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Unexpected effects of third-order cross-terms in heteronuclear
spin systems under simultaneous radio-frequency irradiation
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We recently noted [R. K. Harris, P. Hodgkinson, V. Zorin, J.-N. Dumez, B. Elena, L. Emsley,
E. Salager, and R. Stein, Magn. Reson. Chem. 48, S103 (2010)] anomalous shifts in apparent
1H chemical shifts in experiments using 1H homonuclear decoupling sequences to acquire high-
resolution 1H NMR spectra for organic solids under magic-angle spinning (MAS). Analogous effects
were also observed in numerical simulations of model 13C,1H spin systems under homonuclear
decoupling and involving large 13C,1H dipolar couplings. While the heteronuclear coupling is
generally assumed to be efficiently suppressed by sample spinning at the magic angle, we show that
under conditions typically used in solid-state NMR, there is a significant third-order cross-term from
this coupling under the conditions of simultaneous MAS and homonuclear decoupling for spins
directly bonded to 1H. This term, which is of the order of 100 Hz under typical conditions, explains
the anomalous behaviour observed on both 1H and 13C spins, including the fast dephasing observed
in 13C{1H} heteronuclear spin-echo experiments under 1H homonuclear decoupling. Strategies
for minimising the impact of this effect are also discussed. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3684879]

I. INTRODUCTION

The line broadening due to non-commuting homonu-
clear 1H-1H dipolar couplings associated with the extensive
network of dipolar-coupled protons formed by the packing
of organic molecules in the solid state represents a major
challenge for 1H solid-state NMR spectroscopy.1 The abil-
ity of radio-frequency (RF) irradiation to counteract the ef-
fect of homonuclear dipolar couplings was demonstrated in
the 1960s in the Lee-Goldburg2 and WAHUHA3 methods for
static samples and in the 1970s in the combined rotation and
multiple-pulse spectroscopy (CRAMPS) (Ref. 4) approach
under magic-angle spinning (MAS). However, it is only with
the development of 1H homonuclear decoupling schemes
suitable for application under moderate to fast MAS fre-
quencies, e.g., Frequency-Switched Lee-Goldburg (FSLG),5

Phase-Modulated Lee-Goldburg (PMLG),6 and DUMBO,7

coupled with advances in RF consoles, that such experiments
have started to be more widely employed.8, 9 For example,
13C,1H heteronuclear correlation (HETCOR) experiments at
moderate to fast MAS frequencies10, 11 have been widely
applied to a variety of significant material types, such as
proteins,12, 13 pharmaceuticals,14, 15 silica-supported catalytic
complexes,16, 17 organic-templated microporous materials,18

inorganic-organic hybrid materials,19 as well as chemical
problems, such as the characterisation of weak hydrogen
bonding in sugars20 and the solution of structures from pow-
der diffraction data.21 Heteronuclear 13C{1H} spin-echo ex-
periments employing 1H homonuclear decoupling during the

a)Author to whom correspondence should be addressed. Electronic mail:
paul.hodgkinson@durham.ac.uk.

spin-echo evolution periods have also been presented and
shown to be applicable for spectral editing and the determi-
nation of 1JCH couplings for typical organic compounds,22, 23

including the use of measured J couplings to determine the
conformation of surface-absorbed catalytic species.24

This paper investigates two experimental phenomena
associated with the application of homonuclear 1H decou-
pling in heteronuclear 13C,1H solid-state MAS NMR; firstly,
changes in the apparent 1H chemical shift of correlation
peaks in 1H,13C two-dimensional experiments depending on
whether there is or is not a one-bond 13C-1H dipolar cou-
pling, and secondly, the observation of a much faster dephas-
ing in a 13C{1H} heteronuclear spin-echo experiment under
homonuclear 1H decoupling as compared to heteronuclear
1H decoupling. An analytical description is presented that,
supported by numerical simulations, shows that these two
phenomena have a common explanation in terms of third-
order cross terms involving the 13C,1H heteronuclear dipolar
coupling.

II. EXPERIMENTAL PHENOMENA

Figure 1(c) shows the overlay of two 13C,1H HETCOR
spectra of terbutaline sulfate (TBS) form B, obtained at
500 MHz 1H NMR frequency using cross-polarisation
mixing times of 150 and 350 μs under otherwise identi-
cal conditions (full experimental details can be found in
Ref. 25). As noted in the original reference, small, but
consistent, discrepancies were observed between apparent
1H shifts obtained from the positions of long- vs. short-range
correlation peaks. The figure shows a region where these
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FIG. 1. (a) Schematic of the terbutaline ion. (b) Schematic 13C,1H HETCOR pulse sequence, where heteronuclear coherence transfer can be achieved by using
CP (as here), LG-CP,11 or refocused INEPT.23 (c) Superposition of the same region from 13C,1H HETCOR (500 MHz, 12.5 kHz MAS) spectra of terbutaline
sulfate form B recorded using contact times of (red) 150 μs and (grey/black) 350 μs. The long-range cross peaks (black) involving the two C6 resonances have
subtly different apparent 1H shifts compared to short-range correlations involving the same hydrogens (red). The short-range one-bond CH correlation peaks at
the two times are directly superimposable (the peaks from the long contact time experiment are greyed out for clarity). (d and e) Expansion of the C7 region of
HETCOR (at 399.88 MHz, 8 kHz MAS) spectra of diterbutaline sulfate diacetic acid solvate using 85 kHz FSLG decoupling on 1H; (d) 1.0 ms contact time,
1H transmitter at +2.2 ppm, (e) 100 μs contact time, transmitter at −2.2 ppm. (f) The short-range correlation peak to H7 is noticeably shifted by the change in
decoupler offset.

effects are most evident. The short-range correlation peaks
are exactly superimposable, confirming that any shifts
cannot be explained by differences in referencing, but the
1H chemical shifts obtained by projecting the positions of
the peak maxima on to the 1H axis are not the same. This
is shown explicitly for the 1H attached to C1 (of TBS ion
1) observed via the short-range correlation (overlaid grey
and red peaks) compared to the long-range correlation to C6
(ion 1). The lines connecting peak maxima of the correlation
peaks for the same-proton correlations are clearly not parallel
to the horizontal axis. Similar shifts have been observed
in HETCOR spectra acquired at different decoupler offsets
for a different solid form of terbutaline, see Figs. 1(d) and
1(e). The long-range correlation peaks are unaffected by the
change in decoupler offset, while the short-range correlation
peak between C7 and its directly bonded hydrogen (H7) is
shifted by about 0.4 ppm (at a 1H NMR frequency of 399.88
MHz; full details can be found in Ref. 26).

