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ABSTRACT

The authors review, in a geophysical setting, several recent mathematical results on the forced–dissipative

hydrostatic primitive equations with a linear equation of state in the limit of strong rotation and stratification,

starting with existence and regularity (smoothness) results and describing their implications for the long-time

behavior of the solution. These results are used to show how the solution of the primitive equations in a pe-

riodic box comes close to geostrophic balance as t / ‘. Then a review follows of how geostrophic balance

could be extended to higher orders in the Rossby number, and it is shown that the solution of the primitive

equations also satisfies a higher-order balance up to an exponentially small error. Finally, the connection

between balance dynamics in the primitive equations and its global attractor, which is the only known in-

variant set (for a sufficiently general forcing), is discussed.

1. Introduction

Ever since computers became fast enough to integrate

the full primitive equations (PEs), efforts have been made

to filter fast oscillations (‘‘gravity waves’’) from the

solutions. Early works (e.g., Baer and Tribbia 1977;

Machenhauer 1977) sought to bound fast terms in the

time derivatives at time t 5 0, but it was found that no

matter how carefully this initialization was done, rapid

oscillations eventually developed (see Daley 1991, sec-

tion 6.7 for a review of the early efforts), although this

may take a long time even for a reasonably large model

(Errico 1984; see also Vautard and Legras 1986).

Leith (1980) and Lorenz (1980) introduced the concept

of a slow manifold devoid of fast oscillations, where slow

dynamics, if it exists, is hypothesized to take place. Soon

thereafter, however, Warn (1997)1 argued that the exis-

tence of an invariant manifold devoid of fast oscillations

is an exception rather than the rule, and that the proposed

constructions are likely to be asymptotic rather than

convergent. Using special structures of a simple model,

Lorenz (1986) did succeed in finding manifolds that are

invariant, but these are nearly discontinuous with re-

spect to the variables and still contain a small amount of

fast oscillations.

In light of this early evidence, Warn (1997), Warn and

Ménard (1986), and Lorenz (1986) proposed, in place of

a slow and invariant manifold, a thin layer (which they

termed a ‘‘fuzzy manifold’’) in which gravity wave ac-

tivity is minimal. It was understood, sometimes implic-

itly, that viscosity or gravity wave radiation would be

needed for the solution to arrive at, and stay within, this

layer. Numerical evidence from more realistic models

(e.g., Mohebalhojeh and McIntyre 2007, and references

therein) suggests that balance can be very accurate; that

is, this layer can be very thin, but never exact (at least for

nonsteady flows). The discovery by Vanneste and Yavneh

(2004) of an exact solution of the inviscid Boussinesq

primitive equation that supports spontaneous generation

of gravity waves effectively ruled out the existence of an

invariant slow manifold in general. The amplitude of

gravity waves thus generated scales as exp(2c/«), so they

cannot be captured by formal perturbative approaches,

but at the same time it explains why the latter often work

very well in practice.
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In this paper we review several recent mathematical

results on the primitive equations that prove rigorously

that, under some reasonable hypotheses, the solution will

enter an exponentially thin layer around a manifold on

which fast oscillations are exponentially weak. The main

mechanism is direct damping by viscosity, which also en-

sures the existence and smoothness of the solution over the

long times needed to achieve balance. The more physically

appealing mechanisms such as gravity wave radiation and

turbulent cascade pose an altogether different, and chal-

lenging, mathematical problem, so we shall relegate it to

the discussion (and future works).

Unless necessary for our discussion, we will be deliber-

ately informal when it comes to norms, function spaces,

constants, etc. Readers who are interested in the details

should consult the mathematical works cited below for

precise statements of the results.

2. Global bounds and attractors

We consider a fluid with a linear equation of state r 5

r0 2 aT 1 bs, where T is the temperature and s denotes

other factors such as salinity. If the diffusivities for T and s

are equal, which will be assumed henceforth for simplicity,

their effect in the dynamics can be represented simply by

the density r, or equivalently the buoyancy b. Now as-

suming that the fluid is stably stratified, r(x, y, z, t) 5 r0 2

zr1 1 r9(x, y, z, t), where r0 and r1 are positive constants,

we impose the Boussinesq approximation and hydro-

static balance.

