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Summary. Current ecotoxicological risk assessment for chemical substances is based on9

the assumption that tolerances of all species in a specified ecological community are a priori10

exchangeable for each new substance. We demonstrate non-exchangeability using a large11

database of tolerances to pesticides for fish species and extend the standard statistical model12

for species tolerances to allow for the presence of a single species which is considered non-13

exchangeable with others. We show how to estimate parameters and adjust decision rules14

used in ecotoxicological risk management. Effects of parameter uncertainty are explored and15

our model is compared to a previously published less tractable alternative. We conclude that16

the model and decision rules proposed are pragmatic compromises between conflicting needs17

for more realistic modelling and for straightforwardly applicable decision rules.18
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1. Introduction22

Much of modern statistics is concerned with models of increasing complexity, with goals23

of achieving greater realism and with addressing more complex inferences. However, some24

areas of risk management and decision making, such as ecotoxicological risk assessment25

(ERA), are resistant to such complexity and are unwilling to use rules which do not take26

simple intuitive forms. We examine ERA and show how a weakness in standard modelling27

can be addressed pragmatically, leading to adjustments to standard decision rules which28

should be comprehensible and usable by risk managers. Such procedures are more likely to29

be acceptable and therefore to be adopted.30

ERA is an important tool for restricting the potential ecological damage from chemical31

substances, such as general chemicals or pesticides, while still permitting industry and agri-32

culture to use them to their advantage. This has gained wider attention since the phased33

introduction of the new REACH regulation (EC, 2006) in 2007. It is required that manu-34

facturers and importers gather information on the properties of all their substances, which35

will allow their safe usage. One such safety issue is the impact of environmental exposure36

to the substance, controlled or otherwise, on ecological (multi-species) communities, e.g.37

freshwater species. We defer a detailed discussion of ERA, and the underlying statistical38

model accepted by regulators, to Section 2 and proceed here with a simplified description39

of the statistical problem.40
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A simple view of the statistical aspects of ERA is that each substance defines a popula-41

tion of tolerances, expressed as concentrations or doses, where the tolerance is an attribute of42

a species rather than of individuals. We wish to determine a concentration or dose, known43

here as the environmental level of concern (ELC) for a substance, below which adverse44

effects are unlikely to occur to the ecological community being considered. However, practi-45

calities and ethics mean that tolerances are measured for only a small number of species. A46

number of different approaches have been proposed for determining the ELC. The simplest47

is to divide the lowest measured tolerance by an assessment factor — an arbitrarily defined48

large fixed number which conservatively accounts for variability and uncertainty. This is49

motivated by the ‘precautionary principle’ which, in the context of ERA, Forbes and Calow50

(2002a) define as ‘applying controls to chemicals in advance of scientific understanding if51

there is a presumption that harm will be caused’. A more refined approach, which we52

follow, is to adopt a simple statistical model for the measured tolerances which are treated53

as a random sample from a population of species tolerances and to use the model to help54

determine the ELC.55

In practice, the species measured are not chosen randomly but the same procedure56

is followed, based effectively on the more realistic assumption, familiar to the Bayesian57

community, that all species tolerances for the new substance are a priori exchangeable.58

However, there is a body of informal evidence that the assumption of exchangeability is59

invalid, particularly in relation to pesticide exposure for one fish species, Oncorhynchus60

mykiss (rainbow trout). We explore a sequence of issues necessary to gaining a good view61

on how practically to allow for non-exchangeability in ERA: testing for non-exchangeability,62

tractable extension of standard modelling, estimation of hyper-parameters representing non-63

exchangeability and variance heterogeneity, risk measures and rules for determining the64

ELC, defensibility of a key assumption and alternative models for non-exchangeability.65

The crux of the issue is that simplicity may be better than complexity, even when66

simplicity results in some relative weaknesses. The take-up of more complex statistical67

methodology in ecotoxicology is slow. Moreover, the regulatory process is controlled indi-68

rectly by legislation and directly by the risk managers who are not research scientists but69

who are required to be able to defend the risk management process when it is scrutinised by70

commercial or consumer interests. Procedures which involve relatively small adaptations of71

familiar techniques are seen to be more transparent and to be more defensible. Thus our72

focus is on the detection of non-exchangeability and on tractable ways to adapt current ERA73

methodology to allow for non-exchangeability in a pragmatic and parsimonious manner.74

2. Ecotoxicological risk assessment75

The decision making process in ERA is based on so-called risk characterisation (ECHA,76

2008b) which involves: (i) estimation of the predicted exposure concentration (PEC) which77

might be found in an ecosystem, i.e. the wider interaction of the different ecological com-78

munities (assemblages of multi-species populations) and physical components (e.g. air and79

water) of an environment, for example a ditch; (ii) assessment of the degree to which the80

PEC may have adverse consequences on the communities.81

Under current EU regulatory technical guidance, this fundamental approach to con-82

ducting ERAs for general chemicals (ECHA, 2008b) and pesticides (EC, 2002), which we83

denote generically as substances from here onwards, is based on a tiered process. At the84

lowest tier, the assessment is intended to be simple and economical, yet at the same time85
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robustly conservative. A high tier risk assessment, which is typically much more expensive,86

is triggered by the failure of lower tiers and generally calls for a detailed joint-probabilistic87

assessment of (i) and (ii) specific to each exposure scenario and ecological assemblage; the88

resulting ERA dossier is subsequently assessed carefully by expert scientists. Since it is not89

logistically practical to assess the risk to every species within every ecosystem, lower and90

intermediate quantitative tiers focus on the consequences for individual species based on a91

small number of tolerance measurements; the calculations act as a proxy for all ecosystems.92

We focus on the intermediate tier of risk assessment. Here, the fundamental decision93

making criterion is: if the ELC > PEC, the risk is deemed acceptable, otherwise permission94

for use is prohibited pending a higher tier assessment. We shall limit our discussion to95

aquatic ERA in order to simplify the language, but the methods discussed are applicable in96

a wider context, for example to bird-only risk assessment. In this section we provide details97

on two features of this problem: assessment factors and species sensitivity distributions,98

and elaborate further on the motivation for this research, non-exchangeability.99

2.1. Assessment factors100

Exposure is expressed as a concentration of the substance in water, and toxicity of the101

substance to a specific species (or genus) type is described in terms of a ‘tolerance’ concen-102

tration which yields a specific effect. A common choice is the median effect concentration103