Related effects may be observed for dilute spins, such
as 13C, when homonuclear decoupling is applied to the 1H
spins. Figure 2 shows the results (solid lines) of spin-echo ex-
periments used to measure the 1JCH couplings for the CH and
CH3 resonances of L-alanine. eDUMBO-122

27 1H homonu-
clear decoupling was applied during the echo periods (each
of duration τ ) to reduce the dephasing due to the 1H dipo-
lar coupling network; full experimental details are given in
the supplementary information.65 The solid curves show fits
of the peak areas as a function of 2τ to cos 2πJτ (CH) and
cos 32πJτ (CH3) functions exponentially damped by a de-
cay with time constant T ′

2 (fitted values shown). Although the
spin-echo curves fit reasonably well to these functions, the fit-
ted decay constants are relatively short in comparison to those
observed when heteronuclear decoupling is applied, limiting
the accuracy with which the J values can be determined. This
is demonstrated in Fig. 2 using data (fitted by dashed lines)
acquired with SPINAL-64 heteronuclear decoupling28 during
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FIG. 2. Spin-echo decays for the CH and CH3 carbons of L-alanine us-
ing (solid lines) windowless eDUMBO-122

1H homonuclear decoupling
(νrf = 120 kHz) and (dashed lines) SPINAL-64 1H heteronuclear decoupling
(νrf = 100 kHz) during the rotation-synchronised τ echo periods. The 1H
NMR frequency was 599.44 MHz and the MAS spinning rate 20.833 kHz.
180◦ pulses were applied to both 1H and 13C channels and the 13C peak areas
measured at the end of the τ -π -τ period. Figures with each curve show the
T ′

2 values obtained by fitting.

the spin-echo period. The fitted time constants, which are con-
sistent with previous experimental observations,29 are about
three times larger than those observed with homonuclear de-
coupling using the same 1H RF power.

One significant distinction between the two spin-echo ex-
periments shown in Fig. 2 is the non-zero scaling of the het-
eronuclear dipolar coupling when homonuclear decoupling
is used. It is widely assumed that the heteronuclear dipolar
coupling is averaged out by magic-angle spinning and so the
only active coupling should be a small (scaled) 1JCH coupling.
However, we show below that the heteronuclear dipolar cou-
pling is not innocent and is largely responsible both for the
rapid decay of the spin-echo curves in Fig. 2 and the peak
shifts shown in Fig. 1.

III. ANALYSIS

These effects were suspected to have a common origin
in the large heteronuclear dipolar interaction between a 13C
and its directly bonded 1H. We consider a heteronuclear spin
pair under magic-angle spinning, using I to denote the spin
subject to RF decoupling and S for the heteronucleus. We
consider initially simple Lee-Goldburg decoupling, i.e., us-
ing off-resonance irradiation to rotate the I spin magnetisation
about an axis inclined at the magic angle with respect to B0.

The relevant spin Hamiltonian is therefore

Ĥ (t) = [2ωD(t) + ωJ] ÎzŜz + [ωI(t) + �off] Îz + ωrfÎx ,

(1)

where ωD is the heteronuclear dipolar coupling between I
and S and ωI is the I spin chemical shift relative to the on-
resonance I spin RF frequency (these are time dependent due
to MAS), ωJ = 2πJ is the isotropic J coupling between I and
S (in angular frequency units), �off is the offset from the I spin
detection frequency, and ωrf is the I spin nutation frequency

(on resonance). The S spin chemical shift may be ignored as
its Hamiltonian commutes with Ĥ .

The problem can be simplified using a tilted frame whose
z axis lies along the spin-lock axis

Îx → cos θ Î ′
x + sin θ Î ′

z Îz → cos θ Î ′
z − sin θ Î ′

x, (2)

where the tilt angle θ is chosen such that ωrf = �off tan θ . θ

is the magic angle, θm, for perfectly adjusted Lee-Goldburg
decoupling. Equation (1) then becomes

Ĥ ′(t)= [(2ωD(t)+ωJ)Ŝz+ωI(t)](cos θ Î ′
z−sin θ Î ′

x) + ωeffÎ
′
z,

(3)

where the effective precession frequency is ωeff = ωrf/ sin θ .
The Hamiltonian is block diagonal with respect to the S

spin state, and so the analysis can be simplified by working in
the subspaces corresponding to the two S spin states

Ĥ±(t) = ω±(t)(cos θ Î ′
z − sin θ Î ′

x) + ωeffÎ
′
z, (4)

where the effective I spin frequency is ω±(t) = ωI(t)
± (ωD(t) + ωJ/2).

A. Observation via heteronucleus

Focussing initially on the heteronucleus, the S spin signal
at multiples, N, of the RF cycle time, τc, is given by

S(Nτc) = tr(U (τc)N ŜxU (τc)†N Ŝ+), (5)

where U (τc) is the propagator over one period of the RF. This
problem is expressed in terms of propagators evaluated in the
sub-space of the I spins for the two states of the S spin,30 U±,
with

U (τc) =
(

U+ 0
0 U−

)
. (6)

Equation (5) becomes30

S(Nτc) = tr[(U−U
†
+)N ]/2. (7)

Note that perfect decoupling would correspond to U+ = U−,
i.e., the same evolution irrespective of the S spin state.

