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Abstract: We study corrections to the drag force exerted on a quark moving

through a quark-gluon plasma of finite extent, using holographic methods. Inter-

estingly we find that the leading correction is negative, i.e. it reduces the magnitude

of the drag force as compared to its value in infinite volume.
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1 Introduction

During the last few years, much work has been devoted to studying strongly coupled

processes in the quark-gluon plasma by making use of the gauge/gravity duality. In

particular, a lot of attention has focused on the phenomenon of jet quenching: quark-

antiquark pairs which are produced near the boundary of the quark-gluon plasma

do not lead to two back-to-back jets, but rather give rise to only one observed jet.

A simple qualitative explanation of this phenomenon lies in the fact that the quark

which needs to move through the plasma before it can escape loses a lot of its initial

energy due to interaction with the medium. While this is a qualitatively and intu-

itively simple explanation, it is hard to obtain a quantitatively correct answer from

it. Starting with the work of [1, 2], the ultra-relativistic quenched quark produced

inside the strongly coupled quark-gluon plasma was modelled holographically with

an open string ending on the boundary of AdS space, hanging deep in the interior of

an AdS black hole. This initial work, as well as subsequent generalisations to other

dimensions, to presence of chemical potentials or higher derivative corrections, all

focused on the study of quark motion in an infinite-volume medium.

A realistic quark-antiquark pair produced in colliders, however, propagates in

a plasma of finite extent. The question then arises whether this has any influence

on the jet quenching parameter as computed in an infinite volume system. In this

paper we initiate the study of finite-size corrections to the quark motion using the

gauge/gravity correspondence.

To achieve this we will study, in a holographically dual picture, a string which

is moving in the background of a black hole in global AdS space, as opposed to the

planar AdS black holes in the Poincaré patch which were studied so far. Black holes

in the Poincaré patch have horizons which are non-compact and planar, and as such

they are dual to a quark-gluon plasma of infinite extent. In contrast, black holes in
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global AdS space have spherical horizons and are dual to a quark-gluon plasma on a

three-sphere.

The only scales in the finite-temperature super-Yang-Mills theory on a sphere

are the temperature T and the radius of the three sphere L, so that the only dimen-

sionless quantity one can form is the product TL. Therefore, all results, including

the dimensionless drag force which we will obtain, will be functions of this quantity.

Although global AdS and planar black holes are genuinely different gravitational

configurations, there is a limit in which a global black hole reduces to the planar one.

In the limit of a large global AdS black hole, when the size of the horizon is much

larger than the AdS scale, ρH � L, the global AdS black hole reduces to the planar

one. This limit translates to the condition TL� 1, which can be interpreted either

as the large-volume limit at fixed temperature, or as the high-temperature limit at

fixed sphere size. Hence, in the large black hole limit ρH � L we expect to recover

the result of the infinite volume system (the planar black hole), amended by a tower

of finite-size corrections.

Indeed this is what we will find in this note. Interestingly, the leading correction

which we find is negative, i.e. it reduces the magnitude of the drag force. This is in

contrast to what one usually encounters in situations with large objects moving in a

non-relativistic fashion through fluids in finite-size containers. In these systems one

usually finds that the drag force is increased by the presence of walls (see e.g. [3, 4]).

The basic intuitive reason for this behaviour is that the walls impose an additional

friction force on the fluid, creating a contra-flow which further obstructs propagation

of the object.

In our setup the situation is a bit different, since the quark-gluon plasma is

placed on a sphere, i.e. in a container without boundaries. However, in our case

finiteness of space is imposed through the periodicity condition which any excitation

in the fluid has to satisfy. Therefore, not any arbitrary excitation which is present in

infinite volume can be excited in this system. This is a possible reason why the force

is reduced with respect to the one in infinite volume. It would be very interesting

to test finite-size corrections for the quark-gluon plasma in other systems, hopefully

those which do have boundaries, and use holography to check which of the features

observed here persist. One possible system which one could consider is the numerical

solution of [5] which describes a classically stable finite energy black hole localised

in the infrared part of the geometry.

Note added: When this paper was completed we became aware of the work [6]

which has some overlap with our results in section 2.

