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Abstract: Sub-micron particles have been observed to spontaneously
form regular two-dimensional structures in counterpropagating evanes-
cent laser fields. We show that collective properties of large numbers of
optically-trapped particles can be qualitatively different to the properties
of small numbers. This is demonstrated both with a computer model and
with experimental results. As the number of particles in the structure is
increased, optical binding forces can be sufficiently large to overcome the
optical landscape imposed by the interference fringes of the laser beams
and impose a different, competing structure.
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1. Introduction

Optically bound matter [1, 2, 3] describes arrays of microscopic particles whose structure is
controlled and affected by optical binding, or a distribution of forces formed by light. Individ-
ual Rayleigh particles are attracted to regions of higher intensity. However, a key feature in
optical matter is that the positions of the particles themselves modifies the light distribution,
and the light distribution in turn affects the motion of the particles, giving the potential for rich
nonlinear behaviour [4, 5, 6].

At sub-micron scales there are preferred “bond lengths” and angles between nearby particles,
which lead to complicated, regular structures [7, 8, 9]. These can occur even in a uniform
background field: the scattered wave from a particle interferes with the background field to
produce a spatial intensity modulation. While the mechanism of longitudinal optical binding in
larger particles has received attention from a number of groups [2, 10, 5, 11], lateral binding [7,
6] is less well understood. In this letter we describe the results of a simulation based on rigorous
scattering theory to describe optical binding, and compare the results with experiment. This
explicitly shows for the first time that the bulk behavior of many-particles is different to that of
isolated particles. An unusual feature of optical binding is that the interaction strength scales
with the inverse of distance, r, as observed in [7]. To our knowledge the physical reason for
this has not been discussed in detail in the literature, and here we describe theoretically why
this happens, and show how it leads to the observed optically bound structures. As well as
being theoretically interesting, potential applications include the manipulation of biological
material, the transport and sorting of trapped particles [12], and the self-assembly of complex
structures [13]. As well as being important for experiments involving optically-bound clusters
of particles, our findings highlight the limitations in assuming that the transport and sorting of
particles can be accurately analyzed by treating individual particles in isolation.

The experimental setup we consider is described in detail in Ref. [9]. Briefly, two counter-
propagating lasers are incident on a glass-water interface in a prism at an angle greater than the
critical angle which creates an evanescent field which traps sub-micron dielectric particles. If
the beams’ polarizations are the same, interference fringes are formed and this creates a regular
“optical landscape”. If orthogonal polarizations are used – or if incoherent beams are used –
there are no fringes, but particles are still able to form regular structures due to the effects of
light multiply-scattered between the particles [9, 7].

2. Optical binding theory

Before describing our model, we first discuss the 1/r force relationship for optical binding.
This relationship was derived in [3], but we present a more physically intuitive explanation
here. Consider the scattered wave from a single particle. The amplitude of this wave decays
as 1/r and hence its intensity decays as 1/r2. The gradient force on a second particle lying
outside the illuminating beam is proportional to the gradient of intensity, and will therefore be
proportional to 1/d3, where d is the distance between the two particles.

If, on the other hand, a second particle is also inside the illuminating beam, the scattered
light interferes with the background laser light, forming fringes. A simple example of this is
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Scattered Field 1/d
Force 1/d3

Scattered Field 1/d
Force ~ 1±1/d

(a) Optical binding scaling

(b) Interference of scattered wave and laser field

Fig. 1. (a) Schematic showing how the scattered intensity of light from a single particle
(left) in a beam depends on 1/r, and therefore the gradient force on the second particle
outside the beam depends on 1/d3 for particle separation d. When both particles are ex-
posed to the laser field (right), the modulation in the force scales with 1/d. (b) Simulation
showing the field intensity distribution caused by interference of a scattered wave from a
particle with the evanescent field of a single laser beam propagating left to right, showing
the production of interference fringes which lead to optical binding.

shown in Fig. 1. The fringe amplitude varies as 1±α/r (where α is a measure of the level of
scattering by the particle). Thus their intensity varies as

(1±α/r)2 ∼ 1±2α/r, (1)

where we have for now made the approximation that the scattered field is a small perturbation
to the laser field. Since the gradient force is proportional to intensity, we find that in addition
to the effect of the external beam there is a force acting on the second particle whose strength
varies as 1/d. Thus even for a one-dimensional chain, the magnitude of the forces on the central
particle can grow indefinitely with the length of the chain. Consider a chain of 2n+ 1 particles
with spacing d such that for a particle i at position id the scattered waves from every other
particle are in phase. For large n the strength of the forces on the central particle will scale as

|F| ∼ 1+
n

∑
i=1

2α
id

∼ 1+
2α (lnn+ γ)

d
, (2)

where γ = 0.5772... is the Euler-Mascheroni constant [14, Eq. 6.1.3]. The force is a
logarithmically-increasing function of n. This is in contrast to an electrostatic interaction which
would asymptotically approach a constant value at large n.