For concreteness, we fix the length scale L as the hori-

zontal size of the periodic box and some arbitrary velocity

scale V. Let f be the Coriolis parameter and N 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gr1/r0

p
the Brunt–Väisälä frequency. In this article, we consider

the limit of strong rotation and stratification by taking

« d V/( fL) 5 V/(NH) small. (If one thought of V as the

typical velocity scale, then « would be the classical Rossby

and Froude numbers, but, as discussed below, these num-

bers may not give enough information on the dynamics,

even in some asymptotic limit.) With this scaling, the

nondimensional primitive equations read

›
t
v 1

1

«
[v?1 $p] 1 v � $v 1 w›

z
v 5 mD

3
v 1 S

v
,

›
t
b 1

1

«
w 1 v � $b 1 w›

z
b 5 mD

3
b 1 S

b
,

$ � v 1 ›
z
w 5 0, and

b 5 ›
z
p. (1)

Here v d (u, y) is the horizontal velocity and v? d
(2y, u) denotes the Coriolis term; b is the buoyancy,

D3 d ›xx 1 ›yy 1 ›zz: that is, both v and b are diffused

in all three directions. Mathematically, this is needed

for the regularity of the solution and can be regarded as

arising from the diffusions of momentum and heat. The

diffusion constants m are (scaled) inverse Reynolds num-

bers, which for simplicity of analysis have been set equal.

The sources of momentum Sv and of buoyancy Sb ensure

that the long-term dynamics is nontrivial. The regularity

and leading-order geostrophic decay results (sections 2

and 3) hold for time-dependent S, but the existence of the

global attractor and of higher-order balance (section 4)

require S to be time independent (or, with some extra

work, at most quasiperiodic).

For boundary conditions, we assume periodicity in the

horizontal directions and free-slip ›zv 5 0, w 5 0, and

b 5 0, at the bottom and top. Spectrally, this can be

implemented by doubling the domain in the z direction

and imposing appropriate symmetries (see, e.g., Bartello

1995). These boundary conditions are not needed for the

regularity of the solutions [note that Cao and Titi (2007),

Kobelkov (2007), and Kukavica and Ziane (2007) used

different boundary conditions], but they are essential for

the existence of our exponential slow manifold. With no

loss of generality, we also assume that y has zero integral

over the domain.

Taking the scalar product of (1a) with v and (1b) with

b and integrating by parts (i.e., using conservation of

kinetic energy and of buoyancy), the conservative terms

all cancel. Including the forcing and dissipative terms,

we find, upon using Poincaré and Cauchy–Schwarz in-

equalities, the differential inequality

d

dt

ð
f vj j2 1 b2gdx3 1 m

ð
f $

3
v

�� ��2 1 $
3
b

�� ��2g dx3 #
c

1

m

ð
f S

v

�� ��1 S
b

�� ��g dx3. (2)

Here and in what follows, ci are constants that depend on

the size of the domain but on no other parameter. If the

forcing S depends on time, the integral on the right-hand

side (rhs) of (2) and (4) below is to be replaced by its

maximum over t $ 0. In the absence of forcing and dis-

sipation, the first integral in (2) is clearly constant in time.

Let U d (v, b) and denote

E
0
(U)d

1

2

ð
f v(x)j j2 1 b(x)2gdx3. (3)

Integrating the differential inequality (2), we find that

E0(U(t)) is bounded uniformly for all time:
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E
0
(U(t)) # e�cmtE

0
(U(0))

1 (1� e�cmt)
c

2

m

ð
f S

v

�� ��2 1 S
b

�� ��2gdx3. (4)

Physically, this simply says that the influence of the initial

conditions decays in time and the solution is bounded

more and more by the forcing. It is clear that we can find

a time T0((S, U(0); m), where S 5 (Sv, Sb), such that

E
0
(U(t)) #

2c
2

m

ð
f Sv

�� ��2 1 S
b

�� ��2gdx3 e K
0
(S; m) (5)

for all t $ T0. Similarly to the 3D Navier–Stokes equa-

tions, however, the fact that E0 is bounded uniformly in

time is not enough to ensure that the solution remains

smooth (even if the initial conditions and forcing are) and

unique for all time. For existence and uniqueness for all

time, we also require that

E
1
(U) d

1

2

ð
f $

3
v(x)

�� ��2 1 $
3
b(x)

�� ��2g dx3 (6)

be finite for all finite time. (In fact, since v has zero av-

erage and b vanishes at the top and bottom, the fact that

E1 is bounded also implies the boundedness of E0.)

