailing streams.

The cases where the Aquarius subhalo orbits and the resimulated
orbits dramatically differ are again the result of encounter events.
Subhaloes encounter the centre of the parent halo in the same way as
particles, and any slight differences in the orbits are greatly ampli-
fied during the pericentric passage. However, as well as the passages
near the centre, subhalo encounters are found to be more frequent
than for single particles. When two subhaloes strongly interact, the
orbit of at least one of the pair can be completely changed. In par-
ticular, a large subhalo merging into the parent halo will scatter any
small subhaloes it passes as it falls in. These subhalo–subhalo in-
teractions are not well reproduced in the subhalo simulations using
the HEX approximation, since, while contributions to the potential
from subhaloes are included, these are not well enough resolved
with the number of basis functions we use to model them. Instead,
the potential from subhaloes is blurred out.

C© 2011 The Authors, MNRAS 416, 2697–2711
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

 at U
niversity of D

urham
 on N

ovem
ber 26, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2706 B. Lowing et al.

3.2.1 Evolution

As subhaloes orbit within their parent halo, they are tidally stripped
and shocked, losing mass and decreasing in size. Exactly how sub-
haloes evolve and their final fate is a problem that has been ex-
tensively studied (Peñarrubia & Benson 2005; Angulo et al. 2009).
We resimulate subhaloes in three different potential expansions cor-
responding to differing levels of sophistication. The simplest is a
fixed, spherically symmetric Hernquist potential, an example of an
analytical potential that is commonly used to represent dark matter
haloes in simulations (Adams & Bloch 2005; Bullock & Johnston
2005). The second is a HEX potential that includes only radial ba-
sis functions to obtain the correct radial mass distribution, but with
no information about the shape of the halo. The final potential is
a full HEX potential including both radial and angular terms. We
use the three different potentials in order to assess the difference
between the evolution of subhaloes using the commonly employed
method with a static simple potential and the effect of using a full
time-varying triaxial approximation.

The parameters for the Hernquist potential are chosen so that
it matches the lowest order basis function from the expansion of
the halo at z = 0. It has a scalelength of 33 kpc and a total mass
of 2 × 1012 M�. This is a good fit to the halo at the final time
but overestimates the mass at earlier times. The second potential
(HEXR), using only radial terms, has nmax = 20 and lmax = 0, with
a scalelength of 33 kpc and has time-varying coefficients. The full
potential (HEX20) uses the default parameters, so it has nmax = 20
and lmax = 20, is also time-varying and has a scalelength of 33 kpc.
Again, we exclude the contribution to the HEX potential from the
resimulated subhaloes.

We start by focusing on a single subhalo to illustrate the technique
in more detail. This subhalo has been selected from the Aq-A-2
simulation and contains 13 120 particles, with a total mass of 1.8 ×
108 M�. The subhalo was selected at redshift z = 0.5 and resimu-
lated for 5 Gyr, with output snapshots every 155 Myr. It is compared
to the same subhalo extracted at the same times from the Aq-A-2
simulation.

Fig. 8 shows the radial distance of the subhalo from the centre
of the potential and three main structural properties that describe
the state of a subhalo: the mass, the maximum circular velocity and
the half-mass radius. The properties of the subhaloes in the two
simplest methods, the Hernquist potential and HEXR, immediately
diverge from that of the Aquarius simulation, as a consequence of
the fact that they follow different orbits, as may be seen in the top
panel. These different orbits cause the subhalo to experience dif-
ferent tidal stripping and, at pericentre, different amounts of tidal
shocking, resulting in incorrect estimates of the structural proper-
ties. In the HEX20 resimulation, the subhalo follows an orbit very
closely matching the actual subhalo’s orbit for the first 2.5 Gyr, until,
following the first pericentric passage, the orbits begin to diverge.
Subsequently, the Aquarius subhalo reaches a greater apocentric
distance and falls back in slightly later. Following this, near the
halo centre, the small differences in the paths are sufficiently large
that during the second passage the HEX20 resimulated subhalo and
the original Aquarius subhalo pass the centre on opposite sides and
depart in different radial directions.