(EC50). This is the concentration which is statistically estimated to affect 50% of indi-104

viduals for a single-species population in some fixed time period (often 24–96 hours) with105

respect to some chosen relevant measurable ecological endpoint, such as mortality. Species106

tolerance values for a specific substance, collectively referred to as toxicity data, will usually107

be estimated, and subsequently treated as known, only for a very small number of distinct108

species.109

The standard first tier deterministic procedure determines the ELC by dividing the low-110

est measured tolerance by an ‘assessment factor’. This is a positive fixed number (usually111

a power of 10 such as 1000) defined in the appropriate regulatory technical guidance doc-112

ument and which is intended to allow for: (i) variation between and within species; (ii)113

differences between acute and chronic sensitivity; and (iii) extrapolation from laboratory114

(i.e. single species tolerance) to field (i.e. ecosystems) impact. However, little or no justifi-115

cation is provided for its magnitude, leading to ambiguity about the actual level of intended116

protection (Forbes and Calow, 2002a).117

2.2. Species sensitivity distributions118

Considerable attention has been given to probabilistic techniques in order to derive ELCs.119

The fundamental underlying concept is the ‘species sensitivity distribution’ (SSD; Posthuma120

et al. 2002), which, for a specific substance, is a distribution modelling the interspecies121

variability of tolerance in an ecological community, thus providing a way, separate from122

any use of assessment factors for other purposes, to formally relate the tolerances of tested123

species to those of other untested species. There is no consensus on how to define the124

ecological community; Aldenberg et al. (2002) call this ‘the Achilles heel of the SSDeology ’.125

A weakness of the concept is the failure of measured species to represent communities126

(Forbes and Calow, 2002b), yet more refined approaches are stifled by limitations on data.127

Specific models which do address this, for example by weightings (Grist et al., 2006), are too128

complex for regular application in the intermediate tier of risk assessment. Consequently,129
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Fig. 1. Estimated SSDs for fish exposed to the herbicide trifuralin. Each point represents an EC50

value for the labelled species. The grey arrow indicates an estimate of the HC5.

tolerance measurements for standard test species often act as proxies for many communities.130

It is the role of higher tier ERA to assess risk to (exposure site-) specific communities.131

Standard parametric models for the SSD, motivated by pragmatism, are the log-normal132

distribution (Wagner and Løkke, 1991) and the log-logistic distribution (Aldenberg and133

Slob, 1993). Considerable attention (Hickey et al. 2008, 2009 and references therein) has134

been given to the problem of quantitative assessment of uncertainty concerning the p-th135

percentile of the SSD (denoted the HCp). This is interpreted as the concentration which136

is hazardous to p% of species in an ecological community (Alexander and Fairbridge, 1999,137

p. 235), and for all intents and purposes defines the ELC subject to an additional SSD-138

specific assessment factor. A widely accepted protection goal is p = 5 (ECHA, 2008a). In139

Figure 1 we show an SSD estimated from tolerances for fish species exposed to the herbicide140

trifuralin.141

The distributional assumptions and standard approaches to quantifying risk lead to rules142

for determining the ELC which typically all have the same form: the geometric mean of the143

toxicity data divided by a ‘variable assessment factor’ which is determined by the standard144

deviation of the SSD and the level of uncertainty. Determining this variable assessment145

factor has been the focus of recent research (Aldenberg et al., 2002; Hickey et al., 2009).146

2.3. Non-exchangeability147

The concept of SSDs involves many assumptions, some of which are un-testable (Forbes148

and Calow, 2002b). However, with a few exceptions such as Duboudin et al. (2004), one149

notable implicit assumption in the modelling literature is that, prior to observing the toxicity150

data for a substance, the tolerances of all species present in the ecological community151

are exchangeable. A direct implication of this is that information about relative rankings152

of species’ tolerances in SSDs for other substances is uninformative about their relative153

rankings for the substance being assessed. An important statistical consequence of this is154
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that any measurements to be made for the substance may be considered to be a random155

sample from its uncertain SSD regardless of which species are to be measured.156

The informal body of evidence (e.g. Dwyer et al. 2005) which suggests O. mykiss , and157

possibly other species, are non-exchangeable with respect to other fish species is supported158

by a recent report of the European Food Safety Authority (EFSA, 2005). Despite this, O.159

mykiss is a standard test species (Rand, 1995, p. 78).160

The issue of (non)-exchangeability has largely been ignored in ERAs. Raimondo et al.161

(2008) issue caution about conducting ERAs based on the use of certain groups of species162

as proxies for all fish due to an apparent demonstration of higher tolerance. Stephan163

(2002) reports that one might purposefully populate estimated SSDs with recognisably less164

tolerant species to ensure conservatism, acknowledging that this ad hoc method violates165

SSD assumptions. Alternative methods such as bootstrapping described by Newman et al.166

(2000) may account for these effects, although it is not explicitly clear how. Grist et al.167

(2006) proposed the construction of community level SSDs as mixtures of distributions for168

taxonomic sub-groups, thereby acknowledging different tolerances of specific species groups.169

A natural response of a statistical modeller (including some reviewers of this article)170

would be to abandon exchangeability and use a crossed random effects model (Goldstein,171

1995, Chapter 8) incorporating both species and substance effects, although some adapta-172

tion of the standard model would be required to allow for observed heterogeneity in tolerance173

variability between substances. While that might succeed from a modelling perspective, it174

would substantially complicate the risk assessment procedure for several reasons. First, the175

incomplete factorial nature of any available database of measured tolerances would lead176

to highly confounded estimates of individual species and substance effects. Consequently,177

uncertainty attached to those estimates would be substantial and strongly correlated and178

would require careful propagation into decision rules. Secondly, it would not be possible to179

summarise the relevant information in an entire toxicity database through a small number180

of estimated parameters. The database would have to be made available to all participants181

in ERA and access to proprietary data would be an issue. Finally, the whole concept of182

the SSD and its use in ERA would require substantial reconsideration by ecotoxicologists.183

For example, unlike the current situation, making inferences about a percentile would re-184

quire knowledge of the currently unspecified number of species in the ecological community.185