In the absence of mean stratification [i.e., without the

w/« term in (1b)], this problem was finally solved in 2005:

Cao and Titi (2007) and Kobelkov (2007) independently

proven that E1(U(t)) , ‘ for all t if it holds at t 5 0 (and if S

is suitably bounded).2 The key ingredient in their proofs is

hydrostatic balance:3 it has a regularizing effect on the so-

lution. Further refinement by Ju (2007) gives us a uniform

bound,4 E1(U(t)) # ~N1(S, U(0); m, «), valid for all t $ 0.

When the forcing S does not depend on time, following

works for the Navier–Stokes equations (see, e.g., Temam

1997), Ju proved that this implies the existence of the

global attractor for the primitive equations. For our pur-

poses here, the global attractor of a dynamical system

(which may be infinite dimensional) is a compact set A in

phase space with the following properties:

(A1) A is invariant5 and is the largest such set; and

(A2) A attracts all solutions and is the smallest such set.

As Lorenz (1963) already realized, A appears6 to be a

fractal set with a very complicated structure even for

simple systems, so the situation for partial differential

equations is presumably worse. Moreover, despite much

effort, no rigorous proof thatA is continuous with respect

to the parameters has been obtained. The presumed com-

plicated structure (in phase and parameter spaces) of A
makes it difficult to work with in our search for slow and/or

invariant manifold—at this point in the argument, A may

not be slow even at leading order. In other words, while an

invariant set does exist for the primitive equations, it is

probably neither a manifold nor slow.

Modifying the argument in Ju (2007), one can prove

that the uniform bound E1(U(t)) # ~N1(S, U(0); m, «)

also holds for the system (1). For the development in the

next section, however, we need a stronger (as yet un-

proved) bound that is independent of «,

E
1
(U(t)) # N

1
(S, U(0); m) for all t $ 0. (7)

In what follows, we shall assume that (7) holds. In analogy

with (4), one can then prove that for t sufficiently large,

E1(U(t)) is bounded independently of the initial condi-

tions. Furthermore, assuming that the forcing (but not

necessarily the initial conditions) is sufficiently smooth,

one can prove (Petcu and Wirosoetisno 2005) that all de-

rivatives of the solution are similarly bounded: with

E
n
(U)d

1

2

ð
f =n

3v(x)
�� ��2 1 =n

3b(x)
�� ��2g dx3, (8)

one has, for n 5 0, 1, 2, . . . ,

E
n
(U(t)) # K

n
(S, m) for all t $ T

n
(U(0), . . .). (9)

For our exponential estimate below, we need something

stronger, resembling analyticity in finite-dimensional

systems. Let vk(t) and bk(t) be the Fourier coefficients of

v and b, and for s . 0 define

Es
1 (U)d�

k
e2s kj j kj j2f vk

�� ��2 1 bk

�� ��2g. (10)

Now if E1
s is finite, vk and bk must decay exponentially as

jkj / ‘; such functions are said to have Gevrey regu-

larity. Assuming that the forcing S is Gevrey, one can

prove following Foias and Temam (1989) that the solu-

tion (y, b) will also be Gevrey (Petcu and Wirosoetisno

2005), in the sense that E1
s(U(t)) is bounded uniformly for

all t $ 0, and independently of the initial conditions

2 But their bound on E1(U(t)) , ‘ as t / ‘; all that is needed for

regularity is that E1(U(t)) does not blow up at finite t.
3 The nonhydrostatic case has been shown, for sufficiently strong

rotation, to have a unique solution for all time by Babin et al.

(2000).
4 We stress that such bounds, having to account for all possible

worst-case scenarios, usually do not give any meaningful estimate

on how large the solution actually is; unhelpfully, ‘‘estimate’’

means ‘‘bound’’ in the mathematical literature.
5 A subtler point: A is invariant both forward and backward in

time even if a general solution is defined only for forward time.

6 The complex structure of the Lorenz attractor was proved in

1999 by Tucker (2002).
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Es
1 (U(t)) # Ks

1 (S; m) (11)

for all t . Ts. Informally, this means that the solution

will become ‘‘analytic’’ after some time if the forcing is

analytic, even if the initial conditions are not.

In the next sections, we describe how these regularity

properties, far from being mere mathematical curiosities,

can be used to obtain results on the balance behavior of

the solution.