Using a similar approach to Waugh,31 the propagators
can be expressed in terms of the eigenvector matrices V± and
eigenvalues λ± which diagonalise them. Hence

tr[(U−U
†
+)N ] = tr[V−eiλ−NV

†
−V+e−iλ+NV

†
+]. (8)

In the limit of strong decoupling, the two propagators are
very similar and V+ ≈ V−. Hence

tr[(U−U
†
+)N ] ≈

∑
j=1,2

ei(λ−,j −λ+,j )N =
∑
j=1,2

e−i	j N , (9)

which corresponds to a sum of two oscillation frequencies at
the differences of corresponding eigenvalues of the effective
Hamiltonian over the RF period, 	j = λ+, j − λ−, j. The eigen-
vectors only modify the transition amplitudes and can be ig-
nored in the strong decoupling limit.32

In common with recent theoretical analyses of heteronu-
clear decoupling,33–36 we use Floquet theory to express the
time-dependent Hamiltonian in non-time-dependent form.
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Since the RF irradiation is time independent, it is sufficient to
expand the Hamiltonian with respect to a single Floquet mode
corresponding to the sample rotation, with Fourier modes
−2, . . . , +2,

Ĥ±(t) =
2∑

n=−2

Ĥ
(n)
± einωr t (10)

= ωeffÎ
′
z +

2∑
n=−2

ω
(n)
± (cos θ Î ′

z − sin θ Î ′
x)einωr t , (11)

where Ĥ
(n)
± is the nth term in the Fourier series expansion of

Eq. (4), and ωr is the spinning frequency (as an angular fre-
quency). The distinct Fourier coefficients of the NMR inter-
actions under MAS are

ω
(0)
± = 	I ± ωJ/2, (12)

ω
(1)
± = ω

(1)
I ± ω

(1)
D , (13)

ω
(2)
± = ω

(2)
I ± ω

(2)
D , (14)

where ω
(n)

 is the order n coefficient of the tensor for the in-

teraction 
 in the rotor frame. ω
(n)
D and ω

(n)
I are proportional

to the dipolar coupling constant, D, and the I spin chemical

shift anisotropy (CSA), respectively; full expressions for ω
(n)



can be found in Appendix A of Ref. 37. Note the symme-
try relationships ω

(2)

 = ω

(−2)

 and ω

(1)

 = −ω

(−1)∗

 , and that

ω
(0)
D = 0 and ω

(0)
I = 	I at the magic angle, where 	I is the

I spin isotropic frequency relative to the on-resonance RF fre-
quency.

The zero-order term in the Fourier series expansion is

Ĥ
(0)
± = ωeffÎ

′
z + ω

(0)
± (cos θ Î ′

z − sin θ Î ′
x) (15)

=
(

(ω(0)
± cos θ + ωeff)/2 −ω

(0)
± sin θ/2

−ω
(0)
± sin θ/2 −(ω(0)

± cos θ + ωeff)/2

)
.

(16)

Following the notation of Leskes et al.,38 the Floquet
Hamiltonian is written

Ĥ F
± = ωrN̂ +

2∑
n=−2

Ĥ
(n)
± ⊗ F̂n, (17)

where the Fourier operators acting on the Fourier mode are

N̂ |m〉 = m|m〉, F̂n|m〉 = |n + m〉. (18)

The matrix representation of Eq. (17) is an infinite matrix
of the form

Ĥ F
± =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...

. . . Ĥ
(0)
± + 2ωr I Ĥ

(1)
± Ĥ

(2)
±

. . . Ĥ
(−1)
± Ĥ

(0)
± + ωr I Ĥ

(1)
± Ĥ

(2)
±

Ĥ
(−2)
± Ĥ

(−1)
± Ĥ

(0)
± Ĥ

(1)
± Ĥ

(2)
±

Ĥ
(−2)
± Ĥ

(−1)
± Ĥ

(0)
± − ωr I Ĥ

(1)
± . . .

Ĥ
(−2)
± Ĥ

(−1)
± Ĥ

(0)
± − 2ωr I . . .

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where I is a 2 × 2 identity matrix. Only the non-zero terms
of Ĥ F

±, corresponding to Fourier modes up to |n| = 2, are
indicated, all other matrix elements are zero.

The transformation into the titled rotating frame has en-
sured that the Hamiltonian is diagonally dominant (i.e., the
diagonal term ωeffÎ

′
z of Eq. (3) is assumed to be much larger

than the NMR interactions). However further simplification is
not possible since ωr ∼ ω±. This contrasts to previous work
where van Vleck transformations were used to determine suc-
cessively more accurate approximations to the overall effec-
tive Hamiltonian.33, 39–44

However, it is straightforward to use non-degenerate per-
turbation theory to estimate the eigenvalues of Ĥ F, provided
the resonance conditions observed in Fig. 9 are avoided—
these would introduce degeneracies along the diagonal of Ĥ F.

The eigenvalues will be of the form

λν,i = λi + νωr, (20)

where ν = −∞. . . ∞ is the index over the Floquet mode, and
the “base” eigenvalues λF

i can be determined from the central
block of Ĥ F, which is Ĥ

(0)
± in Eq. (19). The eigenvalues as-

sociated with ν �= 0 correspond to spinning sidebands, whose
intensity can be ignored away from resonance conditions.

Dividing the Hamiltonian into a diagonal zero-order
component, Ĥ 0

± and an off-diagonal perturbation term, V̂±,
the eigenvalues to first order (i.e., the diagonal terms of Ĥ

(0)
± ,

Eq. (16)) are

λI
±,1 = (ω(0)

± cos θ + ωeff)/2 λI
±,2 = −(ω(0)

± cos θ + ωeff)/2,

(21)
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where the superscript Roman numerals (I in Eq. (21), II and
III below) indicate the perturbation order.

