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ABSTRACT  
The synthesis of set of ceramide analogues exploring hydrophobicity in the acyl chains and the degree 

and nature of hydroxylation is described. These have been assayed against the parasitic protozoan 

enzyme LmjIPCS. These studies showed that whilst the C-3 hydroxyl group was not essential for 

turnover it provided enhanced affinity. Reflecting the membrane bound nature of the enzyme a long (C13) 

hydrocarbon ceramide tail was necessary for both high affinity and turnover. Whilst the N-acyl chain also 

contributed to affinity, analogues lacking the amide linkage functioned as competitive inhibitors in both 

enzyme and cell-based assays. A model that accounts for this observation is proposed.  

INTRODUCTION  
Protozoan parasites of the order Trypanosomatidae cause a range of human diseases, including the 

leishmaniases and human African trypanosomiasis (HAT).1-3 These infections are of increasing 

prevalence, particularly in developing countries, and have been classified by the World Health 

Organisation as Category I: emerging or uncontrolled diseases.3 Moreover the spread and severity of 

leishmaniasis is exacerbated by its status as an important co-infection of AIDS patients and the overlap 

in prevalence of HIV and Leishmania spp.4 The treatment of trypanosomatid infections is difficult with the 

most serious visceral form of leishmaniasis often requiring a long and costly course of drug therapy. The 

challenge presented by these disease states is heightened by the fact that the few efficacious drugs 

available often exhibit serious, potentially fatal, side-effects. Moreover, reports of resistance to even the 
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newer drugs are emerging.5, 6 This situation renders the discovery and validation of new therapeutic 

targets a priority in these organisms.  

 

Sphingolipids are essential components of eukaryotic cell membranes having critical roles in a variety of 

cell processes including signal transduction, intracellular membrane trafficking and the regulation of cell 

growth and survival.7-10 The de novo biosynthesis of these lipid species is initiated by the condensation 

of palmitoyl CoA 1 with L-serine via the ubiquitous eukaryotic enzyme serine palmitoyltransferase (SPT) 

to produce 3-ketosphinganine which is then reduced to dihydrosphingosine 2. Subsequently, there is 

evolutionary divergence in the pathway. In mammals, dihydrosphingosine is acylated to produce 

dihydroceramide which is then desaturated to ceramide 3, a key bioactive molecule. In contrast, fungi 

and plants first generate hydroxylated sphinganine before acylation to form phytoceramide 4, Figure 1.11, 

12 Like mammals Leishmania spp. also predominantly synthesise ceramide.13 Beyond this point in the 

biosynthetic pathway a further dichotomy emerges in the synthesis of the predominant 

phosphosphingolipids (PSLs). Utilising sphingomyelin synthase (SMS) mammalian cells transfer 

phosphorylcholine from phosphatidylcholine (PC) to ceramide to give sphingomyelin 5.14 In contrast, but 

like fungi and plants, Leishmania spp. (and other trypanosomatids) synthesise inositol 

phosphorylceramide (IPC) 6 as their primary PSL. One notable difference is that in trypanosomatids the 

IPC formed is that derived from ceramide 3 whereas in plants and fungi the dominant SL used is 

phytoceramide 4 leading to the formation of IPC 7. Whilst the essential fungal enzyme catalysing this 

reaction, AUR1p or IPC synthase (IPCS), has long been characterised as a novel target for anti-

fungals,12, 15 until recently, the trypanosomatid (and plant)16 orthologues of this protein remained 

unknown. However, using complementation strategy we have isolated the gene encoding IPCS in L. 

major (LmjIPCS).17 Moreover, closely related orthologues are apparent in the genome sequence 

databases of the other parasitic trypanosomatids, Trypanosoma cruzi and T. brucei.17-19  

 

IPCS catalyses the transfer of the phosphorylinositol group from phosphatidylinositol (PI) to ceramide or 

phytoceramide with the concomitant release of diacylglycerol (DAG). Consequently, in addition to 

producing the major PSL this reaction is also important in maintaining homeostasis in the levels of the 

key signaling components ceramide and DAG. Since the former is pro-apoptotic and the latter 

mitogenic,20 modulating the activity of this enzyme can have catastrophic effects on cell architecture and 

function. Reflecting this the Trypanosoma brucei orthologue has recently been shown to be essential for 

the pathogenic bloodstream form stage of the lifecycle.18, 19 Given the global impact of these diseases, 

further study of these putative protozoan drug targets is essential. Like all other PSL synthases, 