2 Dragged string in a global AdS black hole

The system we will study is the Schwarzschild black hole in global AdS5 space, in

contrast to the Poincaré patch studied before [1, 2]. The metric of the global AdS5
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black hole is given by

ds2 = −h(ρ)dτ 2 +
1

h(ρ)
dρ2 + ρ2

(
dθ2 + cos2 θ(dφ2 + cos2 φdχ2)

)
,

ρ20 =
8GM

3π
, h(ρ) = 1− ρ20

ρ2
+
ρ2

L2
.

(2.1)

Here G is the Newton constant, M is the mass of the black hole and L is the radius

of the AdS space. The boundary of the AdS space is at ρ→∞, while in the interior

there is a black hole horizon at position ρH ,

ρH = L

√√
1 + 4ρ20/L

2 − 1

2
, ρ0 = ρH

√
1 +

ρ2H
L2

. (2.2)

The temperature of the black hole is given by [7]

T =
ρH
πL2

(
1 +

L2

2ρ2H

)
. (2.3)

As the temperature is decreased, on encounters a first-order phase transition at the

critical temperature THP = 3/(2πL) below which pure AdS5 space (with periodic time

circle) is preferred over AdS5-Schwarzschild [8, 9]. At this temperature the boundary

theory undergoes a “deconfinement/confinement” phase transition, in the sense that

the free energy of the system is of order N2
c above the temperature THP and of the

order one below it. We also note that the only scales in the super-Yang-Mills theory

are the AdS radius L (which is the same as the size of the boundary sphere) and the

temperature T , so that the only dimensionless and physically relevant parameter is

TL. Hence the limit of large TL can equivalently be interpreted either as the high-

temperature limit at fixed volume or the large-volume limit at fixed temperature.

We will be working at fixed temperature and interpret TL→∞ as the limit of large

volume.

The AdS5 Schwarzschild black hole should be compared with the planar AdS

black hole,

ds2 =
r2

L2

(
−
(

1− r4H
r4

)
dt2 + d~x2

)
+
L2

r2
dr2

1− r4H
r4

. (2.4)

the boundary of which is R3 × S1 with S1 being the time circle. We will later use

the fact that the global AdS5 Schwarzschild black hole reduces to the planar one in

the limit of a large black hole.

In order to describe the dragged string in the global AdS black hole, we use

world-sheet coordinates aligned with τ and ρ, and an embedding given by

θ = ωτ + f(ρ) . (2.5)
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With this ansatz the action for the string becomes

S =

∫ √
1 + ρ2f ′2h(ρ)− ρ2ω2

h(ρ)
. (2.6)

Next, we introduce the “conserved momentum” πf = ∂S/∂f ′, conjugate to f , in

terms of which f ′ is

f ′(ρ) =
πf

ρ h(ρ)

√
ρ2ω2 − h
π2
f − ρ2h

. (2.7)

Substituting this back into the action we get

S = ρ

√
ρ2ω2 − h
π2
f − ρ2h

. (2.8)

As in the planar case, we fix πf from the requirement that f ′ and the action are real

functions. In other words, we require that when the numerator inside the square root

of (2.7) and (2.8) changes sign, the denominator changes sign as well. The position

ρ = ρ∗ at which this happens is determined by

ρ2∗ω
2 − h(ρ∗) = 0 , π2

f = ρ2∗h(ρ∗) = ρ4∗ω
2 . (2.9)

This can be solved to obtain

πf = ωL2
−1±

√
1 + 4

ρ20
L2

(1− ω2L2)

2(1− ω2L2)
. (2.10)

We note that we should take the plus sign in this expression, since in the pure AdS

background (i.e. ρ0 = 0) there is no dissipation and the drag force should be zero.

Obtaining the shape of the dragged string in the global AdS space is more com-

plicated than in the planar case, since it requires integration of (2.7) using the ex-

pression (2.10). This can be done numerically, but we do not need this information

in order to extract the drag force itself.