Overall, persuading risk managers to accept any resulting procedures would be extremely186

difficult.187

3. Testing the assumption of exchangeability188

EFSA (2005) provided an informal demonstration that O. mykiss may be non-exchangeable,189

showing graphically that its tolerance tended to be less than the geometric mean tolerance190

of other species measured on the same pesticide. We provide a more formal approach.191

We investigate the null hypothesis that species tolerances are a priori exchangeable for192

each new substance, particularly pesticides. We propose two non-parametric tests, based193

on the ranks of an available toxicity database described below, motivated by the familiar194

sign and rank-sum tests for differences between two populations; the latter is more powerful195

but less robust as it is more sensitive to outcomes for individual substances. We chose a196

non-parametric approach to testing, despite the fact that the modelling approach in later197

sections is parametric, so that we could be sure that any test we used was actually providing198

evidence of non-exchangeability rather than evidence against parametric assumptions.199
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3.1. Data200

The data we use were kindly supplied by The Dutch National Institute for Public Health and201

the Environment (RIVM) and comprise 1903 EC50 tolerance measurements for 172 distinct202

fish species and 379 different substances, in this case pesticides. The data, previously used203

by EFSA (2005), are a subset of a research database developed by De Zwart (2002) which204

has been amalgamated from many sources.205

Henceforth, yij is the logarithm (base 10) of the tolerance of species j for substance i206

and the term SSD refers to the distribution of yij for fixed i. The number of species tested207

on substance i in the database is denoted ni, and mj is the number of substances on which208

species j has been tested. We also denote rij to be the rank of the measurement for species209

j amongst those tested on substance i, ties being assigned the average of the corresponding210

ranks. We use log-transformed tolerance for several reasons: (i) variability is stabilised211

(leading to additive errors); (ii) resulting distributions are often quite close to normal; and212

(iii) it is conventional in many areas of toxicology.213

The data are by no means a complete factorial design; the EC50 has only been measured214

for 1903 of the possible 65,188 substance-species pairs. There are 143 substances for which215

ni = 2, another 135 with ni ≤ 5, 64 with 6 ≤ ni ≤ 10, 30 with 11 ≤ ni ≤ 20 and 7 with ni216

ranging from 21 to 47. From the species viewpoint, there are 74 for which mj = 1, 22 with217

mj = 2, another 26 with mj ≤ 5, 19 with 6 ≤ mj ≤ 10, 13 with 11 ≤ mj ≤ 20, 11 with218

21 ≤ mj ≤ 50 and 7 individual species where mj is respectively 54, 59, 76, 153, 160, 166219

and 344. The last of these is O. mykiss which is the focus of much of this article.220

3.2. Sign test221

Under the null hypothesis of exchangeability, the tolerance of a species should be equally222

likely to appear above or below the median of the data for each substance. For each species,223

we can apply the binomial distribution to determine whether it occurs too often on one or224

other side. We ignore those substances where tolerance of the species equals the median;225

although this may reduce power, it leads to a simple exact conditional test.226

For a species, calculate m+ and m− which are the numbers of substances for which the227

species tolerance respectively exceeds or is exceeded by the median of measured tolerances228

for the substance. Under the null hypothesis, conditional on the number of trials m+ +m−,229

m+ has a binomial distribution with success probability 1

2
. We compute the two-tailed230

probability of obtaining a value as extreme as the observed m+.231

Results from applying this test to the RIVM database are displayed for the ten species232

with the smallest P -values in Table 1. One should be careful when interpreting the table.233

There is strong evidence against exchangeability but it does not guarantee that O. mykiss234

is the only such species presenting such a feature nor that it is the most, for want of a235

better word, biased species although it does identify it as a candidate. Clearly, there is236

more power to detect non-exchangeability when m is large but there are also species in237

the table which have not been tested very often. Note that, even if we apply the highly238

conservative Bonferroni correction to adjust the minimum P -value for multiple testing, the239

result is 172 × 3.9 × 10−15 = 6.7 × 10−13.240

3.3. Rank-sum test241

As in the standard situation of comparing two populations, the rank sum test proposed242

here should be more powerful than the sign test. For species j, define the test statistic to243
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Table 1. Species with the smallest P -values for the sign test. m is the number of substances
tested for the species, m+ and m− are the numbers of substances where the tolerance for
the species respectively exceeds or is exceeded by the median.

Species m m+ + m− m+ m+/(m+ + m−) P -value

Oncorhynchus mykiss 344 301 83 0·28 3.9×10−15

Carassius auratus 76 69 56 0·81 1.7×10−7

Cyprinus carprio 166 150 103 0·69 5.6×10−6

Heteropneustes fossilis 36 36 31 0·86 1.3×10−5

Oncorhynchus clarki 42 41 10 0·24 1.5×10−3

Pimephales promelas 160 147 93 0·63 1.6×10−3

Carassius carassius 25 23 19 0·83 2.6×10−3

Channa punctatus 17 16 14 0·88 4.2×10−3

Clarias batrachus 17 16 14 0·88 4.2×10−3

Salvelinus namaycush 35 33 8 0·24 4.6×10−3

Table 2. Species with the smallest P -values for the rank sum test.
Species m P -value Effect size

Oncorhynchus mykiss 344 8.6×10−12
−0·42

Heteropneustes fossilis 36 1.9×10−7 0·83
Carassius auratus 76 3.1×10−5 0·68
Salvelinus fontinalis 33 1.3×10−4

−0·58
Carassius carassius 25 1.6×10−4 0·85
Oncorhynchus clarki 42 3.6×10−4

−0·61
Clarias batrachus 17 4.0×10−4 0·91
Salvelinus namaycush 35 2.4×10−3

−0·59
Channa striata 10 3.9×10−3 0·73
Perca flavescens 29 6.5×10−3

−0·38

be the sum of rij over those substances for which the species has been tested. In effect,244

this gives more weight to substances for which more species have been tested. Conditional245

on ni, under the null hypothesis, each rij is uniformly distributed on the integers 1 to ni,246

provided there are no ties, and is independent for different values of i.247

The exact null sampling distribution of the test statistic is computationally intractable248

but is easily approximated, either by Monte Carlo or a central limit theorem based normal249

approximation using the theoretical mean and variance which are easily obtained under the250

null hypothesis in the absence of ties. The difficulty with the former is that many of our P -251

values are very small and would require very many Monte Carlo repetitions. However, this252

is likely to happen only when mj is large when we would expect the normal approximation253

to be more effective. As our activity is largely exploratory, we simply show P -values from254

the normal approximation in Table 2 for the RIVM database. Monte Carlo simulation255

with 10,000 repetitions did not give significantly different P -values; therefore, we did not256

attempt to adjust the normal approximation for ties. Also shown is an effect size for each257

species obtained by standardising each rij using the mean and standard deviation of the null258

discrete uniform distribution and computing the average value for each species. It provides259

some information about the average position of a species across a population of substances.260