LmjIPCS is an integral membrane protein with six predicted transmembrane spanning domains.19 This 

makes structure-function studies using protein crystallisation or spectroscopy a significant challenge. In 

addition, whilst similarities with related enzymes, notably the lipid phosphate phosphatases (LPPs),14, 17, 

21, 22 have enabled the identification of a conserved active site triad incorporating two histidines and one 
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aspartate residue,17 the substrate binding sites have not been identified. Consequently, we have initiated 

a chemical biology approach to explore the enzyme with the aim of developing a model of the active site 

that may ultimately inform the design of effective inhibitors. To this end we have established a microtitre 

plate-based assay and delineated the kinetic parameters and mode of action of LmjIPCS.23 These 

studies revealed that the enzyme follows a ping-pong bi-bi mechanism and that, of the two substrates, 

ceramide has a higher affinity for the enzyme than does PI. This observation, combined with the fact that 

PI is a relatively abundant substrate in most membraneous environments, suggested that ceramide is 

the rate-limiting substrate in the in situ IPCS reaction. On this basis we opted to explore the binding of 

this substrate to LmjIPCS and in this report we describe the synthesis and evaluation of a set of 

ceramide analogues. 
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Figure 1: Divergent pathways in phosphosphingolipid biosynthesis (SPT, serine palmitoyl 
transferase; 3-KSR, 3-ketosphinganine reductase; DHCS, dihydroceramide synthase; DHCD, 
dihydroceramide desaturase; PS, phytoceramide synthase; SMS sphingomyelin synthase; IPCS 
inositol ceramide synthase; PC phosphatidylcholine; PI phosphatidylinositol) 
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RESULTS AND DISCUSSION 

Synthesis of ceramide analogue library 

Even excluding functional group variations, simple analysis of the ceramide structure revealed many 

possible points of variation including the degree of hydroxylation, stereochemistry at the two stereogenic 

centres and the nature of the fatty acid component. Moreover we have previously demonstrated that, 

whilst N-acetyl sphingosine 8 was an acceptable substrate for LmjIPCS, sphingosine 9 was not and 

functioned as a competitive inhibitor.23 Consequently, all the structures initially targeted as potential 

substrate probes retained an amide linkage. With this requirement we opted to explore the length and 

substitution in the sphingosine tail, stereochemistry and, more drastically, the presence of the C-1 and C-

3 hydroxy groups, Figure 2. 
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Figure 2: The selected structural features of the ceramide molecule 

 

Whilst many different routes to substituted sphingolipids have been reported, including asymmetric 

strategies,24-45 we sought routes that would minimise the need for individual compound purification 

strategies. Recognising that variation in the sphingosine and fatty acid alkyl chains could be introduced 

by simple cross metathesis and amine acylation respectively,46 the problem simplified to generation of a 

set of core hydroxybutenyl amine scaffolds, which in turn could be accessed from readily available α-

amino acids, Scheme 1.26-34  
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Scheme 1: Retrosynthetic Analysis of the common scaffold  

 

Synthetic work commenced by exploring routes to the fully substituted ceramide core as represented by 

‘Scaffold 1”. This was achieved following an approach developed by Katsumura,31 based on the 

stereoselective reduction of the vinyl ketone 12, Scheme 2. Whilst, in our hands, protection of N-Boc Ser 

10 as the TBS ether followed by direct addition of a vinyl nucleophile proved not to be viable, a stepwise 

strategy proceeding via the Weinreb amide proved efficient providing ketone 12 in good yield (74%). 

Reduction with LiAl(OtBu)3H was highly selective affording the desired  (2S, 3R) alcohol 14 with only 

trace amounts (<1%) of the undesired diastereoisomer being detected in the crude reaction mixture. 