During the initial period while the orbit of the subhalo in the
HEX20 resimulation closely follows the fiducial Aquarius orbit, the
subhalo properties, the mass, half-mass radius and maximum circu-
lar velocity, are reproduced extremely well. The subhalo is stripped
and distorted in the same manner as in the Aquarius simulation.
The subhalo continuously loses mass as it orbits within the parent

Figure 8. Comparison between the properties of different versions of the
same subhalo. The full Aquarius Aq-A-2 simulation is represented by the
black line. The other lines show resimulations of the subhalo in three differ-
ing potentials. Upper panel: the distance of the subhalo from the centre of
the parent halo. Upper middle panel: the mass of the subhalo. Lower middle
panel: the maximum circular velocity. Bottom panel: the half-mass radius.

halo, with sudden and large decreases during pericentric passages.
Similarly, the maximum circular velocity, which is determined by
the mass in the inner regions of the subhalo, is unaffected as mass
is stripped from the outer edge. It is only when the subhalo makes
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Figure 9. A projection of the smoothed density of a single subhalo resimu-
lated in different potential approximations at the subhalo’s second apocentre.
The subhalo reaches the second apocentre at different times in the resimu-
lations. The cross marks the centre of the parent halo in each case. Upper
left-hand panel: the subhalo at 2.6 Gyr in the original Aquarius simulation.
Upper right-hand panel: the subhalo at 2.6 Gyr in the full HEX20 potential.
Lower left-hand panel: the subhalo at 2.8 Gyr in the HEXR potential. Lower
right-hand panel: at 2.3 Gyr in a static Hernquist potential.

a close approach to the parent halo centre and is tidally shocked
and subject to maximum tidal stripping that the internal structure
of the subhalo is notably changed. This behaviour is seen both in
the Aquarius simulation and the HEX20 resimulation and indicates
that the important gravitational mechanisms – tidal stripping and
shocking, responsible for the evolution of a subhalo – are equiv-
alently modelled by the full HEX potential as they are in the full
simulation.

An instantaneous picture of the subhalo during its second apoc-
entre can be seen in Fig. 9. Rather than comparing the subhalo at
the same time, it is fairer to compare it at the same position along
the orbit as this removes any difference in orbital phase. The res-
imulated subhalo in the HEX20 potential is strikingly similar to the
original Aquraius subhalo. It is close to the correct position at the
correct time and has very similar tidal tails. This similarity includes
the small perpendicular protrusion to the left-hand side of the sub-
halo, which is a result of the end of the trailing tidal tail being
broken off during the apocentric turnaround. In contrast, there is
little resemblance between subhaloes in either the Hernquist or the
HEXR resimulation and in the Aquarius original, though there is
strong resemblance between the two simulations. Both potentials
are spherical, confining the subhalo to orbit in a plane, and thus the
two potentials generate similarly shaped orbits. However, there is
a large phase difference between the two. The Hernquist subhalo
reaches the second apocentre 290 Myr before the Aquarius subhalo,
while the HEXR subhalo reaches the second apocentre 140 Myr after
the Aquarius subhalo.

The final values of the mass, maximum circular velocity and
half-mass radius are similar in the Hernquist and HEX20 resimula-
tions, but this is more a coincidence than the result of the subhalo
having the correct evolution in the Hernquist potential. While not
completely correct, the evolution of the subhalo is much closer to
the real case when the full HEX potential is used than when the
simplified potentials are used. This suggests that both the radial
mass distribution and the angular shape of the halo are important
for reproducing correct orbits, which is a prerequisite to achieve
similar evolution.

3.2.2 Population evolution

To assess whether the evolutionary mechanisms on subhaloes are
the same even though the orbits may not exactly match, we now
consider a population of subhaloes and look at the statistical match
between a set of Aquarius reference subhaloes and resimulations
of them in the three potentials. From the Aq-A-2 simulation, we
again use the set of selected subhaloes with 100 or more par-
ticles that are within 90 kpc from the centre of the parent halo
at z = 0.5. The particles belonging to these subhaloes are then
tracked forward in time to follow the subhaloes’ evolution in the full
simulation.