Hence the dominant frequencies in the spectrum,
	j = λ+, j − λ−, j (Eq. (9)) are to first order

	I
1,2 = ±((ω(0)

+ − ω
(0)
− ) cos θ )/2 = ±(ωJ/2) cos θ. (22)

Note that the transition frequencies for S spin observation are
symmetrical about zero frequency, hence the splitting to first
order is

�I = ∣∣	I
1 − 	I

2

∣∣, (23)

= ∣∣(λI
+,1 − λI

−,1

) − (
λI

+,2 − λI
−,2

)∣∣, (24)

= 2
∣∣λI

+,1 − λI
−,1

∣∣ = 2
∣∣λI

+,2 − λI
−,2

∣∣, (25)

= |ωJ cos θ |. (26)

As expected, this corresponds to the isotropic J coupling
scaled by cos θ . Note that the restricted number of Fourier
modes (|n| ≤ 2) for this problem means that there are a finite
number of non-zero elements (giving rise to correction terms)
for each eigenvalue. This contrasts with problems involving
time-dependent RF where the Fourier series are in general in-
finite.

The second-order corrections to the eigenvalues are given
by

λII
±,i =

∑
j �=i

〈j |V̂±|i〉〈i|V̂±|j 〉
E

(0)
±,i − E

(0)
±,j

, (27)

where E
(0)
±,j = 〈j |Ĥ (0)

± |j 〉 are the energies of the unperturbed
states.

These correction terms have been evaluated analytically
using the computer algebra system, MAPLETM.45 The result-
ing second-order contribution to the splitting in the S spin
spectrum is

�II = ∣∣	II
1 − 	II

2

∣∣ = sin2 θ

ωeff

(
4
(
ω

(2)
I ω

(2)
D − ω

(1)
I ω

(1)
D

) + 	ωJ

)
.

(28)

These are second-order cross terms that diminish inversely
with the effective RF nutation frequency, ωeff. The first
term corresponds to the dipolar-chemical shielding anisotropy
cross-term first discussed by Ernst et al.,32 and the second is
a correction to the scaling of ωJ due to deviations from the
Lee-Goldburg off-resonance condition due to a non-zero off-
set 	I. These terms are expected to be suppressed by the fre-
quency switching of FSLG decoupling, which effectively al-
ternates the sign of the ωeff leading to cancellation over a com-
plete FSLG cycle. This cancellation is discussed further in
Sec. III C below.

The third-order corrections to the eigenvalues are given
by46

λIII
±,i =

∑
j,k �=i

〈i|V̂±|j 〉〈j |V̂±|k〉〈k|V̂±|i〉(
E

(0)
±,j − E

(0)
±,i

)(
E

(0)
±,k − E

(0)
±,i

)
−〈i|V̂±|i〉

∑
j �=i

〈j |V̂±|i〉〈i|V̂±|j 〉(
E

(0)
±,i − E

(0)
±,j

)2 . (29)

Although the number of correction terms is finite, the result-
ing expressions are extremely cumbersome, and can only be
usefully evaluated in a narrower parameter space. Cross-terms
involving the J coupling and the 1H offset are assumed to be
negligible. The 1H CSA is assumed to be small compared to
the dipolar coupling, and set to zero (as in the majority of
the simulations below). We also assume that ωeff � ωr and
then use the approximation that denominator terms involving
nωr ± ωeff can be replaced by ωeff. This approximation has to
be done carefully to avoid the erroneous cancellation of sev-
eral pairs of terms of the form

A

ωr (nωr − ωeff)
+ A

ωr (nωr + ωeff)
. (30)

These terms only truly cancel in the limit ωeff/ωr → ∞, and
the general limit, i.e., −2nA/ω2

eff, must be evaluated on the
sum of matching pairs.

The third-order correction to the S spin splitting then re-
duces to

�III = 6 sin2 θ cos θ

ω2
eff

ω
(2)
D

(
ω

(1)
D

)2
. (31)

This term will not be removed by frequency switching as it is
even order with respect to ωeff (cf. Fig. 3).

B. Observation via irradiated nucleus

Determination of the I spin response introduces no new
principles. For a given crystallite orientation, two frequencies
will be observed corresponding to the two states of the S spin,
	± = λ±, 1 − λ±, 2. To first order, these frequencies relative to
the nutation frequency, ωeff, are 	I

± = cos θ (	 ± ωJ/2), cor-
responding to the expected scaled offset and J coupling. The
second-order corrections to the two I spin transition frequen-
cies can be expressed in terms of an overall shift of the I spin
frequency and a contribution to the frequency difference. The
latter splitting contribution is identical to Eq. (28), as would
be expected for a mutual interaction. The overall shift to
second order is

− sin2 θ

ωeff

[(
ω

(2)
D

)2 − (
ω

(1)
D

)2 + (
ω

(2)
I

)2 − (
ω

(1)
I

)2 + 	2
I

2
+ ω2

J

8

]
.

(32)

This contribution is odd-order with respect to the RF and so
is expected to average out for FSLG decoupling.

There are a significantly greater number of third-order
terms for the I spin observation, as fewer contributions can-
cel. Discarding terms that are odd-order with respect to the
RF, i.e., those expected to be suppressed by frequency switch-
ing in FSLG, and neglecting the effects of 1H CSA and the J
coupling, and again assuming that ωeff � ωr , the I spin tran-
sition frequencies to third order are

	III
± = λIII

±,1 − λIII
±,2 = sin2 θ cos θ

2ω2
eff

(
4	I

[(
ω

(2)
D

)2 − (
ω

(1)
D

)2]
+	3

I ± 6
(
ω

(1)
D

)2
ω

(2)
D

)
. (33)

Full expressions for the spin transition frequencies are given
in the supplementary information.65
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Hence the contribution to the splitting on the I spin spec-
trum is

�III = ∣∣	III
+ − 	III

−
∣∣ = 6 sin2 θ cos θ

ω2
eff

(
ω

(1)
D

)2
ω

(2)
D , (34)

which is identical to the S spin correction term of Eq. (31).
The midpoint of the I spin transition frequencies is shifted by
a term proportional to 	I. In other words, the effective scaling
factor on the I spin frequencies is modified from cos θ to

cos θ

(
1 + sin2 θ

2ω2
eff

[
4
(
ω

(2)
D

)2 − 4
(
ω

(1)
D

)2 + 	2
I

])
. (35)

Since this modification of the scaling factor will be orienta-
tion dependent, it will lead to additional linebroadening and
resolution loss, whose impact will increase in proportion to
the offset 	I.