Selective silyl group deprotection was then achieved using dilute aqueous acid to afford the first core 

structure 15. We then explored methods to allow a ceramide array to be constructed in a time efficient 

fashion minimising chromatography where possible. Cross-metathesis using the Grubbs’ second-

generation catalyst with a variety of terminal alkenes afforded N-Boc sphingosine analogues. 

Deprotection of the Boc group could be achieved using either TFA-DCM or HCl-dioxane mixtures 

although the former led to variable amounts of the corresponding trifluoroacetamide. Following removal 

of volatiles, direct treatment of the crude reaction mixture with the various acid chlorides in the presence 

of NaHCO3 (pH=8) afforded the desired ceramide analogues 17 in good chemical and stereochemical 

purities. Whilst final products were purified by chromatography where needed, given the array nature of 

this synthesis, no attempt was made to optimise reactions in which low conversions were obtained. 

Importantly, with a view towards future larger library generation, it also proved possible to conduct the 

last three steps (cross-metathesis, deprotection and acylation) with minimal chromatographic 

purification. In this case, partition of the final crude reaction mixture between dichloromethane and dilute 
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aqueous acid (pH 5) by passage through a ‘hydrophobic’ filter tube (Whatman PTFE) provided product 

of sufficient purity (≥85 % 1H NMR) to permit screening. 

 

In an identical fashion, commencing from N-Boc Ala 11 allowed the synthesis of ceramide analogues 

lacking the primary hydroxy group, “Scaffold 2”, as well as a homologated series derived from allyl 

ketone 19, Scheme 2. Whilst, in this latter series the synthesis could be further shortened by the direct 

addition of allylmagnesium bromide to the starting N-Boc protected amino acid,47 the reduction of the 

ketone 19 to the amino alcohol 20 was somewhat less selective producing an 84 : 16 mixture of the (2S, 

3R) and (2S, 3S) diastereoisomers respectively. These proved trivial to separate by standard column 

chromatography and the major isomer was taken through the metathesis and acylation steps as for the 

other analogues.  
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Scheme 2: The synthesis and elaborations of ‘Scaffolds 1 & 2’ 

 

In order to explore the relevance of the secondary hydroxyl group in ceramide we then prepared the 

corresponding series of compounds in which this group was lacking, “Scaffold 3”. These could be 

accessed by asymmetric alkylation of the benzophenone imine of glycine following the precedents 

established by Corey, Lygo and others, Scheme 3.48, 49  Thus reaction of the glycine imine with allyl 

bromide and KOH in the presence of 5 mol% of the cinchona catalyst 29 derived from cinchonidine 

afforded the allyl glycine derivative 23 in good yield. Following exchange of the nitrogen protection group 
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and reduction of the ester, metathesis and acylation, as before, afforded the desired set of ceramide 

analogues 27. Replacing the phase-transfer catalyst in the initial alkylation with that 28 derived from 

cinchonine provided access to the enantiomeric amino alcohol in similarly good yields. Cross-metathesis 

with 1-alkenes and acylation as before then afforded the enantiomeric analogues 26. 
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Scheme 3: Synthesis and elaboration of ‘Scaffold 3’ 
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BIOLOGICAL EVALUATION 

All members of the synthesized analogue library were then evaluated for their ability to inhibit the 

synthesis of fluorescently labelled IPC using our established microtitre plate-based assay.23 In this 

system each compound was incubated with the labelled acceptor substrate NBD-C6-ceramide, and the 

donor substrate PI in the presence of LmjIPCS. The amount of labelled product, inositol phosphoryl-

NBD-C6-ceramide (NBD-C6-IPC), formed was then quantified. The ratio between this value and that for a 

control reaction, without the addition of an analogue, provided a measure of competitive binding / 

inhibition. Notably, the calculated Z-factor for this system is > 0.5 rating the assay as statistically valid for 

screening purposes.50 

 

This screen identified 24 compounds that reduced the quantity of LmjIPCS synthesized NBD-C6-IPC by 

> 40%.  Of these, 13 compounds reduced formation of labelled product by > 50% including 3 by > 75%, 