3. Decay to geostrophy

From the time of Charney (1948), the quasigeostrophic

system

›
t
q 1 v

q
� $q 5 mD

3
q 1 f

q
, (12)

where vq 5 =?D3
21q, has been used as an approximation

to the primitive equations, (1) or its variants. When « is

small and the initial conditions for the full primitive

equations (1) are at (or near) geostrophic balance, it has

been proven that, subject to some smoothness condi-

tions, the solution of (12) is a good approximation to the

solution of (1) over a time of order 1; see Bourgeois and

Beale (1994) and Babin et al. (2000) for the inviscid case

in the Boussinesq PE, and Temam and Wirosoetisno

(2007) for (1). Physically, this is not surprising, the more

interesting question being whether and how the solution

of (1) comes near geostrophic balance to begin with.

In Temam and Wirosoetisno (2010, hereafter TW10)

we used the regularity results (9) to prove that, for any

bounded initial conditions, the solution of the PE (1) will

eventually end up near geostrophic balance. More pre-

cisely, let q 5 =? � v 1 ›zb and c 5 D3
21q be the quasi-

geostrophic potential vorticity and streamfunction. We

then split (v, b) into its geostrophic part v0 5 =?c and b0 5

›zc, and ageostrophic part v« d v 2 v0 and b« d b 2 b0.

Assuming that the forcing is uniformly bounded,

ð
f =2S(t)
�� ��2 1 ›

t
S(t)

�� ��2gdx3 # K
f
, ‘ (13)

for all t $ 0, we have

ð
f v«(t)j j2 1 b«(t)j j2g dx3 # «K

g
(K

f
, m) (14)

for t $ Tg(v(0), b(0), S, . . .). In other words, after a suf-

ficiently long time, the ageostrophic energy of our so-

lution will be O(«), whatever its initial value is.7 We note

that the forcing may be time dependent as long as its time

derivative is bounded independently of «; physically, this

means that any ‘‘diurnal’’ forcing must be O(«) while

‘‘seasonal’’ forcing may be of order 1.

Since the attractor A attracts all solutions, our result

implies thatA must lie inside the set defined by (14); that

is, as « / 0, the invariant set of the PE becomes closer and

closer to being quasigeostrophic. Strictly speaking, this in

itself does not prove that our solution is ‘‘slow’’—it could

execute small fast oscillations about geostrophic balance.

Using higher-order results below, however, one can rule

out this scenario.

Now let us visit one issue we have so far avoided: the

Rossby number Rod ~V/( f ~L) where the Coriolis param-

eter f is given but the velocity gradient ~V/ ~L is now ‘‘typ-

ical’’ of the solution. On the right-hand side of (14), only «

explicitly contains f, while Kg(���) contains L2 bounds on

U, $U, =2U, and =3U. Thus, there is no simple ‘‘repre-

sentative’’ ~V/ ~L in terms of which we can write the bound

(14). Even worse, since Kg encodes long-term behavior of

these velocity gradients, this bound is not local in time

either. Not surprisingly, higher-order derivatives will fig-

ure in the higher-order balance in the next section. Now it

is true that (14) is rather ‘‘pessimistic’’ since it has to cover

all possible solutions of (1), and that in many situations

(exact solutions, numerical simulations, etc.) one may be

able to find a ~V/( f ~L) on which the observed imbalance

appears to scale. We believe, however, that since balance

is inherently nonlocal both in space and time, a general

construction as described here inevitably depends on

multiple derivatives of the solution, and probably does so

in a complicated way.

Three mechanisms were used to obtain (14). First, when

m . 0, all modes are damped, and those with large wave-

number jkj are more strongly so. This gives us the spatial

regularity that allows us to control the high-wavenumber

modes. Second, since we assumed in (13) that the forcing

is slow (or at least the fast part is weak), direct forcing on

modes having high frequencies is weak because of fre-

quency mismatch. As « / 0, the frequencies of the

ageostrophic modes grow larger so the direct forcing on

them grows weaker, while the damping remains the same.

Ignoring the nonlinear terms, these two mechanisms im-

ply that the ageostrophic energy would decay in time to an

O(«) quantity at which the forcing is balanced by damp-

ing. Third and finally, nonlinear interactions were handled

using the well-known fact that there is no fast–fast–slow

resonance in the PE, extended to account for the fact that

the PDE has triples that are arbitrarily close to resonances

(by proving that the strength of near-resonant nonlinear

interactions decay sufficiently rapidly in jkj). The rest of

the proof is necessary mathematical ‘‘details,’’ made pos-

sible by the recently obtained regularity results.