Interpretation of Table 2 is subject to the same caveat as for Table 1. It should be seen261

as providing further evidence of the apparent non-exchangeability of O. mykiss tolerances.262

Many of the same species appear and for those species the effect sizes in Table 2 are263

consistent with the relative sizes of m+ and m− in Table 1. The appearance of other species264
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indicates that the two tests emphasise different aspects of departures from exchangeability.265

3.4. Focusing on O. mykiss266

It is quite plausible that the exchangeability assumption is untenable from the perspective267

of statistical modelling and that all species are in fact non-exchangeable; if one eliminates all268

the O. mykiss data from the database one still finds clear evidence of non-exchangeability269

for the remaining species, based on both tests.270

Instead we concentrate on the case of a single non-exchangeable species because our goal271

is tractable and useful decision rules rather than better statistical modelling. We consider272

the possibility of allowing for multiple non-exchangeable species in our final discussion. Our273

choice of O. mykiss as the single non-exchangeable species is justified by its special role in274

current regulation. It is a standard test species and therefore has greater potential than275

most species to influence risk assessment outcomes.276

Aldenberg et al. (2002) showed that the rate at which the ELC changes as we perturb a277

single log-tolerance is greater for those log-tolerances which are less than the sample mean278

than for those which are greater. Therefore, non-exchangeability of O. mykiss deserves279

more attention than, for example, non-exchangeability of Carassius auratus (the goldfish),280

which is shown by Tables 1 and 2 to have a tendency to be less sensitive on average.281

4. Modelling282

We now suppose that there is a single special species which has non-exchangeable tolerance283

values. We revise our notation so that y†
i denotes the log-tolerance of the special species284

for substance i and yij the log-tolerance for the other species.285

Under a priori exchangeability, the standard model is that yij are independently sam-286

pled from N(µi, σ
2
i ). We alter this only for the special species for which we specify287

y†
i ∼ N(µi − k, [φσi]

2
). Here k and φ are respectively location and scale adjustments288

and may be interpreted as specifying the predictive distribution for y† were µ and σ to289

be known for a substance. They apply to multiple substances as only by so doing can we290

give them identifiable meaning; to be precise, k and φ2 are respectively the averages across291

substances of µ − y† and (y† + k − µ)2/σ2. Of course, there may be scientific grounds to292

have groups of non-exchangeability parameters for different classes of chemical, for example293

by the mode of action, but no available data supports this at present.294

Our model for non-exchangeability derives from a different model proposed by EFSA295

(2005), for which the expected value of y†
i was µi − k′σi. In that model, scaling the offset296

k′ of the mean by the standard deviation means that the expected percentile of the special297

species in the SSD is unaffected by variability of the standard deviation between substances.298

The EFSA (2005) model may be intuitively more appealing but we are not aware of any299

argument of principle favouring it. Moreover, unlike that model, our model leads later to300

tractable decision rules which are a key goal in this work. In Section 8, we assess whether301

the data favour one model over the other.302

Obtaining values (or distributions) for k and φ requires the use at some stage of a303

database such as that provided by RIVM or of expert judgements. There is not uniform304

agreement about the role of such databases in risk assessment. It is clear that their use is305

acceptable for some purposes, such as the detection of non-exchangeability and therefore306

for estimation of k and φ, but some consider other uses to be unacceptable, for example307

construction of prior distributions for µ and σ by considering them to be drawn, along with308
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µi and σi, from hyper-populations of means and standard deviations. The lack of agreement309

in this area means that we consider two behavioural models in what follows:310

M1 µ and σ unknown and varying between substances; database not used to provide prior311

information about µ and σ. See, for example, Aldenberg and Jaworska (2000).312

M2 µ and σ unknown and varying between substances; σ assumed sampled from an inverse-313

gamma distribution with hyper-parameters α (shape) and β (rate); database for rel-314

evant other substances available to provide information about α and β; database not315

used to provide prior information about µ. See EFSA (2005).316

M1 and M2 are not the only proposals in the literature. Aldenberg and Luttik (2002)317

suppose that µ varies but that σ does not and suggest determining a precise value for σ from318

expert opinion or a suitable database. EFSA (2005) consider consequences of uncertainty319

in estimating σ. However, there seems to be little justification for the assumption that σ320

does not vary, even for narrow definitions of chemical classes.321

Under M1, each risk assessment is independent of others (apart from the sharing of ev-322

idence concerning the non-exchangeability parameters). This satisfies those who are wary323

of using evidence from previous assessments to form prior judgements. However, the small324

amount of data available for a typical risk assessment means that there will often be consid-325

erable benefit in exploiting previous experience to stabilise the estimate of σ for the current326

substance by incorporating the evidence about variation in values of σ from a database. No327

hyper-population of means is proposed in M2 as we have found the user-community to be328

resistant to the idea. Moreover, there is less to be gained than for the standard deviations329

as the RIVM database shows that variation in µ is high relative to typical values of σ, so330

that any proper prior for µ would typically be diffuse relative to the likelihood.331

5. Hyper-parameter estimation332

There are two groups of hyper-parameters: the non-exchangeability parameters k and φ333

which appear in both M1 and M2 and the heterogeneity parameters α and β which apply334

only to M2. In both cases, we use θ as a short-hand for the hyper-parameters.335

We distinguish two groups of substances for which data may exist although they may336

not necessarily be publicly accessible. G1 is the group of substances, deemed to be relevant337

to the new substance, for which the tolerance of the special species has been measured.338

Under M2, we also need the collection G2 of substances considered relevant for estimating339

α and β. Note that under M2, we have to simultaneously estimate the non-exchangeability340

and heterogeneity parameters as they are linked through the likelihood. We shall assume341

that G1 is a subset of G2; although possible, it seems unlikely that substances would be con-342

sidered relevant for estimation of non-exchangeability parameters but not for heterogeneity343

parameters. This assumption also simplifies the specification of prior distributions. In our344

example, as in EFSA (2005), we take G2 to be the complete collection of substances in the345