(Figure 3 & Table 1). The results indicated a proportional increase in the inhibitory effect of the ceramide 

analogues based on their hydrophobicity. With the exception of three derivatives (Table 1 entries 24, 28 

and 48), all compounds that exhibited greater than 40 % inhibition of LmjIPCS with respect to formation 

of NBD-C6-IPC, contained a long hydrophobic sphingosine tail (R1 = C13H27). This observation strongly 

suggests that the chain length of the sphingosine tail is crucial for binding to the enzyme, as might be 

expected given the hydrophobic nature of LmjIPCS as an integral membrane enzyme. Similarly, 

increasing the hydrophobicity of the N-acyl moiety appeared to favour its affinity for LmjIPCS as 

determined by the reduction in NBD-C6-IPC synthesis. However, the effect was smaller and less 

consistent than that seen when increasing hydrophobicity of the sphingosine residue (Figure 3, n to x). 

Consistent with these observations, analysis of the N-Boc protected cross-metathesis products produced 

as synthetic intermediates showed similar trends (Table 1 entries 6-16). Whilst those compounds 

containing a short chain (C4H9) or an aromatic residue (CH2Ph) in the sphingosine backbone showed 

little or no  inhibition (≤ 16 %) of LmjIPCS mediated NBD-C6-IPC formation, those with a long alkyl tail 

(C13H27) exhibited moderate levels of inhibitory effect (29-59 %).  
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Figure 3: Graphical representation of screening of ceramide analogues against LmjIPCS. Bars 
show level of inhibition of NBD-C6-IPC production against control. (R1: a = C13H27 , b = C4H9 and c = 
CH2Ph; R2: n = NH2 , x= C7H15 , y = CH2Ph and z = CH3) 

 
Table 1: Screening of ceramide analogues against LmjIPCS 

 

 
Entry R1 R2 R3 R4 n № Inh ±SE% 

1 H Boc OH OH 0 15 9.0 ± 17% 

2 H Boc H OH 0 16 25 ± 8% 

3 H Boc H OH 1 20 11 ± 19% 

4 H Boc OH H 0 24 0 ± 1% 

5 H Boc OH H 0 25 24 ± 1% 

6 C13H27 Boc OH OH 0 17a 34.0 ± 8% 

7 C4H9 Boc OH OH 0 17b 0.0 ± 5% 

8 CH2Ph Boc OH OH 0 17c 0 ± 12% 

9 C13H27 Boc H OH 0 18a 0 ± 6% 

10 C4H9 Boc H OH 0 18b 0 ± 3% 

11 CH2Ph Boc H OH 0 18c 0 ± 1% 

12 C13H27 Boc H OH 1 21a 29 ± 3% 

13 C4H9 Boc H OH 1 21b 16 ± 6% 

14 CH2Ph Boc H OH 1 21c 15 ± 9% 

15 C13H27 Boc OH H 0 26a 55 ± 15% 

16 C13H27 Boc OH H 0 27a 59 ± 4% 

17 C13H27 H OH OH 0 17an 46 ± 10% 

18 C13H27 COCH3 OH OH 0 17az 64 ± 5% 

19 C13H27 COCH2Ph OH OH 0 17ay 60 ± 1% 

20 C13H27 COC7H15 OH OH 0 17ax 87 ± 4% 

21 C4H9 H OH OH 0 17bn 35 ± 3% 

22 C4H9 COCH3 OH OH 0 17bz 29 ± 3% 
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23 C4H9 COCH2Ph OH OH 0 17by 0 ± 3% 