Fig. 10 shows the population distribution of the three main struc-
tural properties of subhaloes: the mass, the half-mass radius and the
maximum circular velocity. The distribution of the ratios of the final
to the initial property has been used to remove the influence of the
property distribution and allow an easier comparison of the actual
evolution that the subhaloes undergo during 5 Gyr. The distribution
of mass ratios shows how much stripping the subhaloes experience.
Nearly all subhaloes in the Aquarius simulation lose mass over the
5 Gyr but a small fraction gain mass. The gain in mass can be ex-
plained by intersubhalo mergers, where two or more subhaloes join
to form a larger subhalo. The HEX resimulations and the Aquar-
ius simulation have the same small fraction of suhaloes undergoing
this mass increase; they have similar distributions of mass ratios,
with the same wide spread and a peak that occurs at 0.65. Only the
Hernquist potential shows significant difference.

Similarly, the half-mass radius distribution is well matched by
the resimulations, except again by the Hernquist potential which is
slightly shifted to smaller sizes. Even though subhaloes generally
lose mass, a small proportion grow in size. This can occur when a
subhalo passes the pericentre and is tidally shocked by the rapidly
changing potential field, thus increasing its internal energy and re-
sulting in an increase in size. This occurs in both the Aquarius
simulations and HEX resimulations. The maximum circular veloc-
ity distribution is slightly smaller in all the resimulations, with the
largest discrepancy again for the Hernquist population. The primary
reasons why the results from the Hernquist resimulation are so dif-
ferent from the other two are the assumption of a static potential of
fixed mass throughout the whole simulation, which overestimates
the actual mass of the Aquarius halo at early times, and the fact that
a Hernquist potential gives the incorrect tidal radius for subhaloes.
The tidal radius is the distance from the centre of a subhalo at which
the gravitational tidal pull from the parent halo is equal to the pull
from the subhalo itself. The material outside this radius is stripped
from the subhalo and becomes part of the parent halo. We find that
the Hernquist potential leads to underestimates of the tidal radius
for subhaloes that are between 30 and 200 kpc from the centre of the
parent halo and to overestimates outside this range. The subhaloes
therefore experience a different rate of stripping over the course of
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Figure 10. The distribution of X final over X initial for a selected Aquarius
subhalo population for three different physical properties. The black line
shows the actual distribution that occurred in the original Aquarius simula-
tion, while the other colours correspond to the different resimulations. For
each subhalo, the ratio is the given property at z = 0 compared to its initial
value at z = 0.5. Upper panel: the distribution of final-to-initial mass ratios.
Middle panel: the distribution of the final and initial half-mass radii. Bottom
panel: the distribution of the final and initial maximum circular velocities.

their orbits than they do in the original simulation and the other
cases.

Since the HEXR potential achieves an equally good match to the
Aquarius simulation as the full HEX potential that also includes
the angular terms, we conclude that the shape of the potential is
unimportant for reproducing the structural evolution of the subhalo
population in a statistical sense; only the radial mass distribution
needs to be correctly reproduced. The stripping of mass from a
subhalo is controlled by the tidal radius of the subhalo; thus, re-
producing this property correctly ensures correct overall evolution.
This can be done by matching the radial mass distribution, which is
easily achieved with a small number of basis functions. In order to
obtain similar evolution on an individual subhalo basis, the orbits
need to be well matched, which does require the angular distribution
and the full HEX approximation.

4 A PPLICATION

Having shown that the orbits, as well as the subhalo evolution, are
similar in a HEX approximation and in the original simulation, we
now demonstrate how the HEX technique can be used to go beyond
the original simulation. The introduction of new objects into the
halo that were not present in the original simulation allows us to
investigate the reaction of these objects as if they had evolved in a
cosmologically realistic potential. They are unable to induce a back
reaction on the halo, but the method is appropriate for studying light
objects that would have had little effect on the halo. This can be
achieved at a much lower cost than re-running a complete simulation
and is more realistic than assuming a fixed analytical profile, such
as a Hernquist profile.