RIVM fish database and G1 to be the subset of all those where tolerances were measured for346

O. mykiss and at least 2 other species. This restriction, which was applied for direct com-347

parability with a frequentist estimation approach in EFSA (2005), is not strictly necessary348

but provides more reliable information about the parameters.349

In principle, under either behavioural model, one might elicit proper prior distributions350

for the hyper-parameters from a risk manager but this is unlikely in practice as aside from351

lack of time and expertise, it could constitute a conflict of interest and the risk manager352
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Table 3. MAP estimates for hyper-parameters k, φ, α and β with pos-
terior standard deviations in parentheses.

k φ α β

M1 0.195 (0.019) 0.702 (0.073) — —
M2 0.205 (0.030) 0.656 (0.066) 1.52 (0.24) 0.315 (0.076)

would potentially be exposed to pressure from vested interests. In any case, we expect there353

to be significant amounts of data in both G1 and G2, and so we do not expect inferences to354

be very sensitive to the choice of prior distributions for the hyper-parameters. Under M1,355

we use independent improper prior distributions π(k, φ) ∝ 1 and π(µi, σ
2
i ) ∝ σ−2

i for i ∈ G1.356

The latter is seen by many as the practical version of the Jeffreys prior and has been used357

in other Bayesian SSD literature, e.g. Aldenberg and Jaworska (2000) and EFSA (2005),358

where, as a consequence, frequentist and Bayesian risk calculations coincided. Under M2,359

the distribution of σi is determined by α and β and we again take p(µi) ∝ 1. For the360

heterogeneity hyper-parameters, we take p(α, β) ∝ 1 for α > 0, β > 0.361

With these prior specifications, substances are conditionally independent given the362

hyper-parameters and so their joint posterior distribution is a sufficient summary of the363

database when considering a new substance. This sufficiency means that the posterior dis-364

tributions can be published and used without requiring open access to the databases from365

which they are derived (as was the case in EFSA 2005). In principle the posterior distri-366

butions should be updated whenever more data becomes available, for example every time367

a new substance is assessed. In practice, however, the same distributions will be used for368

many risk assessments for several reasons: (i) unavailability of raw data for re-estimation on369

the fly; (ii) infeasibility of sharing all data to ensure that everyone makes the same updates;370

(iii) lack of resources to re-appraise values.371

Under both M1 and M2, the prior distribution and likelihood are now fully defined372

but we need to integrate out the nuisance parameters {µi, σ
2
i } to obtain the un-normalised373

marginal posterior density of the hyper-parameters. The posterior densities are briefly374

derived in Appendix A.1 and may be maximised numerically to obtain MAP (maximum a375

posteriori) estimates and the corresponding Hessian matrix.376

Estimates and approximate posterior standard deviations are shown in Table 3. Values377

of k and φ are similar for M1 and M2, suggesting that information about non-exchangeability378

is largely uninfluenced by the introduction of a model for variance heterogeneity. Uncer-379

tainties attached to the estimates do not seem large; consequences for determination of380

ELC values are considered more formally in Section 7. The positive estimate of the offset381

hyper-parameter k suggests that O. mykiss tends to be a sensitive species having tolerance382

below the median of the SSD. Interpretation of φ is more difficult; however, φ < 1 suggests383

that the SSD percentile for O. mykiss is less variable than for other species and leads to384

increased weight for the corrected tolerance in estimating the mean of the SSD. Overall,385

the estimates are consistent with previous informal suggestions that O. mykiss tends to be386

sensitive.387

Our somewhat arbitrary choice of prior distribution for the hyper-parameters led us to388

investigate sensitivity to that choice by trying other prior distributions. For k we tried389

p(k) ∝ 1/(0.01+k2) which strongly favours values of k near 0 and p(k) ∝ (0.01+k2) which390

strongly favours large values of k. Similarly, for the other components of θ, which are all391

positive, we tried p(θi) ∝ θi and p(θi) ∝ 1/θi. There were 4 alternative prior distributions392

for M1 and 16 for M2. In all cases the MAP estimates differed from those in Table 3 by393
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less than half the posterior standard deviation shown.394

6. Decision rules395

For determining the ELC in the context of species exchangeability, a number of decision396

rules, related to estimation of the HCp for a specified value p of interest, have been pro-397

posed in the literature. We consider two existing rules and their generalisation to non-398

exchangeability under both M1 and M2. Generally, risk is measured/controlled via the399

‘potentially affected fraction’ (PAF), the proportion of species whose tolerance lies below400

the ELC, with some intention to keep the PAF near or below p%. The choice of p is seen to401

be a policy decision for the risk manager; the standard requirement is 5. However, the jus-402

tification for this choice comes largely from some validation studies carried out afterwards403

to examine the consequences. A high PAF corresponds to a high risk for the assemblage of404

species.405

6.1. Risk approaches for determination406

We denote the proposed log10(ELC) for a new substance by δ. In all the cases we consider,407

it can be shown (see Appendix A.2) that δ is of the form µ̂−κpσ̂. Here, µ̂ and σ̂ are natural408

estimates of µ and σ from the data for the new substance while κp does not depend on409

these data, although it does always depend on n and p and the risk measure. κp might be410

described as a standardised assessment shift so that 10κpσ̂ is the variable assessment factor411

referred to in Section 2.2. Risk managers should find the rules appealing and transparent412

for reasons discussed later.413

In all cases, µ̂ is the standard weighted least squares unbiased estimate of µ, obtained414

by correcting the measurement for the special species to remove the bias k and increasing415

its weight to allow for the reduction in variability implied by φ. Under M1, σ̂2 is sim-416

ply the corresponding weighted least squares unbiased estimate of σ2 whereas under M2417

it is a weighted combination of that estimate and the prior mean for σ2 implied by α and418

β. Consequently, on the original concentration scale the value determined for the ELC419

is a geometric mean of the adjusted toxicity data divided by the aforementioned variable420

assessment factor. The difference between M1 and M2 is that the latter stabilises the vari-421

ability estimate σ̂ by borrowing strength from the pool G2 of existing data; a corresponding422

adjustment is required to the value of κp which then depends on α.423

Simple rules based on exchangeable versions of M1 were proposed by Aldenberg and424