C. Discussion of analysis

The correction term in Eqs. (31) and (34) has a number
of interesting properties. First, being a pure heteronuclear
coupling term, it is not refocused by the heteronuclear spin-
echo sequence used to observe the heteronuclear J coupling.
Second, the sin 2θcos θ scaling factor has its maximum at
θ = θm, i.e., at the conditions required for efficient homonu-
clear decoupling, but it is zero for on-resonance CW decou-
pling; this helps to explain why it has not been discussed in the
context of earlier studies of heteronuclear decoupling. More-
over, the functional dependence of the product ω

(2)
D (ω(1)

D )2 on
the angle β between the principal axis of heteronuclear dipo-
lar coupling and the rotation axis is

�III ∝ d
(2)
2,0(β)

[
d

(2)
1,0(β)

]2 ∝ sin2 β sin2 2β, (36)

where d (2)
m,n are the rank-2 reduced Wigner rotation matrix el-

ements. Hence this contribution has a consistent sign and is
largest when the crystallite is oriented such that the dipolar
tensor is at the magic angle with respect to the rotor axis
(dropping to zero at β = 0 and β = π /2). This maximum
splitting under Lee-Goldburg decoupling evaluates to

�III
LG,max = 0.0285

D3

ν2
rf

. (37)

These correction terms have been determined for the case
of simple Lee-Goldburg decoupling, while FSLG,5 or its on-
resonance implementation, PMLG,6 is commonly used ex-
perimentally. Given the high order of these correction terms,
and the additional time dependence introduced by frequency
switching, it is not obvious that the correction terms for FSLG
decoupling are simply related to those deduced above. More-
over, the cancellation of the second-order terms, Eq. (28), as-
sociated with the frequency switching of FSLG decoupling
may not be perfect under MAS conditions since the Hamilto-
nian is changing over the duration of the RF period.

These questions are explored in Fig. 3, which compares
the predicted splitting in the 13C spectrum under LG decou-
pling from Eq. (31) with numerical simulations of both LG
and FSLG decoupling under 10 kHz MAS (see Sec. IV for

full simulation details). The predictions of Eq. (37) agree per-
fectly (within 1%) with the numerical simulations using LG
decoupling, and the splitting under FSLG observed in the
simulations has the same functional dependence on D3/ν2

rf.
Somewhat counterintuitively, the splitting under FSLG de-
coupling is about a factor of two larger than under simple
Lee-Goldburg decoupling. However, the frequency switching
is designed to remove terms from the average Hamiltonian
that are odd-order with respect to the RF, and this does not
imply that other terms are also reduced. Since the J coupling
is zero, the second-order contribution to the splitting, Eq. (28),
is identically zero in the absence of a 1H CSA.

To verify that the second-order terms are generally small,
Fig. 3 also shows the results when a 2 kHz CSA (corre-
sponding to 4 ppm at 500 MHz 1H frequency) is included.
As expected, the second-order terms are significant for sim-
ple Lee-Goldburg decoupling and the corresponding data
points (purple diamonds) do not fit to the functional depen-
dence expected from the third-order term. However, the fre-
quency switching almost completely eliminates the second-
order terms and the corresponding data points (blue circles)
largely coincide with those obtained when the CSA is zero
(green triangles).
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FIG. 3. Residual splitting in the simulated 13C spectrum for a 13C,1H spin
pair under 10 kHz MAS (with J = 0) using a single crystallite orientation
at β = θm as a function of D3/ν2

rf for FSLG (green triangles) and LG (red
squares) decoupling, evaluated for two values of D, 10 kHz (open symbols)
and 23 kHz (filled symbols), and three values of νrf (reflected in the size
of the symbols). The predictions of Eq. (37) lie within the size of LG sym-
bols. Also shown are the results of simulations including a 2 kHz 1H CSA
with FSLG (blue circles) and LG (purple diamonds) decoupling. Unit gradi-
ent lines drawn through the symbols confirm the predicted functional depen-
dence.
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Although this analysis has been carried out for the rel-
atively straightforward case of Lee-Goldburg decoupling,
the same principles are expected to apply to more complex
homonuclear decoupling schemes, such as the eDUMBO se-
quence used in the experimental example in Fig. 2 above. This
is confirmed by the simulations shown later in Fig. 7. More-
over, simulations of eDUMBO decoupling (results not shown)
confirmed that it too was extremely effective in suppressing
the second-order terms associated with the 1H CSA. Note that
the deviation may be much larger if decoupling RF is applied
to spins such as 19F with much larger CSAs or where the RF
and MAS cycle times have similar durations, cf. Fig. 9.

IV. NUMERICAL SIMULATIONS

Numerical simulations of heteronuclear spin systems un-
der MAS and homonuclear decoupling have been used to con-
firm the predictions of the theoretical analysis. Two different
simulation packages were used, pNMRsim47 (Durham) and
SPINEVOLUTION48 (Warwick), with the two codes produc-
ing identical results in test cases. The principal model used
was a two-spin 1H,13C system using heteronuclear dipolar
and J coupling constants of D = 23 kHz and J = 150 Hz,
respectively, with the principal axis of the dipolar coupling
(corresponding to the internuclear axis) defining the molecu-
lar frame of reference. Unless otherwise stated, the 1H shift
was at 5.9 ppm with respect to the transmitter frequency (cor-
responding to a transmitter offset of 2.9 kHz at a 500 MHz 1H
Larmor frequency), which matches the experimental condi-
tions of Fig. 1(c). In the minority of simulations that included
a 1H CSA, this had an anisotropy of 2 kHz (corresponding to
4 ppm at 500 MHz 1H frequency), zero asymmetry, and was
co-linear with the 13C,1H dipolar coupling.