7 While correct for all «, the bound (14) is only useful when « is

sufficiently small that the rhs is less than the total energy.
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We note that the bound (9) on the total energy E0 was

used to obtain the bound (14) on the ageostrophic energy.

In other words, we cannot say if arbitrarily large solutions

will be nearly quasigeostrophic, but we do know that, for

large enough t, our solution will be bounded and close to

geostrophic balance. This point will arise again below

when we discuss higher-order balance.

Although the end result is qualitatively correct, one

may question if our mathematical analysis mirrors (what

is believed to be) the physical picture of geostrophic ad-

justment. Even with the reasonable assumption that m

represents some sort of ‘‘eddy’’ rather than ‘‘molecular’’

viscosity, one may object that relying completely on

viscous damping to obtain geostrophy is, at best, too heavy-

handed. We believe that at least two other physical pro-

cesses, whose rigorous mathematical analyses remain

challenging problems, may contribute to the attainment

of balance: gravity wave radiation and turbulent transfer.

For the first, following the classical picture in Gill (1982),

one would like to send fast gravity waves away (to the

‘‘mesosphere’’ where they can be damped without di-

rectly affecting the nearly geostrophic flow); for recent

progress on this front, see Zeitlin (2008) and references

therein. As for the second, progress is unlikely to come

before the conceptually simpler Navier–Stokes case [see

Foias et al. (2001) and Robinson (2007) for a review] is

resolved; we believe that much work remains to be done

for the latter.

4. Balance and slow manifolds

For higher-order extensions of geostrophic balance,

let us start with a dynamical system of the form

dp

dt
1

1

«
Lp 5 F( p, q),

dq

dt
5 G( p, q), (15)

where L is an invertible antisymmetric linear operator

(i.e., its eigenvalues are all imaginary).8 If we drop the

nonlinear rhs, q will remain constant while p will

undergo fast oscillations. We therefore call p the fast var-

iable and q the slow variable. The system may be infinite-

dimensional, in which case F and G will be nonlinear

operators, but for now it is simplest to think of (15) as

ODEs in Rm1n.

As noted in the last section, in the primitive equations

(1) the slow variable q is the geostrophic (v0, b0) and the

fast variable p is the ageostrophic (v«, b«); one can rewrite

the PEs (1) in fast and slow variables (see, e.g., Temam

and Wirosoetisno 2007), but this is not needed for what

follows. In terms of (15), geostrophic balance (v«, b«) 5

0 corresponds to the leading-order slow manifold fp 5 0g.
The result of the last section can then be restated as: for

t $ Tg, one has

kp(t)k2
# «C, (16)

for some suitable norm k�k when the system is infinite-

dimensional. Of course this will not be true for any F and

G, but the generic form (15) makes the following dis-

cussion cleaner.

Let us now see if this can be improved. More precisely,

we look for a F(q; «) such that

kp(t)�F(q(t); «)k2
# o(«), (17)

for some possibly large time t $ T
**

. One might want to

replace p 2 F(q) by some J( p, q), but since we are

looking for higher-order extension of geostrophic bal-

ance p 5 0, the implicit function theorem suggests that

the simpler form suffices for suitably bounded solutions.

We also require that, at the formal level, our construction

is sufficiently general, in that it does not rely on special

structures of the nonlinearity (although convergence

proofs for PDEs will depend on the nonlinearity). For a

survey of various approaches on slow manifolds, see

MacKay (2004).

Following Lorenz (1986), we look for a manifold of

the form

p 5 F(q; «) (18)

on which the solution remains if it is initially there. One

says that the fast variable p is ‘‘slaved’’ to the slow var-

iable q, its time derivative9 being given by

dp

dt
5 (DF)(q; «) � dq

dt
5 (DF)(q; «) �G(F(q; «), q),

(19)

which is completely slow since it does not contain terms

of order 1/« (here DF is the linearization of F). The

8 While a spectral gap (present in the PE) is helpful, it is not ab-

solutely necessary for our construction; that is, the eigenvalues of L

may accumulate at 0 (see, e.g., Gallagher and Saint-Raymond 2007).

9 We note that so far we have loosely identified gravity waves as

fast and vortical motion (with nonzero potential vorticity) as slow.