4.1 Increasing subhalo resolution

We now illustrate the technique of placing new, additional subhaloes
into the potential and simulating them at much higher resolution.
As a test, a subhalo is constructed to be similar to the subhaloes
found in the simulations, with an NFW density profile

ρ(r) = ρ0(
r
rs

) (
1 + r

rs

)2 , (23)

with ρ0 = 8 × 107 M� kpc−3 and rs = 0.27 kpc, and an
isotropic velocity distribution. The subhalo is injected into the HEX
potential approximation of the Aq-A-2 halo. To create equilibrium
N-body halo realizations, we have used the algorithm described in
Kazantzidis, Magorrian & Moore (2004) based on sampling the
phase-space distribution function to generate the subhalo. Since the
mass of an object with an NFW profile does not converge with
radius, we truncate the subhalo at the virial radius using an expo-
nential cut-off with a decay length set to 10 times the virial radius.
This ensures the subhalo has a finite mass.

We generate the initial subhalo at two resolutions. The first, lower
resolution version consists of 6000 particles with masses of 1.4 ×
104 M�, the same particle mass as the Aq-A-2 simulation. The
second version contains 106 particles with individual particle masses
of just 82 M� and a resolution 170 times higher. Since the subhalo
is small, with the SUBFIND mass of 5 × 107 M�, the absence of
dynamical friction should not be significant. The subhalo is placed
190 kpc from the halo centre, approximately at the virial radius of
the parent halo, where it will be just entering into the main halo
and would not yet have been significantly stripped. The subhalo is
simulated from z = 0.5 for 5 Gyr.

The orbits of the two different resolution versions of the sub-
halo are virtually identical. This is not unexpected, as we have al-
ready found that subhaloes orbit as point masses regardless of their
extended nature. The changes in the properties of the subhalo over
the 5-Gyr simulation are shown in Fig. 11. Here we compare the
evolution of the mass, maximum circular velocity and half-mass
radius between the low- and high-resolution simulations. While
both realizations of the subhalo are sampled from identical NFW
profiles, the initial SUBFIND mass is slightly higher for the low-
resolution version. Later mass estimates agree, suggesting that in
both cases the subhalo was stripped to the same tidal radius and
the same material was lost regardless of whether SUBFIND had
initially associated it with the subhalo or not.

The maximum circular velocities again are very slightly different,
but the higher resolution version has a smoother evolution since it
is less affected by the noise from the discrete particle nature of
the subhalo. The half-mass radius has the same initial discrepancy
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Figure 11. Comparison between the properties given by SUBFIND for a
subhalo simulated for 5 Gyr at two resolutions in the HEX potential. Upper
panel: the distance of the subhalo from the centre of the parent halo. Upper
middle panel: the mass of the subhalo. Lower middle panel: the maximum
circular velocity. Bottom panel: the half-mass radius.

as the mass, but again agrees at later times, with both versions
undergoing the same compression of the subhalo during the first
pericentric passage. Overall there is excellent convergence between
the two resolutions and it is clearly demonstrated that the structural
evolution is independent of the resolution of the subhalo as expected.

Figure 12. The smoothed density of the resimulated subhalo after 5 Gyr at
z = 0 using the HEX potential. Upper picture: the low-resolution realiza-
tion subhalo containing 6000 particles. Lower picture: the high-resolution
realization subhalo containing 106 particles.

Apart from studying the subhalo, we can compare the fate of the
material that is stripped from it and forms streams. There is both a
leading stream and a trailing stream, containing material that is no
longer bound to the subhalo but continues to follow similar orbits.
These streams match in the high- and low-resolution simulations
but are much clearer and can be traced much further in the high-
resolution version. Sections of the streams containing a few tens
of particles in the low-resolution version are now populated with
thousands of particles in the high-resolution simulation. Features
that had been only hinted at are clearly defined in the high-resolution
simulation. Especially clear are the caustics of the streams which
can be seen in Fig. 12. Another feature that is not resolved in the
low-resolution simulation but is clearly visible in the high-resolution
version is the bifurcation into two separate arms of the leading tidal
tail, the one above the subhalo in Fig. 12.