In order to compute the loss of the energy of the dragged string, we need to

evaluate the flow of the momentum down the string, towards the horizon. Following

[1] we thus need to compute

dpθ
dt

=
√
−gP ρ

θ , Pα
µ ≡ −

1

2πα′
Gµνg

αβ∂βX
α , (2.11)

where Pα
µ is the conserved world-sheet current of the space-time energy momentum,

and gαβ and Gµν are the induced metric on the world-sheet and the target space

metric respectively. We find
dpθ
dt

= − 1

2πα′
πf , (2.12)

with πf given by (2.10).
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3 Expansion near the planar AdS black hole

In order to make contact with results for the drag force obtained in the planar case,

we now wish to expand the result (2.12) given (2.10). In the case of non-relativistic

fluids with small Reynolds number, the drag force acting on a moving object can

typically be written as [3, 4] ~F = f(η, d)~v where the function f(η, d) depends on

the viscous properties of the fluid (through the viscosity constant η) and the size of

the object d. This expression is valid only if the size of the container in which the

particle moves is infinite. In the case of a container with finite size D, one expects

that f will also depend on the dimensionless ratio d/D. Typically the function f is

then hard to compute and it is extracted only experimentally. We now proceed to

analyse these type of corrections to the drag force for our system.

Before continuing, let us make a comparison of (2.10) with the analogue quantity

in the planar case. If the string is moving along the x-direction in the planar back-

ground (2.4), with embedding given by x = vt+ ξ(r), then the momentum conjugate

to ξ is [1]

πξ =
r2H
L2

v√
1− v2

. (3.1)

The drag force for this planar case is

dpx
dt

= − 1

2πα′
πξ = −r

2
H/L

2

2πα′
v√

1− v2
= −π

√
λ

2
T̃ 2 v√

1− v2
,

with L4 = λα′2 , T̃ =
rH
πL2

,

(3.2)

and the ’t Hooft coupling λ = g2YMN .

In order to compare this to the global AdS black hole result, we take the limit

of a large black hole

ρH � L . (3.3)

In this limit the S3 at the boundary becomes a plane, the coordinate Lθ becomes x

and hence the momentum πf/L becomes πξ. The velocities are related by ωL → v.

Keeping v fixed we can expand (2.10) in powers of e.g. L/ρ0, to get

πf
L

=
−ωL

2(1− ω2L2)
+

ωL√
1− ω2L2

ρ0
L

(
1 +

1

8

L2

ρ20

1

1− ω2L2
+ · · ·

)
. (3.4)

In order to express the drag force in terms of gauge theory quantities, we then need

the temperature expressed in terms of the parameter ρ0 appearing in the metric,

using (2.3). It is also convenient to introduce the dimensionless force F ≡ FL2, for

which we finally find

F = − v
√
λ

2π
√

1− v2
[
π2(TL)2 − 1 +

√
1− v2

2
√

1− v2
+

1

8π2

3v2 − 2

(1− v2)(TL)2
+ . . .

]
. (3.5)

The leading term agrees with the flat result (3.2) and there is a whole tower of

corrections on top. We discuss these results in the next section.
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4 Discussion

There are several comments which we want to make about the result (3.5). We see

that all corrections to the leading, infinite-volume results are given in terms of the

dimensionless quantity TL. As we have explained in the introduction, in conformal

field theory on a sphere and at finite temperature, this is the only dimensionless

quantity available. Considering now that the estimate for the mean free path is

given by [10] lmfp ∼ 1/λ2T , one can interpret the dimensionless ratio TL as the ratio

of the size of the plasma container L and an “effective size” of the quark, set by the

mean free path ∼ 1/T . Hence the form of the corrections is as expected on general

grounds. However, while the fact that the leading-order force [1] is proportional to

T 2 is fixed by dimensional analysis, the functional dependence on the velocity in the

various corrections is not.

We also note that the sign of the first correction to the infinite volume result of [1]

is always opposite from the leading term, i.e. the magnitude of the drag force seems

to be decreased due to the finite-volume effects. This is a quite unusual behaviour

as compared to most non-relativistic Newtonian fluids.

It is conceivable that an explanation of this interesting feature lies in the fact

that our system is placed in a container without boundary, namely the three-sphere.

This basically requires that all hydrodynamical modes with which the quarks can

interact, and which it can dump energy into, are periodic. Therefore, fewer available

hydrodynamical modes could lead to a smaller drag force, somewhat similar to the

discussion in [11]. It would be very interesting to check in other duals of plasmas in

finite size systems if such a behaviour persists.
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