There are instances where this identification fails: D. J. Muraki

(2003, unpublished manuscript) gave an example of exponentially

small stationary gravity waves in the lee of a mountain. Such sta-

tionary gravity waves will not be captured by our construction. We

thank J. Vanneste for pointing this out.
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problem now is to find F, which must satisfy the func-

tional equation

(DF) �G(F, q) 1
1

«
LF� F(F, q) 5 0. (20)

Various methods may be used to construct F pertur-

batively in «. One can expand F as a power series in «

(see, e.g., Warn et al. 1995), but the mathematical analysis

is simpler if we use the following iterative scheme. Let

F0(q; «) 5 0 and, for n 5 1, . . . ,

1

«
LFn11(q; «) 5 F(Fn(q; «), q)

�DFn(q; «) �G(Fn(q; «), q). (21)

In general, this process is asymptotic rather than con-

vergent, as the repeated differentiations in DFn eventu-

ally cause a loss of analyticity.10 For ODEs with F and G

analytic, Cotter (2004) proved that it is possible to carry

out the iteration (21) to n
*

; 1/«, resulting in a F* d Fn*

on which the normal velocity is of order exp(2c/«) for q

in a compact set M. This shows that as long as q remains in

M, the manifold F*(q; «) is invariant up to an exponen-

tially small error. Note that this does not imply that the

solution stays near F* for exponentially long times.

It is known that in general this result cannot be im-

proved qualitatively: there are examples (see, e.g., Kruskal

and Segur 1991; Vanneste 2008) for which (20) has no

solution and (21) eventually diverges.

Formally, the iteration (21) gives us a series of manifolds

Fn, each slower and more invariant than the previous one,

but a more careful inspection tells us that for fixed q and

« the radius of analyticity of Fn shrinks to zero as n / ‘.

This is the reason why the exponentially slow manifold

F* is not defined for all values of q, but only for q 2 M:

once M is fixed, the iteration (21) only produces (strictly

speaking, is only guaranteed to produce) a smooth man-

ifold Fn for n # n
*
(«; M), with larger M generally re-

sulting in smaller n
*
. In the infinite-dimensional systems

for which this construction is possible, a condition even

stronger than compactness is needed.

Once F* is found, one can show that the dynamics on

it can be approximated, again up to an exponentially

small error, by the ‘‘exponential balance model’’

dq

dt
5 G(F*(q; «), q), (22)

in the sense that the solutions of (15) and of (22), with

p(0) 5 F*(q(0); «) for (15), remain exponentially close to

each other over a time scale of order 1. In general, this

cannot be improved since even if both solutions stay close

to the slow manifold (and q remains in M), which may not

be the case, they may still diverge exponentially.

Generalizing the above construction to PDEs is a diffi-

cult task and presently can be done only on a case-by-case

basis. For the primitive equations (1), this has been done

in TW10: Let q d =? � v 1 ›zb be the quasigeostrophic

potential vorticity and assume that the forcing S is suffi-

ciently smooth (Gevrey) and, unlike at leading order

above, time independent. Then for « sufficiently small

(depending on the forcing S, the viscosity m, s below and

the domain size):11

(i) one can find a manifold f(v«, b«) 5 F*(q; «)g that

satisfies the analog of (20) up to an exponentially

small error [i.e., instead of 0, the right-hand side of

(20) is of order exp(2s/«1/3)]; and

(ii) our solution will be exponentially close to this slow

manifold after some time; that is, for t $ T
*
,

ð
[v«(t), b«(t)]�F*[q(t); «]j j2 dx3

# C*(S; m, s) exp(�2s/«1/3). (23)

Here s . 0 is arbitrarily fixed, but C
*

depends on it.

As in the finite-dimensional case above, F* is not de-

fined for all q, but only for those in the compact set12

E1
s # K1

s. The bound (11) is therefore essential in order

to prove (23). Not explicitly indicated above is the de-

pendence of F* on S, m, and the domain size; in addition,

the time T
*

also depends on the initial conditions U(0).

One may ask why we used the quasigeostrophic poten-

tial vorticity q instead of Ertel’s potential vorticity qE 5

=? � v 1 ›zb 1 «[›zb(=? � v) 2 (›zv) � =?b], which is

materially conserved exactly in the inviscid case. Although

conceptually appealing, the nonlinearity in qE would make

the analysis much more difficult and the fact that q is

linear in (v, b) seems to outweigh the fact that it is not an

inviscid invariant.