Jaworska (2000) [AJ] and EFSA (2005) [EFSA]. The latter also considered the [EFSA] rule425

in the context of exchangeable M2; we determine the [AJ] version here for completeness (see426

Appendix A.2 for details). In what follows, note that PAF(δ) = Φ
(

(δ − µ)/σ
)

, where Φ(·)427

is the cumulative distribution function of the standard normal distribution and we write428

PAF(δ) to emphasise dependence on the decision rule.429

The [AJ] approach is to demand high probability that PAF(δ) is less than p%. The risk430

manager specifies p, often taken to be 5 in practice, and a credibility requirement γ; the431

decision rule is to find δ so that γ is the probability that PAF(δ) is less than p/100. Noting432

that PAF(δ) ≤ p/100 if and only if δ ≤ log10(HCp), δ satisfies433

P(δ ≤ µ − Kpσ) = γ (1)

where Kp is the (100−p)-th percentile of the standard normal distribution; the resulting κp434

depends on γ. The probability in (1) is computed with respect to the posterior distribution435
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of µ and σ for the new substance. It has been suggested by some that γ = 0.95 may be436

an appropriate choice (e.g. Wagner and Løkke 1991). However, current EU guidance (e.g.437

ECHA 2008a) requires results for γ = 0.50 to be presented along with those for γ = 0.25438

and γ = 0.75.439

The [EFSA] approach is to try to control PAF(δ) to be near some suitable value p%440

which the risk manager specifies. Then δ is the value for which the expected PAF is p/100441

and so satisfies442

E
(

Φ
(

(δ − µ)/σ
)

)

= p/100 (2)

where again the expectation is with respect to the posterior distribution of µ and σ. The443

value of p will generally need to be smaller, for example p = 1, for the [EFSA] approach in444

order to achieve similar protection to that obtained by [AJ] with p = 5 when γ = 0.95.445

To obtain the simple form δ = µ̂ − κpσ̂, we have to assume that the hyper-parameters446

θ are known/specified precisely so that we actually compute the probability in (1) and the447

expectation in (2) using the posterior distribution of µ and σ conditional on θ. Consequences448

of uncertainty about θ are addressed in Section 7.449

A number of features of these rules make them sensible and easy to apply: (i) each450

rule is easily computed and tables for κp can be produced for those who lack the necessary451

expertise or software (cf. Aldenberg and Jaworska 2000, Table 1, p. 5); (ii) each rule has452

the same form as in the exchangeable species case; (iii) the [AJ] rule is a Bayes rule under453

generalised absolute loss (Hickey et al., 2009); and (iv) the rules hold from the frequentist454

perspective in the sense that (1) and (2) remain valid if the calculations are with respect455

to the sampling distribution of the tolerance data for the substance, and also the sampling456

distribution of σ in the case of M2, instead of the posterior distribution of µ and σ.457

6.2. Consequences of non-exchangeability458

Application of revised decision rules will ultimately yield different consequences, but it is not459

immediately apparent to what degree. Figure 2 compares the values of δ obtained for each460

revised rule to those calculated under exchangeability for each substance in the G1 database;461

results are shown for p = 5 for each substance i in G1 for [AJ] (γ = 0.50, 0.95) and [EFSA];462

we plot δ calculated under exchangeability versus the difference (to assist interpretation)463

between the values of δ obtained under non-exchangeability and exchangeability.464

The horizontal dashed lines indicate where the decision rules are equal; points above the465

line indicate substances for which the revised ELC is higher than the original, i.e. where it is466

ecologically less conservative. An important observation for regulators is that the new rules,467

although correcting for a single sensitive species, do not necessarily lead to higher ELCs. In468

fact, the δ values based on non-exchangeability are higher than their exchangeable model469

versions for between 60% and 68% of assessed substances (Figure 2) for [AJ] (γ = 0.50) and470

[EFSA], and between 52% and 56% for [AJ] (γ = 0.95). This is due partly to the fact that471

although the offset hyper-parameter k is positive, the variance estimate also changes leading472

sometimes to higher and sometimes to lower values of δ. The largest differences occur473

for substances where the non-exchangeable decision rule is lower than the corresponding474

exchangeable version and under M1 this feature is more pronounced for [AJ] (γ = 0.95) as475

the change of model has more effect in the tails of the posterior distribution for the HC5476

There is some double counting of data here since the estimated hyper-parameters θ477

derive from the same database used to explore the consequences. However, the estimates478

are based on many substances and would change relatively little on omitting one. Moreover,479
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Fig. 2. Consequences of non-exchangeability for p = 5 for all substances in G1: δ derived
under exchangeability versus the difference between δs derived under non-exchangeability and
exchangeability

the estimates are those which will be used in the decision rules we propose for risk managers480

and it is the consequences of the change to those rules which we wish to evaluate.481

7. Consequences of ignoring hyper-parameter uncertainty482

In Section 6, we assumed that hyper-parameter uncertainty could safely be ignored, resulting483

in a simple form for the rules for determining the ELC. Here we seek to show that the rules484

derived still perform well even if we allow for hyper-parameter uncertainty. The simple form485

arose from solving (1) and (2) making the approximation of using the posterior distribution486

of µ and σ conditional on taking the hyper-parameters θ fixed at their MAP estimates in487

place of the marginal posterior distribution of µ and σ. Approximate numerical solution is488

possible when θ is uncertain but it is not easy to ensure reliability or accuracy.489

However, the left-hand sides of (1) and (2) can each be seen as measuring performance490

of a chosen value of δ and the right-hand sides as specifying intended performance. For [AJ],491

the performance measure is the probability that the PAF is less than p; for [EFSA], it is492

the expected PAF. Consequences of ignoring hyper-parameter uncertainty for each decision493

rule may be assessed by taking δ fixed at the value used for each substance in producing the494

corresponding panel in Figure 2 and accurately computing the left-hand-side of (1) for [AJ]495

or (2) for [EFSA] in order to obtain attained performance. The result may be compared to496

the intended value: γ for [AJ] or p for [EFSA]. If an attained value is greater (or lower) than497

intended, ignoring hyper-parameter uncertainty has led to higher (or lower) than intended498

protection of the ecological community.499

Computation of attained performance for each substance is simple once one has a large500

random sample of values from the posterior distribution of θ; one calculates the performance501

of δ for each value of θ and then averages. We took a Markov chain Monte Carlo sample502

of 10,000 values from the posterior density of the hyper-parameters under each behavioural503
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model, using a Metropolis random walk sampler with a normal proposal distribution based504

on the Laplace approximation to the posterior, which can be performed using regular sta-505

tistical software; see for example Albert (2007, p. 110).506

Figure 3 shows attained performance for each substance in G1 for both behavioural507

models with p = 5. The same three ELC rules are considered as in Figure 2: [AJ] (γ = 0.95),508