A. Observation via 1H

1H spectra under FSLG decoupling were simulated un-
der magic-angle spinning at 10 kHz. RF nutation frequen-
cies were chosen such that the cycle periods of the FSLG de-
coupling and the sample spinning were commensurate over
a small number of rotation periods, with the NMR signal
observed once per base Lee-Goldburg cycle. This “synchro-
nisation” allows the evolution to be calculated efficiently.49

The powder sampling was performed over a 150 α, β and
γ angle set according to a Zhang-Cheng-Wolfsberg (ZCW)
scheme.50, 51 Although the two-spin Hamiltonian is invariant
to the powder α angle, the ZCW integration schemes are still
effective even if the integration is independent of one or more
of the integration parameters. The starting state was 1H mag-
netisation along the y axis, perpendicular to the spin-lock axis
of the FSLG decoupling. The tilted axis precession created
strong quadrature artifacts which were discarded in process-
ing. Decoupling/spinning sidebands were generally of low
intensity and are not shown. Full spectra were obtained via
Fourier transformation of the time-domain signal after a 30
Hz Lorentzian line-broadening.

Figure 4(a) shows the significant effect of including the
heteronuclear dipolar coupling in the simulations, compared
to the simple scaled J doublet obtained when only the J cou-

1.60 1.551.70 1.651.80 1.75

1.60 1.551.70 1.651.80 1.75

(a) D = 23 kHz, J = 0

D = 0, J = 150 Hz

D = 23 kHz, J = 150 Hz

Sum

β = 20°

β = 54.7°

β = 70°

β = 90°

 ν / kHz

ν / kHz

(b)

FIG. 4. Simulated 1H spectra under 102.06 kHz FSLG decoupling and
10 kHz MAS. (a) Powder-averaged lineshapes obtained with D = 23 kHz,
J = 0 (long dash); D = 23 kHz, J = 150 Hz (solid), and (for reference) the
spectrum with only the J coupling included (short dash). (b) Powder pattern
observed with D = 23 kHz, J = 0 (solid), and a representative set of spectra
as a function of the β powder angle (integrated over the γ angle in 8 steps
and scaled by the sin β integration weighting factor).

pling between 13C and 1H is included. In addition to obscur-
ing the J doublet, the peak maximum of the resulting asym-
metric lineshape is displaced from the expected scaled reso-
nance frequency (at 1.67 kHz). Fig. 4(b) shows how this line-
shape arises from the sum of individually symmetrically split
spectra, and that the asymmetry arises from subtle variations
in the scaled isotropic frequency with crystallite orientation.
The magnitude of the apparent shifts are consistent with those
observed experimentally in Fig. 1. Note that the detailed line-
shape observed depends on the 1H chemical shift parameters,
including its anisotropy (here zero), but overall linebroaden-
ing is largely independent of the 1H shift parameters (see also
Fig. 5).

Figure 5 shows the effect of the offset from resonance,
	I, on the observed lineshape. Note how at non-zero offsets,
the maximum peak intensity is distorted away from the ex-
pected peak position (shown by the reference line in grey),
as observed in the experimental HETCOR spectra, Fig. 1. As
anticipated in Sec. III B, the distortion of the ideal J doublet
is reduced significantly in the limit 	I = 0 since the distor-
tion of the scaling factor described by Eq. (35) is then zero.
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Ω = 2.9 kHz, D = 0, J = 0
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Ω = 1.9 kHz 

FIG. 5. Simulated 1H spectra under FSLG decoupling as a function of res-
onance offset, 	I (D = 23 kHz, J = 150 Hz, 10 kHz MAS, RF nutation
frequency 102.06 kHz). The two normalised reference spectra show the sim-
ulated spectrum at the maximum offset, but with zero couplings (solid grey
line) and the on-resonance case (grey dashed line) in the absence of just the
dipolar coupling.

The broadening due to the modulation of the effective split-
ting described by Eq. (34) remains, as shown by the difference
between the spectrum for 	I = 0 and the reference spectrum
(grey dashed line) in which the heteronuclear dipolar cou-
pling is absent. The 	I < J limit is not, however, a practi-
cally useful regime, particularly as it has been demonstrated
both experimentally and theoretically that optimal resolution
(and reduced artifact complications) is often obtained by care-
ful positioning of the spectrum off-resonance with respect to
the transmitter frequency.9, 52

A more effective strategy to minimise these interactions
is to increase the 1H nutation frequency so that it significantly
exceeds the strength of the heteronuclear couplings. As shown
in Fig. 6, the simulated spectrum converges towards the ideal
scaled J doublet in the limit νrf/D > 10. However, increasing
RF nutation frequencies is not without practical difficulties,
not least the RF power handling limits of NMR probes. More-
over it is frequently observed that the experimental perfor-
mance of current homonuclear decoupling techniques tends
to decrease at high RF powers,49 with νRF values about
100 kHz often being used in practice. The results shown
in Fig. 6 are a strong incentive for developing decoupling
strategies and/or probe technologies that are more effective
at higher 1H nutation frequencies.

B. Observation via 13C

With the exception of the frequency-domain calculations
presented in Figs. 3 and 9, the 13C simulations were per-
formed using SPINEVOLUTION,48 using the same parameters
for two-spin calculations as described above. Simulations to
evaluate the effects of the 1H homonuclear coupling were also
performed using an 8 spin 13C1H7 model system constructed
using the co-ordinates of L-alanine (taken from Cambridge
Structural Database reference code LALNIN23) after re-
finement of H atom positions using a DFT-based quantum
code (GAUSSIAN03). The optimised CαH bond distance was
1.095 Å, corresponding to a 13C,1H heteronuclear dipolar

νRF = 102.06 kHz 

νRF = 138.8 kHz 

RF = 220.45 kHz ν
νRF = 102.06 kHz, D = 0 

1.551.601.651.701.751.80
ν / kHz

FIG. 6. Simulated 1H spectra under FSLG decoupling as a function of the
1H nutation frequency (D = 23 kHz, J = 150 Hz, 10 kHz MAS). The RF
nutation frequencies used correspond to synchronisation conditions, τr/τc, of
25/4 (102.06 kHz), 17/2 (138.8 kHz) and 27/2 (220.45 kHz), where τ r and τ c

are the durations of the rotor period and full FSLG cycle period, respectively.