The reader may have noticed that little has been said as

to whether F*, or its neighborhood, is slow. The bounds

on time derivatives near F* in the proof of (23) tell us that

any fast oscillation must be exponentially weak. There-

fore, instead of a slow manifold, we have an exponentially

thin set (neighborhood of a manifold)—the fuzzy mani-

fold of Lorenz and Warn—which is both exponentially

10 As pointed out in Warn (1997), this problem is absent for

steady solutions.

11 In TW10, the theorems were stated and proved for «1/4, but as

noted in remark 7 on p. 446, similar computation can be done for «1/3.
12 Note that F* is thus a manifold with boundary; this is to be

kept in mind in what follows.
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slow and forward invariant (meaning that solutions inside

this set will remain within it for all t $ 0, but in general not

for t , 0). We can in fact do better: the attractorA, which

is finite dimensional and therefore has zero ‘‘thickness,’’

must lie inside this set; A is invariant13 by definition and,

arguing as above, is slow. If what is known about the

Lorenz attractor and other finite-dimensional examples

is any guide,A is (in general) a complicated set that is not

a manifold (from a mathematical point of view, this is yet

to be proven for our system). It should be noted that A
may not be completely devoid of gravity waves: since

our system is forced–dissipative, a solution on A could

be continuously generating (exponentially weak) grav-

ity waves that are continuously damped away.

At the conceptual or physical level, the main ingredients

of the proof are the above asymptotic construction plus the

three mechanisms used in the last section. Mathematically,

there is the added difficulty of finding function spaces to (i)

carry out the iteration (21) and (ii) integrate (22). Inspired

by Matthies (2001) and ideas from inertial manifolds

discussed below, we used the Gevrey regularity of the

solution to split the solution spectrally into high- and low-

wavenumber components, with the threshold wavenumber

k scaling as «21/3. The high component is exponentially

small, and the low component is a system of ODEs whose

dimension depends on «. The power «1/3 in the exponential

arose from the fact that we need to bound the spatial de-

rivatives or, equivalently, the k-dependent constants in the

ODEs; we believe that, barring the discovery of some

magical cancellations, one cannot do much better than «1/3.

Brushing aside the different models and setups used,

another way to narrow the gap between the upper bound

of exp(2c9/«1/3) in TW10 and the lower bound of ap-

proximately exp(2c/«) of Vanneste and Yavneh (2004)

and Ólafsdóttir et al. (2008) is the equally formidable task

of finding another exact solution emitting stronger gravity

waves.

5. Discussion

In the mathematical literature one has the concepts of

inertial manifold and approximate inertial manifold;

while these concepts have similarities to the slow manifolds

of geophysical fluid dynamics, we feel it important also to

spell out their differences here. For (approximate) inertial

manifolds, one introduces a spectral truncation N and

slaves the high modes U. to the low modes U, as U. 5

Y(U,). Here ‘‘high’’ and ‘‘low’’ correspond to the eigen-

values of the Laplacian D, in contrast to F in (18), which

slaves the fast modes to the slow modes, where ‘‘fast’’ and

‘‘slow’’ correspond to the eigenvalues of the antisym-

metric operator L. For some systems such as the Cahn–

Hilliard and some reaction–diffusion systems, the slaving

relation Y has been proven to be exactly invariant under

the dynamics, but the question is still open for the 2D

Navier–Stokes equations and our primitive equations.

Notwithstanding the existence of (exact) inertial mani-

fold, a family of approximate inertial manifolds can be

used to approximate the global attractor A (Foias et al.

1988; Titi 1990; Debussche and Temam 1994).

While the proofs in TW10 only apply to the forced–

dissipative PE, one might speculate that a similar

mechanism may be responsible for the persistence of high-

order balance observed in numerical simulations (e.g.,

Mohebalhojeh and McIntyre 2007). It is conceivable

that, at least for sufficiently ‘‘nice’’ initial conditions, a tiny

amount of viscosity (e.g., in the numerical method) may

be sufficient to keep the solution balanced to a high

degree over interesting time scales. This was also sug-

gested by MacKay (2004), although no proof is offered.

As noted above, the method used in TW10 uses global

norms and no spatially local flow information is used. By

taking into account how gravity waves are emitted and

dissipated, stronger results could presumably be obtained.

Instead of the thin layer around a slow manifold, one would

have to consider such objects as the ‘‘quasi-manifold’’

used by Ford et al. (2000) in the small Froude number

limit [see Zeitlin (2008), McIntyre (2009), and references

therein for recent progress on this front]. Building the

analytical machinery to tackle this problem, however,

remains a challenge for mathematicians.
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