[AJ] (γ = 0.50) and [EFSA]. In each plot the intended performance level is emphasised by509

a dashed line. In interpreting differences between intended and attained performance, we510

must recognise that this is intermediate tier ERA, that the chosen value of p = 5 has no511

direct ecological meaning and that the actual PAF will always be highly variable between512

substances due to the relatively small numbers of species tested. With the exception of one513

substance, attained performance under M1 does not differ from intended performance in514

any practical sense; for example the difference between 50% credibility and 48% credibility515

is negligible. Even in the exceptional case, the difference may well be acceptable to risk516

managers. Under M2, there are somewhat larger typical differences between attained and517

intended performance but these are still tolerable in our opinion. In all cases, it appears518

that slight under-protection occurs more often than over-protection.519

Earlier, we examined the sensitivity of hyper-parameter estimates to our choice of prior520

distribution for the hyper-parameters as we cannot be sure that our chosen prior is the best521

representation of prior knowledge. We also evaluated the attained performance for each522

substance of each δ shown in Figure 2 using the posterior distribution for µ and σ obtained523

using each of the alternative priors described in Section 5. Naturally, there were some524

differences between attained and intended performance. Nevertheless, for the majority of525

the alternative priors, the differences were small, especially under M1, and even in the worst526

case the differences were less than 20% of intended p for [EFSA] and of intended 1 − γ for527

[AJ]. In effect, the rules were still attaining the right magnitude of performance despite the528



Species Non-Exchangeability 15

Table 4. MAP estimates under D1 for hyper-parameters k′, φ′, α′ and
β′ with posterior standard deviations in parentheses.

k′ φ′ α′ β′

M1 0.458 (0.060) 0.642 (0.076) — —
M2 0.452 (0.056) 0.604 (0.065) 1.52 (0.22) 0.315 (0.069)

fact that the original prior was being used for determining δ and the alternative priors for529

computing attained performance.530

8. Comparison of models for non-exchangeability531

In Section 4, we introduced our model for non-exchangeability and noted its tractability532

compared to the model proposed in EFSA (2005). We now consider the evidence in favour533

of one over the other from other perspectives. We denote by D1 the model introduced by534

EFSA (2005), with non-exchangeability hyper-parameters k′ and φ′ and by D2 our model535

with parameters k and φ. Details of D1 and D2 were provided in Section 4. There we did536

not distinguish φ from φ′; however, although apparently the same, φ′ and φ have different537

meanings due to the difference between D1 and D2 in the treatment of the mean for the538

special species. Table 4 gives estimates under D1 corresponding to those under D2 given539

earlier in Table 3. In principle, under M2, estimates of α and β differ for D1 and D2 due540

to the different treatment of non-exchangeability; however the tabulated values coincide.541

Suppose we take a substance out of the database G1 and consider it to be the substance542

under current assessment. We compare the two non-nested non-exchangeability models543

D1 and D2 for each substance using a Bayes factor (Bernardo and Smith, 1994; Kass and544

Raftery, 1995) to measure the evidence in favour of D1 against D2. The Bayes factor545

for a substance is the ratio of the marginalised likelihoods under D1 and D2 where each546

marginalised likelihood is the expectation, calculated using the prior distribution of µ and547

σ, of the conventional likelihood for the data for the substance. Evidence provided by a548

Bayes factor in favour of D1 or D2 may be interpreted using a descriptive categorisation549

such as that proposed by Kass and Raftery (1995, Section 3.2) which provides an intuitive550

and practical approach to model comparison for applied Bayesian statistics. Note that there551

are some technical issues when applying Bayes factors with improper prior distributions and552

we have to treat the hyper-parameters as fixed; details are given in Appendix A.3 along553

with the formula for the Bayes factor.554

Figure 4 shows the Bayes factors for individual substances separately for M1 and M2.555

Under M2, all lie in a range deemed by Kass and Raftery (1995) not to indicate a significant556

advantage for either model. The same is true for most substances under M1 although there557

are a few in each direction strongly favouring D1 or D2. However, 131 of 220 Bayes factors558

are positive under M1 and 141 under M2 which may suggest some overall preference for D1.559

A simple summary of the overall evidence for D1 against D2 is the overall Bayes factor,560

obtained as the product of the per-substance Bayes factors since substances are conditionally561

independent when θ is fixed. Under M1, this is 2.6 which Kass and Raftery (1995) describe562

as ‘not worth a bare mention’ whereas under M2 it is 426 which they consider ‘decisive’563

in favour of D1. However, it is unclear how much ignoring hyper-parameter uncertainty564

undermines the calculation, especially given that the estimates are based on the same data.565

Unfortunately, there is little expert knowledge on which to base proper prior distributions566

and none which would prevent the Bayes factor from depending arbitrarily on the relative567
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Fig. 4. Bayes factors for D1 versus D2 for substances in G1. Left: M1; Right: M2.

prior density of k and k′. We are left with the facts that: (i) D2 leads to tractable risk568

calculations, (ii) individual substances do not distinguish D1 from D2, (iii) the overall569

picture slightly favours D1 over D2 but only if the same form of non-exchangeability is570

assumed to hold throughout. D2 is our pragmatic choice.571

9. Discussion572

We have provided evidence to support a previous informal view that an important test573

species, O. mykiss (the rainbow trout), fails to satisfy the key exchangeability assumption574

in the SSD approach to ecotoxicology. We then showed how to adapt current modelling and575

procedures to allow for a single species with non-exchangeable tolerance, while retaining576

two key features: simplicity of decision rules and no need to share databases. However, the577

evidence clearly suggests that more than one species may be non-exchangeable.578

In Section 2.3, we explained the difficulties in using the apparently natural approach of a579

crossed random effects model. In short, it would not lead to simple decision rules, it would580

require more sharing of data and would require careful reconsideration of the SSD concept,581

thereby violating our goal to seek procedures which would be sufficiently transparent to allow582

adoption by risk managers. We do not know if it would lead to better decision rule perfor-583

mance. Our solution has the merits that it addresses the problem of non-exchangeability584

for the standard test species, that it is a relatively straightforward adaptation of current585

methodology and that it seems to be reasonably well supported by data. Crucially, it is586

simple enough that risk managers need not radically alter their approach.587

Mathematically, and to some extent computationally, it is straightforward to extend the588

model and decision rules in this paper to allow for multiple special species. However, this589

introduces two fundamental problems. The first is to decide which and how many species590

should be treated as having non-exchangeable tolerances. It is likely that disagreement on591

this issue would make it difficult to establish standard decision rules. The second, and more592

serious, conceptual problem is that the SSD is supposed to be a surrogate for ecosystems.593