The HEX method allows us to simulate a subhalo at different
resolutions, with clear convergence between the two cases we have
examined. By focusing computing resources on just the subhalo and
using an approximation to the potential of the larger parent halo, we
have been able to reach an unprecedentedly high resolution, using
a particle mass of a few tens of solar masses and resolving tidal
streams much farther and in a much sharper way than has been
previously achieved. The low-resolution simulation required only
15 CPU hours1 and the high-resolution subhalo only 2700 CPU
hours. This is small compared to the Aquarius A level 2 simulation,
which has a resolution equivalent to the low-resolution subhalo and

1 On a 2.2-GHz AMD Opteron (AMD Opteron 175).
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which took of the order of ∼150 000 CPU hours over the same
time-interval. While a full simulation may include thousands of
subhaloes, we have demonstrated that is is possible to vary the
parameters and re-run multiple versions of a single subhalo in a
small fraction of time.

5 C O N C L U S I O N S

We have demonstrated the power of using the HEX method to
approximate a dark matter halo. While much work has previously
been carried out using expansion methods as part of the SCF tech-
nique to calculate the force in an N-body simulation, this is the
first time that an expansion technique, such as the HEX technique,
has been applied to describe an already simulated dark matter halo.
Using a small number of basis functions, the HEX technique offers
a way to approximate the time-evolving potential. A set of coeffi-
cients can be calculated once from the simulation and then serve
as a realistic approximation of a halo. It is simple to integrate or-
bits within the HEX potential approximation and, as a first test, we
focused on particle and subhalo orbits.

Using the HEX method to represent a dark matter halo, however,
has some limitations. The potential is fixed and unable to react to
objects within it. New elements placed in the simulation, such as
additional subhaloes, cannot modify the halo potential. This could
be especially problematic when considering galaxies and the adia-
batic contraction that the presence of baryons is expected to produce.
The second major limitation is the lack of dynamical friction that
should be present in the equation of motions. Subhaloes orbiting
within the expansion are missing the effect of this force that would
make their orbits decay. While it is possible to add in dynami-
cal friction analytically, this requires assuming a model of subhalo
evolution to estimate the mass and size of the subhalo.

Through the application of the HEX method to a halo simulated
by the N-body code GADGET, we have demonstrated the following:

(i) A HEX potential of a dark matter halo can approximate the
halo well enough to recover the radial component of the force to
within 1 per cent using only a few radial basis functions.

(ii) It is possible to integrate orbits within the expansions and re-
produce overall population trends. For individual orbits, the degree
of success is varied. However, it must be remembered that GADGET

dynamics are not necessarily numerically perfect and therefore dif-
ferences are to be expected. For orbits that are near circular and stay
within the central 20 kpc of the halo, we can accurately follow their
path over several dynamical time-scales.

(iii) Without dynamical friction, subhaloes follow orbits close to
those of point masses. Their extended nature and tidal streams have
little or no effect on their orbits. The orbits of subhaloes are not
simple planar orbits but involve complicated changes in orientation
and are strongly affected by encounters with the halo centre and
other subhaloes.

(iv) The method can reproduce the structural evolution of individ-
ual subhaloes. To obtain similar evolution for a particular subhalo,
we need to match its orbit, which requires a full potential expansion.
To match the correct overall population evolution, we do not need
the full expansion, but only the radial terms are required to obtain
the correct radial mass distribution. Not including the angular terms
greatly speeds up the force evaluation.

We have been able to introduce new objects, such as subhaloes
into the HEX potential; we find an evolution consistent with that
which would have taken place had the subhaloes been present in the
original Aquarius simulation. The technique allows us to simulate

subhaloes with much higher resolution than in the original simu-
lation and resolve features in the tidally stripped streams in great
detail.

While the HEX technique has some limitations, it offers a
powerful way of improving current models of galaxy formation.
The standard simple spherically symmetric profiles often used to
represent the dark matter halo when modelling dynamical processes
involving orbits miss important effects related to the triaxiality of
haloes and the evolution of the potential. In order to build more
realistic models, it is necessary, as we have shown, to use more
sophisticated representations of dark matter haloes such as the ones
the HEX technique offers. There is a large number of possible ap-
plications for this technique and we have briefly explored only a
few of these in this paper.
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