Next we describe our computer model and present detailed simulation results. Our model
uses Generalized Lorentz-Mie Theory (GLMT) [15, 16, 17, 18] to calculate the field and force
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on a group of spherical particles. The field calculation is exact for spherical nonmagnetic par-
ticles; the main assumption in the numerical results presented here is that we ignore the effect
of light re-scattered by the prism/air interface. This has been ignored because of the techni-
cal difficulty in treating the reflection from a planar surface in a basis of spherical waves. For
convenience we also use a local plane wave approximation for the loosely-focused incident
Gaussian beam. The model is applicable to spheres of any size from Rayleigh spheres all the
way up to the ray optics regime, although in practice multiple-sphere calculations are limited
by computer memory and numerical precision to sphere radii of around 30λ .

The code can also simulate Brownian motion [19, 20] to check stability against thermody-
namic fluctuations. It has been observed (see for example [7]) that there are many different-
shaped configurations of a given number of particles that are local energy minima, but in exper-
iments we don’t observe as many variations [9]. This is because, at least in the case of silica and
polystyrene particles, we find the energy required to break up most of the structures is very low,
and in practice the particles will end up in one of a small number of thermally stable structures.

We do not describe the technical details of our model here as the pertinent equations are de-
rived and listed in the references given above. Except where otherwise specified, the numerical
parameters used in the calculations presented here are as listed in Table 1.

Parameter Value Comment
Vacuum wavelength 1064nm Nd:YAG laser
Laser beam power 300mW
Focal spot size 8μm
Substrate refractive index 1.45 Silica prism
Water refractive index 1.32 Particles in water
Critical angle 65.6°
Angle of incidence 67°
Particle refractive index 1.57 Polystyrene

Table 1. Parameters used in the calculations in this paper. In addition we refer to the particle
radius a and the size parameter ka where k is the laser wavenumber in water.

3. Fringe affinity of a chain of particles

The behaviour of a single particle in the presence of interference fringes has previously been
considered by several groups [21, 22, 23] in GLMT calculations like our own. Figure 2 shows
the results of our simulation and shows the force on a single particle in a set of interference
fringes as a function of particle size parameter ka, where k is the wavenumber in water and a is
the particle size. When the electric field of the laser is in the trapping plane, this is designated
“S” polarization. Similarly “P” polarization is when the polarization is parallel to the plane of
incidence. The plot shows that a single, small particle is attracted to bright fringes. At larger
radii the particle’s centre can instead be attracted to a dark region between fringes.

For a particle whose refractive index is close to that of the surrounding medium, this can also
be understood through a gradient potential argument. For some sizes of particle, the integrated
intensity within the volume of the sphere is maximized when the particle is centred on the
dark fringe between two bright fringes [21], because two fringes are fairly well covered by the
particle instead of one fringe being very well covered (see Fig. 2). We designate the radius at
which the behaviour first switches from light-seeking to dark-seeking as the “crossover radius”.

Next we consider the force on a particle within a chain of particles parallel to the interference
fringes, as illustrated in Fig. 3. This process was repeated for various particle radii and for S
and P polarization states. The results are summarized in Fig. 4, which shows the force acting
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Fig. 2. The top graph shows the force acting on a single particle placed halfway between
a bright and dark fringe, as a function of size parameter ka. A positive force indicates that
the particle is attracted to the bright fringe. Two lines are shown for different polarization
states. The first crossover occurs at ka = 1.985. For full parameters used, see Table 1. It can
be seen that for a range of values of ka the force is negative and and therefore particles are
attracted to darker regions. The “crossover” sizes (where the particles switch from being
attracted to light to dark) are indicated numerically on the graph. The lower two plots show
simulated images showing how the interference fringes are distorted by the particle and
that the particle sits on a bright fringe when small (a) and on a dark fringe when larger (b).
The white circles indicate the particle size and location, and the size parameters for (a) and
(b) are indicated on the graph.
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(a) (b) (c)

Fig. 3. Examples of chains of particles along the fringe direction. (a) is shown without
scattered light, for clarity. (b) shows how the fringe pattern can be modified by the presence
of the spheres. (c) Movie (1.3MB) shows a simulation demonstrating the switch in fringe
affinity for 265nm radius particles as more particles are added to the system. The particles
are free to move in three dimensions in this simulation (though they are of course physically
constrained by the surface of the prism).
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Fig. 4. Force acting on the central particle of a chain of particles as a function of number of
spheres in the chain. The forces are shown for both S and P laser polarizations for spheres
of radius 260nm, and for P polarization for spheres of radius 280nm. A positive force
indicates that the particle is attracted to the bright fringe, and a negative force a dark fringe.
For full parameters used, see Table 1.

on the central particle in a chain halfway between a fringe maximum and a fringe minimum (in
analogy to Fig. 2). From this we determine whether the chain is attracted to a bright or dark
fringe and the strength of that attraction.