24 C4H9 COC7H15 OH OH 0 17bx 56 ± 1% 

25 CH2Ph H OH OH 0 17cn 0 ± 10% 

26 CH2Ph COCH3 OH OH 0 17cz 14 ± 8% 

27 CH2Ph COCH2Ph OH OH 0 17cy 29 ± 2% 

28 CH2Ph COC7H15 OH OH 0 17cx 45 ± 4% 

29 C13H27 H H OH 0 18an 36 ± 4% 

30 C13H27 COCH3 H OH 0 18az 19 ± 7% 

31 C13H27 COCH2Ph H OH 0 18ay 45 ± 11% 

32 C13H27 COC7H15 H OH 0 18ax 79 ± 2% 

33 C4H9 H H OH 0 18bn 19 ± 8% 

34 C4H9 COCH3 H OH 0 18bz 13 ± 6% 

35 C4H9 COCH2Ph H OH 0 18by 0 ± 2% 

36 C4H9 COC7H15 H OH 0 18bx 32 ± 5% 

37 CH2Ph H H OH 0 18cn 32 ± 8% 

38 CH2Ph COCH3 H OH 0 18cz 0 ± 9% 

39 CH2Ph COCH2Ph H OH 0 18cy 10 ± 8% 

40 CH2Ph COC7H15 H OH 0 18cx 10 ± 9% 

41 C13H27 H H OH 1 21an 40 ± 2% 

42 C13H27 COCH3 H OH 1 21az 39 ± 6% 

43 C13H27 COCH2Ph H OH 1 21ay 55 ± 5% 

44 C13H27 COC7H15 H OH 1 21ax 45 ± 4% 

45 C4H9 H H OH 1 21bn 38 ± 1% 

46 C4H9 COCH3 H OH 1 21bz 20 ± 9% 

47 C4H9 COCH2Ph H OH 1 21by 15 ± 6% 

48 C4H9 COC7H15 H OH 1 21bx 42 ± 4% 

49 CH2Ph H H OH 1 21cn 1 ± 6% 

50 CH2Ph COCH3 H OH 1 21cz 0 ± 1% 

51 CH2Ph COCH2Ph H OH 1 21cy 38 ± 17% 

52 CH2Ph COC7H15 H OH 1 21cx 32 ± 8% 

53 C13H27 H OH H 0 26an 57 ± 7% 

54 C13H27 COCH3 OH H 0 26az 52 ± 1% 

55 C13H27 COCF3 OH H 0 26af 65 ± 5% 

56 C13H27 COCH2Ph OH H 0 26ay 76 ± 4% 

57 C13H27 COC7H15 OH H 0 26ax 57 ± 4% 

58 C13H27 H OH H 0 27an 48 ± 6% 

59 C13H27 COCH3 OH H 0 27az 42 ± 11% 

60 C13H27 COCH2Ph OH H 0 27ay 50 ± 5% 

61 C13H27 COC7H15 OH H 0 27ax 46 ± 3% 
 

 

 

Switching from a ∆4,5 to a ∆5,6 alkene only had a small effect except when in conjunction with a long chain 

N-acyl unit where this change resulted in a twofold decrease in inhibition of NBD-C6-IPC production 

(Table 1 entries 32 & 44). Previous work has indicated that the trans double bond exerts a considerable 
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effect on the hydrogen bonding interactions of the 3-OH group in ceramide.51 Whilst the loss of this effect 

may account for the observed reduction in apparent affinity for LmjIPCS in series 21, it is possible that a 

simple conformational change enforced by the alkene position is also responsible. In support of the latter 

suggestion, when comparing 1,3-dihydroxy analogues (series 17) with derivatives lacking the 3-OH 

group (series 26 and 27), it is clear that the 3-hydroxyl group exerts a minimal influence on substrate 

binding. 

 

Whilst a number of analogues significantly reduced the level of NBD-C6-IPC production in the assay, this 

could arise through one of two functions; either true inhibition of LmjIPCS or compounds behaving as an 

alternative competitive substrates and being processed to non-labelled IPC analogues. In order to 

determine the extent of each possibility a small subset of the assay reactions, involving both good and 

poor modulators of NBD-C6-IPC formation, were analysed in greater detail using mass spectrometry to 

look for the formation of the correspondingly unlabelled but modified sphingolipid. Following reaction and 

fractionation as described, organic phases were subjected to positive and negative ion mass 

spectrometry. The resultant MS spectra (see ESI) were searched for the mass peaks [M+241] 

corresponding to the hypothetical PSL products. Whilst compounds 17ax, 26af, and 26ax all showed 

signals for the phosphorylated product indicating that these were viable substrates, no evidence for 

phosphosphingolipid formation could be detected for compounds 18ax, 21bx, 17bx, 27a,  26an  and 

26ay suggesting that these functioned as true inhibitors of the enzyme.  