coupling of 23 kHz. The additional six protons used in the
model system were taken from the NH+

3 and CH3 hydrogen
positions. The 1H nuclei of the CH3 were assumed to be in fast
exchange, although including the motional averaging within
the CH3 (and/or within the NH+

3 ) only modified the overall
dephasing rates and did not significantly affect the results
observed. The isotropic chemical shifts were chosen to match
those found experimentally in L-alanine, with the 1Hα res-
onance at +2.1 kHz relative to the 1H transmitter frequency
(corresponding to 3.5 ppm at a 1H Larmor frequency of
600 MHz). Powder averaging was performed using 100 α

and β powder angle pairs chosen using the REPULSION
averaging scheme53 and 16 equally stepped γ angles. The
magnitude of the 13C signal at the end of the τ -π -τ spin-echo
period was calculated. FSLG simulations used an RF nutation
frequency of 102.06 kHz and an MAS frequency of 10 kHz,
over 128 time points using a τ increment of 400 μs (i.e.,
4 rotor periods). eDUMBO-122 simulations used an RF
nutation frequency of 150 kHz, an RF cycle period of 32 μs
(320 steps of 100 ns), an MAS frequency of 20.833 kHz, and
a τ increment of 96 μs (i.e., 3 RF periods). Where Fourier
transforms of the spin-echo curves are presented, an apodisa-
tion corresponding to a line broadening of 30 Hz was applied
prior to zero-filling and Fourier transformation using GSIM.54

Figure 7 confirms the significant interaction between the
heteronuclear dipolar coupling and homonuclear decoupling
using simulated spin-echo decay curves for the model 13C,1H
spin system. In the absence of the dipolar coupling, the ef-
fect of the decoupling RF is simply to scale the effective cou-
pling strength, leading to a slower oscillation in comparison
to that observed in the absence of RF. Note that the heteronu-
clear coupling has no observable effect in the absence of RF,
since the echo periods are integer multiples of the rotation pe-
riod. However, the evolution is strongly damped when both
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FIG. 7. Simulated 13C spin-echo (τ -π -τ ) curves for a model two-spin 13C1H
system for (a) eDUMBO-122 decoupling using νrf = 150 kHz (τ c = 32 μs)
and νr = 20.8 kHz, and (b) FSLG decoupling using νrf = 102.06 kHz and
10 kHz MAS. The red dotted lines show the evolution under the J coupling
when no homonuclear decoupling is applied; the blue dashed lines show the
slower evolution under the scaled J coupling when homonuclear decoupling
is included. The green solid line shows the damping of the oscillation when
the heteronuclear 13C1H coupling (D) is included.

the heteronuclear dipolar coupling and the homonuclear de-
coupling is present. Identical trends are observed for FSLG
and eDUMBO decoupling.

Focussing on FSLG decoupling, since this is more
readily analysed, Fig. 8 illustrates the effect of changing the
RF nutation frequency and the presence or absence of 1H
homonuclear couplings. Fig. 8(b) shows the corresponding
Fourier transformations of the spin-echo curves in (a) (after
apodisation). Those “spin-echo spectra” obtained at modest
RF (νrf = 102 kHz) show similar lineshape distortions to
those observed in the simulated 1H spectra in Figs. 4–6 above,
with the exception that the lineshapes are necessarily sym-
metrical. In line with the predictions above, the distortions are
strongly reduced as the RF nutation frequency is increased.
Fig. 8 also suggests that the presence of the 1H homonuclear
dipolar coupling network has a relatively minor effect. In
particular, there is negligible difference in the positions of the
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CH, 102.06 kHz

CH7, 102.06 kHz

CH, 220.45 kHz

CH7, 220.45 kHz

FIG. 8. (a) Simulated 13C τ -π -τ spin-echo curves and (b) their Fourier trans-
forms, simulated for FSLG homonuclear decoupling at an MAS frequency
of 10 kHz and RF nutation frequencies of 102.06 kHz (25τ c = 4τ r) and
220.45 kHz (27τ c = 2τ r). Two model spin systems were used: the basic two-
spin CH system and the larger CH7 system modelled on the CHα environment
of L-alanine.

zero crossings (and hence any fitted oscillation frequency)
between the results from the CH and the model CH7 system.
As might be expected, the additional homonuclear couplings
damp the spin-echo decay, but without modifying the effec-
tive oscillation frequencies. This confirms the appropriateness
of the two-spin model used above.

The theoretical analysis predicts that the effects observed
are essentially independent of MAS frequency, provided that
“resonance conditions” between νr and νrf are avoided. This
is illustrated in Fig. 9, which shows the residual splitting in
the NMR spectrum for a single crystallite (determined from
the frequency difference between the two centreband transi-
tions) as a function of MAS frequency at a fixed RF nutation
frequency. The 1H nutation frequency was fixed at 100 kHz
and the exact values of the MAS frequency chosen to achieve
“synchronisation” between RF and MAS cycle times, as dis-
cussed above. The 13C,1H spin pair was oriented with the in-
ternuclear vector at the magic angle with respect to the rotor
axis, which corresponds to the maximal splitting (as shown
in Sec. III). These calculations were performed (using PN-
MRSIM) directly in the frequency domain,55 which is feasi-
ble due to the synchronisation of the RF and rotation cycle
periods.