It can be seen that in P-polarized light a large chain of particles is attracted to bright fringes
despite the fact that a single particle is attracted to dark fringes. The force acting on an in-
dividual particle in the chain grows with the size of the chain. Figure 5 shows the scattering
behaviour in various situations, which leads to field distributions such as that shown in Fig. 3
and explains the different behaviour for S and P-polarized light.

There is competition between the external optical landscape of the fringes, which in this
case attracts an individual particle towards dark regions, and the scattering behaviour of the
ensemble of particles which tends to attract the ensemble towards bright fringes. The force due
to the interference fringes is smallest close to the “crossover radius”, and hence a chain of only
3 particles of radius 260nm is able to overcome the influence of the “landscape” and settle on a
bright fringe. For 280nm particles, a chain of 13 particles is required to overcome the increased
force of the landscape.
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(a) (b) (c)

Fig. 5. Scattered field intensity in the trapping plane for a particle with ka = 2.5. The
intensity is displayed on a logarithmic scale. (a) P-polarized beams and particle on a dark
fringe. There is no scattering in the direction of the fringes when a particle lies on a dark
fringe. (b) P-polarized beams and particle on a light fringe. A particle situated on a bright
fringe formed by P-polarized light scatters relatively strongly in the direction of the fringes.
This scattering enhances the intensity of the fringe that the particle lies on, which makes
it more energetically favourable for other particles to be situated on that same fringe. (c)
S-polarized beams and particle on a light fringe. There is very weak far-field scattering in
the direction of the fringes (a dipole scatterer will not scatter in a direction parallel to the
electric field polarization).
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Fig. 6. Force acting on the central of (2i + 1) particles. We can compare this logarithmic
plot to our Eq. 2, which predicted a logarithmic relationship. While we were correct in
predicting that the force would continue to grow with the number of particles, rather than
converging to a constant value, the equation has under-estimated the growth of the force.
The reason for this is that the equation only used a simplistic treatment of the first-order
scattered field. Also shown here is the force due only to the first-order scattered field (using
the order-of-scattering method [16], we terminated the iteration at first order). The form of
that curve is indeed well predicted by Eq. 2.
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(a)

(b)

Fig. 7. Examples of “broken hex” optically-bound structures with vacant fringes. (a) shows
a snapshot from a Brownian dynamics simulation, and (b) shows an experimental image.
In both cases the particle radius is 260nm. In the experimental image the vertical extent of
the particle array is limited by the shape of the focused Gaussian beams.

Figure 6 compares our numerical results with the prediction of Eq. 1. This supports our de-
scription of optical binding as a long-range interaction scaling with 1/r, but shows that the
picture is complicated by multiple scattering: optical binding has become the dominant influ-
ence on the optical landscape, and the perturbation approach taken earlier is no longer entirely
appropriate. Nevertheless, the argument used to arrive at Eq. 2 is a good starting point for un-
derstanding the origins of the long-range nature of the interaction.

Finally, we extended our analysis to two-dimensional structures and included the effects
of Brownian motion. Here we found that along the fringe direction, the behavior was very
close to that already described for single chains. The main effect in the orthogonal direction,
perpendicular to the fringes, is that there is not physically room (for the interesting case of larger
particles) for a close-packed lattice with a lattice constant in the fringe direction matching that
of the 1D chain. As a result a stable structure must contain vacant fringes, and the particles
are slightly offset from the fringe centres. An example result from our simulation is shown in
Fig. 7(a). This is extremely similar to the structures previously observed in experiments [9],
shown in Fig. 7(b). The simulation has shown that structures of greater than a few tens of
particles are stable against thermal fluctuations, which matches experimental observations.

4. Conclusions

In conclusion, we have shown both with theory and experiments that the behaviour of a large
cluster of trapped dielectric particles is qualitatively different from that of individual particles.
We have justified a simple 1/r relationship for optical binding, and have demonstrated its use
in the limit of small perturbations. We have shown that a full Mie scattering model can be
applied even where there is strong feedback through multiple scattering. We have analyzed a
1D case in detail, and shown that when extended to the 2D case our computer model agrees
with experimental data.

Our findings have important implications for attempts to understand the physics of trapping
experiments involving large numbers of particles. We have demonstrated the richness of behav-
iour exhibited by optically trapped particles, but shown that great caution must be taken if using
a “ground-up” approach of considering the behaviour of a single particle (or a small number of
particles) and generalizing those conclusions to larger clusters of particles.
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