 

These observation are consistent with the predicted reaction mechanism,23 in that analogues that lack 

the primary (C1) hydroxyl group (e.g. 18ax) showed no evidence of phosphorylation and the presence of 

an inositol head group. However, these compounds do function as effective inhibitors suggesting that the 

oxygen atom is non-essential for binding (comparing series 17 with 18). Not surprisingly, the N-octanoyl 

ceramide analogue, 17ax, functioned as an alternative substrate as did its derivative 26ax which lacked 

a 3-hydroxy group further confirming that this latter group is not essential for turnover by LmjIPCS. 

Additionally, although ceramide analogues with a shorter sphingosine backbone (R1 = C4H9) resulted in 

moderate inhibition suggesting competitive binding to LmjIPCS, such analogues (e.g. 17bx) were not 

processed by LmjIPCS indicating the importance of a long backbone for effective substrate binding and 

IPC synthesis. Moreover, incorporation of steric bulk into either the sphingosine backbone or the N-acyl 

moiety appears to result in these compounds acting as true enzyme inhibitors (compare 27a or 26ay 
with 26ax). In this respect it is pertinent to note that α-branched N-pivaloyl phytoceramide analogues 

have been shown to exhibit relatively high inhibition of S. cerevisiae IPCS turnover. However, in this 

case it was not stated whether these were acting as true inhibitors or alternative substrates.29 

 

To further investigate the interaction of ceramide with LmjIPCS four of the most active true-inhibitors 

were analysed in dose-inhibition assays and the respective IC50 values determined (Figure 4). The most 
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effective inhibitor as identified in the screen (Table 1), N-octanoyl 1-deoxyceramide (18ax), had an IC50 

of 4.79 µM is, not surprisingly, structurally the closest to the natural substrate. Consistent with the initial 

screening data incorporation of steric bulk into the N-acyl unit led to higher IC50 values (Figure 4 C&D) 

 
 

Figure 4: Inhibition curves and IC50 values of selected inhibitors. Activity refers to percentage 
activity relative to untreated control. Calculated IC50 values A (18ax) 4.8 µM; B (26an) 14.7 µM; C 
(26ay) 13.2 µM; D (27a) 15.0 µM 

 

Previously we have demonstrated that whilst N-acetyl-D-erythro-sphingosine was an acceptor substrate, 

D-erythro-sphingosine was not.23 Similarly here, MS analyses revealed that whilst N-octanoyl-3-

deoxyceramide (26ax) was turned over by the enzyme, its derivative containing a free amine (26an) was 

not, and functioned as an inhibitor with an IC50 of 14.7 µM (Figure 4B). Collectively, these results 

suggest that the free-amino group of sphingosine contributes strongly to the observed inhibition by these 

compounds potentially through an electrostatic interaction with a positively charged ammonium salt that 

would be formed at physiological relevant pH.23  

 

Similar observations have been previously reported, e.g. the inhibitory effect of sphingosine analogues 

on the S. cerevisiae phosphatidate phosphatase,52 a member of the LPP enzyme superfamily believed to 

share a mechanism of action with the sphingolipid synthases.14 Moreover, Sigal et al.21 have proposed a 

generalised hypothetical mechanism of action for such phosphoryl transferases, Figure 5B. This 

mechanism, in addition to the catalytic triad, involves one lysine and two arginine residues. These three 

residues are presumed to be in a protonated state and are therefore able to stabilise the transition state 

structure during phosphate group transfer. Moreover, Sigal demonstrated that one of these arginine 

residues is conserved across different families of enzymes and organisms. This residue is located close 

(5 amino acids away) to the nucleophilic histidine residue of the active site. Investigation of the LmjIPCS 
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sequence identified Arg262 (in LmjIPCS) as a conserved residue in all the identified orthologous IPC 

synthases in the TriTryp genome,17 Figure 5A.17 Consequently, Arg262 can be presumed a potential 

candidate residue involved in the stabilisation of the transition state during the phosphorylinositol group 

transfer by LmjIPCS, Figure 5C. This speculation is consistent with the hypothesis that the protonated 

amino group of sphingosine can electrostatically interfere with the protonated Arg262 resulting in 

inefficient stabilisation of the transition state and inhibition of the catalytic transfer mechanism.  

 

A. 
 