The residual splitting is independent of MAS frequency
in the quasi-static limit, νrf � νr. It is important to note, how-
ever, that the effects observed here are particular to MAS
spectra; it would, in any case, be impossible to resolve the
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FIG. 9. Residual splitting as a function of MAS frequency in the simulated
13C spectrum for a 13C,1H spin pair (with J = 0) using a single crystallite
orientation at β = θm (D = 23 kHz, νrf = 100 kHz FSLG decoupling). Data
points connected by the red dashed and black solid lines correspond to simu-
lations with and without a 2 kHz 1H chemical shift anisotropy.

heteronuclear J coupling in the presence of a dominant dipo-
lar coupling in a static sample. The key issue is that in an
intermediate regime, in which neither the MAS nor the RF ir-
radiation is sufficient to average out the dipolar coupling, the
interaction between the RF and the time-dependent coupling
creates measurable third-order cross terms. The presence of a
1H chemical shift anisotropy (red data points) has little effect
(away at least from the resonance conditions), showing that
the conclusions drawn from Fig. 3 on the efficiency of aver-
aging of second-order terms by the frequency switching are
generally true.

As the ratio of RF nutation frequency to MAS frequency
(τr/τc) decreases, “resonance conditions” are observed at cer-
tain ratios of the two cycle periods. Since this simulation does
not include homonuclear couplings, these are not directly re-
lated to the interactions between MAS and homonuclear de-
coupling that have been extensively analysed41, 56 and previ-
ously observed in multi-spin simulations49 in the context of
1H homonuclear decoupling. For example the features shown
here at τr/τc = 2.9 and 3.9 are not simple rotational reso-
nances, and are particular to the single orientation considered.
These conditions have not been investigated further since they
are unlikely to be of practical significance.

V. DISCUSSION

Given that the effects described have an observable im-
pact on widely used solid-state NMR experiments, and will
apply to any experiments involving 13C nuclei close to 1H
subject to RF, it is initially surprising that they have not been
previously documented. It is commonly assumed, however,
that the heteronuclear dipolar coupling has little effect on the
evolution of the 1H spin system under homonuclear decou-
pling and magic-angle spinning. In the absence of RF, the
effect of the heteronuclear dipolar coupling refocuses over a

rotation period; it behaves “inhomogeneously” in the termi-
nology of Maricq and Waugh.57 Hence the 1H dimension of
heteronuclear correlation experiments using fast MAS alone
for resolution are unperturbed by the 13C,1H dipolar cou-
plings. However, the nuclear spin Hamiltonian no longer be-
haves inhomogeneously in the presence of RF, even in the
case of a spin pair, and the 13C,1H dipolar coupling is no
longer so benign. But given the general complications of cal-
ibrating the 1H shift scale introduced by homonuclear de-
coupling, it is perhaps unsurprising that small perturbations
in the apparent chemical shift could go unnoticed. Similarly,
the relatively rapid dephasing of 13C magnetisation under
homonuclear decoupling could be dismissed as the result of
sub-optimal decoupling performance. As shown in Fig. 1,
only careful comparison of apparent 1H shifts reveals discrep-
ancies between values observed via short-range correlations
(where the local spin system contains a large 13C,1H cou-
pling) and long-range correlations (where the heteronuclear
couplings are much weaker). The size of the 13C,1H dipo-
lar coupling for a direct CH bond (about 25 kHz) in com-
parison with the RF nutation frequencies typically used for
homonuclear decoupling (about 100 kHz) means that its ef-
fects are of the order of 100 Hz and cannot be ignored. Other
NMR nuclei with lower magnetogyric ratios than 13C, such as
15N will be significantly less affected since the effects scale
as γ 3.

The interaction between heteronuclear dipolar couplings
and RF irradiation has been extensively discussed in the con-
text of heteronuclear decoupling.30, 35, 37 A variety of tech-
niques have been used to probe the effective Hamiltonians
under continuous wave RF decoupling in small systems sub-
ject to magic-angle spinning, for example, in pure dipolar
systems.33 In particular, the cross-term arising between the
heteronuclear dipolar coupling and the 1H chemical shift
anisotropy has been shown to be particularly important in de-
scribing decoupling performance.32, 37 Similarly, the presence
of strong heteronuclear dipolar couplings to third nuclei, such
as 19F, has been shown to degrade decoupling performance
in both static and spinning examples by effectively pushing
the irradiation off-resonance (static samples)58 or increasing
the effective CSA/dipolar cross-term in spinning samples.59

However, none of the previous work has described the third-
order dipolar cross-term discussed here, for the simple reason
that the correction term of Eq. (31) is zero for on-resonance
irradiation (θ = 0). Although applied here to homonuclear
decoupling, the analysis above essentially generalises pre-
vious work considering heteronuclear decoupling using on-
resonance RF irradiation.

Mitigating these effects would improve 1H resolution
and the reliability of 1H chemical shifts under homonuclear
decoupling. The efficiency of coherence transfer using J
couplings would also be significantly improved, cf. Fig. 8 (al-
though quantitative measurements of small J values will still
be slightly distorted by the effects described). In principle, it
is possible to use rotation-synchronised irradiation schemes60

that suppress the anisotropic components of the heteronuclear
couplings while retaining the isotropic component of the
heteronuclear J interaction.61 However, these sequences are
derived using average Hamiltonian theory on the assumption
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that the RF is the dominant term in the Hamiltonian. Prelim-
inary simulations using the “R-sequences” given in Ref. 61
and R elements optimised for broadband inversion,62 showed
no significant improvement in lineshape over conventional
FSLG decoupling that does not attempt to suppress the
anisotropic component of the heteronuclear couplings.

The ideal solution is to develop decoupling strategies that
are effective at high nutation frequencies; the distortions in
the 1H spectrum are minimal at nutation frequencies around
200 kHz, cf. Fig. 6. It is interesting to note in this context that
conventional strategies used to improve the performance of
homonuclear decoupling, such as frequency switching, may
work against the suppression of this heteronuclear dipolar
cross-term, cf. Fig. 3. Given the difficulty of analysing such
high-order terms via analytical approaches, numerical simu-
lation and direct on-spectrometer optimisation27, 63 will have
an important role to play in devising improved strategies. Ad-
ditional theoretical work is also required for the increasingly
significant regime in which the MAS rate exceeds the RF nu-
tation frequency,64 where the analysis described is no longer
applicable.
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