Consensus: 
     * * *** ***** *    
AIFSYYCIVASRSHYTDDILVAI 

 
 

LmjF35.4990: LPISYYCILASRSHYTDDILVAM L. major 
LinJ35_V3.5030: LPISYYCILASRSHYTDDILVAM L. infantum 
LbrM34_V2.4930: LPASFYCILASRSHYTDDILVAM L. braziliensis 
Tb09.211.1000: AIFGYYCIVASRFHYTDDVLVAI T. brucei 
Tb09.211.1010: AIFSYYCIVASRFHYTDDVLVAI T. brucei 
Tb09.211.1020: AIFGYYCIVASRFHYTDDVLVAI T. brucei 
Tb09.211.1030: AIFGYYCIVASRSHYTDDVLVAI T. brucei 

Tc00.1047053506885.124: VLLSFYSIIASRSHYTDDILVSF T. cruzi 
Tc00.1047053510729.290: VLLSFYSIIASRSHYTDDILVSF T. cruzi 

 

Figure 5: A. Sequence alignment of active site residues of trypanosomatid IPCSs. B. Proposed 
mechanism of action of phosphoryl transferases adapted from Sigal et al (ref 21). C. Proposed 

mechanism of action of LmjIPCS 
 
 
Significantly, analyses of the efficacy of the four compounds above against cultured wild type L. major 

promastigotes identified the free amino-derivative (26an) as the only one to reproducibly demonstrate 

significant anti-protozoal effects at the concentrations analysed. Under the experimental conditions 

described maximal cytotoxicity was recorded at 12.5 µM, where cell viability was assessed as 4.6±0.5 

and 3.1±0.7% of an untreated control in 2 independent experiments. In contrast, equivalent analyses of a 

L. major serine palmitoyltransferase (SPT) mutant line53 demonstrated cell viability to be 14.6±0.02 and 

13.8±0.7% of the control. Loss of SPT function, which catalyses the first and rate limiting step in 

sphingolipid biosynthesis pathway, is tolerated by insect stage L. major promastigotes and renders 

LmjIPCS redundant.53 Therefore, this line will be resistant to specific LmjIPCS inhibitors. A similar 
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strategy has been used to identify specific S. cerevisiae IPCS inhibitors.54 Although these mutants 

remain sensitive to 26an indicating off target effects, potentially an S1P ripple response,55-57 they are 3-4 

fold less sensitive than the wild type line. This suggests that targeting LmjIPCS is a viable strategy for 

anti-parasitic agents. 

 
 

CONCLUSION 

A library of ceramide derivatives built around a set of hydroxybutenyl amine cores has been prepared 

exploring variations in the sphingosine tail, N-acyl unit and the degree of hydroxylation. The ability of 

these compounds to perturb the conversion of NBD-C6-ceramide to NBD-C6-IPC mediated by LmjIPCS 

has been assessed using a microtitre plate-based assay. The dominant factor for effective binders, as 

determined by the reduced levels of NBD-C6-IPC produced, was the possession a long chain lipophilic 

sphingosine tail. Competitive substrates and inhibitors could be distinguished by MS analysis of the 

reaction products. Whilst the presence of the hydroxyl groups and a long chain N-acyl unit were 

beneficial for activity, they were not essential for binding to the active site of LmjIPCS. Notably, a free 

amino group conferred a true inhibitory effect (rather than function as an alternative substrate) and this is 

consistent with previously reported models of the mechanism of action of this class of enzymes. 

Furthermore, this class of analogue demonstrated anti-leishmanial activity in cellulo with a significant 

proportion of this activity indicated to be due to on-target effects.  

 

These SAR studies will contribute to the development of a pharmacophore model of the active site of 

this membrane bound enzyme and help guide the design of future inhibitors of this essential enzyme as 

potential new drug treatments for leishmaniasis. In this respect it is pertinent to note that through these 

studies the microitre plate-based assay has been statistically validated for a future high-throughput 

screening purposes with a Z-value > 0.5. Studies in this direction are in progress and will be reported in 

due course. 
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Graphical Abstract 
 

A series of ceramide analogues have been synthesised and evaluated 
as substrates for the protozoan enzyme inositolphosphoryl ceramide 
synthase from Leishmania Major 

Inhibition of 
LmjIPCS 