In our current proposal, the SSD does not describe the special species and protection is still594

achieved purely in terms of the SSD although the special species contributes information.595
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In removing more species from the SSD, we would eventually have to consider how to use596

the SSD together with the special species’ tolerances in order to achieve protection goals.597

An alternative would be to model SSDs as mixtures (Grist et al., 2006; Hickey et598

al., 2008) where species in the ecological community are grouped taxonomically. While599

it wouldn’t account fully for species non-exchangeability, it might be appropriate where600

sensitive groups are known to be measured. It has appeal for complex and diverse com-601

munities, but would need additional knowledge of taxonomic weightings, more data, and602

specialist statistical software for working with mixture distributions. Consequently, such603

models are unlikely to become commonplace tools for intermediate tier ERA.604

Current ERA procedures generally use only the data for the substance under consider-605

ation. Decision rules based on hyper-parameters estimated from multi-substance databases606

may not immediately appeal to the user-community but at least do not require general607

sharing of databases. However, a conventional Bayesian approach would involve updating608

hyper-parameters as more data become available. That would require someone to augment609

databases and re-compute hyper-parameter estimates on an on-going basis. In our pro-610

posal, the hyper-parameters would be static and used over a significant period of time for611

many risk assessments. This is not intended to improve on the standard paradigm but is612

simply pragmatic. It removes the requirement for those actively involved in ERA to use613

sophisticated statistical software and allows users instead to use spreadsheet software and614

publishable look-up tables, since more complex analysis would only be performed occasion-615

ally by statisticians. There remains the issue of how and when databases would be updated616

but that is a problem for the ERA community and not for statisticians.617
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A. Appendix701

A.1. Parameter estimation702

Here we give details of the posterior distributions for the hyper-parameters under M1 and703

M2. In the interest of clarity, we extend the notation of Section 4 by writing τi = 1/σ2
i and704

we note that the transformed prior density is p(τi) ∝ 1/τi for τi > 0. We also denote the705

database of toxicity data as Y. The collection of ni − 1 species tested with substance i, but706

not including the special species, is denoted J∗
i .707

Under D2, for both M1 and M2, define

µ̂i =
φ−2(y†

i + k) +
∑

j∈J∗ yij

φ−2 + ni − 1
; and, (3)

σ̂2
i =

2β + (ni − 1)σ̃2
i

2α + (ni − 1)
; where (4)

σ̃2
i =

1

ni − 1

[

φ−2(y†
i + k − µ̂i)

2 +
∑

j∈J∗

(yij − µ̂i)
2

]

, (5)
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where, for M1, α = β = 0. Note the implicit dependence on hyper-parameters and also708

that µ̂i and σ̃2
i are the usual weighted least squares unbiased estimators of µi and σ2

i . For709

M2, σ̂2
i is also unbiased from the frequentist viewpoint if one incorporates drawing σ2

i from710

an inverse-gamma population of variances into the sampling scheme.711

Under D2 and M1, writing µG1
and τG1

as shorthand for the vectors of the µi and τi for
i ∈ G1 respectively, and vt for the number of substances in Gt (t = 1, 2), we easily obtain
the likelihood function for all the unknown parameters:

L(k, φ, µG1
, τG1

) ∝
∏

i∈G1

φ−1τ
ni/2

i exp

{

− 1

2
τi

[

φ−2(y†
i − µi + k)2 +

∑

j∈J∗

i

(yij − µi)
2

]}

= φ−v1

∏

i∈G1

τ
ni/2

i exp
{

− 1

2
τi

[

(φ−2 + ni − 1)(µ̂i − µi)
2 + (ni − 1)σ̂2

i

]}

Multiplying by the joint prior density defined in Section 5 for k, φ, µi and τi (i ∈ G1)712

yields the un-normalised posterior distribution, and after integration with respect to each713

µi and τi, we obtain the posterior density for k and φ:714

p(k, φ |Y) ∝ φ−v1

∏

i∈G1

Γ(α̂i)

β̂α̂i

i

1
√

φ−2 + ni − 1
, (6)

where α̂i = 1

2
(ni−1) and β̂i = α̂iσ̂

2
i . Maximising this function with respect to its arguments715

subject to the constraint α = β = 0 determines the joint MAP estimator for k and φ.716

Under D2 and M2, we use the additional v2 − v1 substances in G2\G1 and estimate α,
β, k and φ. Momentarily continuing to treat the τi as parameters, the likelihood is now

L(k, φ, µG1
, τG1

)
∏

i∈G2\G1

τ
ni/2

i exp
{

− 1

2
τi

[

ni(yi − µi)
2 + (ni − 1)s2

i

]}

where µG2\G1
and τG2\G1

are similarly defined as per earlier, and ȳi and si are the sample717

mean and standard deviation of yij ∀j ∈ Ji. Now, we must multiply by the sampling718

density, p(τi |α, β) = [βα/Γ(α)]τα−1

i e−βτi for i ∈ G2, recalling G1 ⊆ G2 and integrate with719

respect to each τi > 0 to obtain the true likelihood under M2. However, we then intend to720

multiply by the prior density p(k, φ, α, β, µG2
) ∝ 1 and integrate with respect to each µi to721

obtain the marginal posterior and it is easier to reverse the order of integration (as earlier)722

to obtain723

p(α, β, k, φ |Y) ∝
[

βα

Γ(α)

]v2

φ−v1

(

∏

i∈G2

Γ(α̃i)

β̃α̃i

i

) (

∏

i∈G1

1
√

φ−2 + ni − 1

)

, (7)

where α̃i = α + α̂i and β̃i = β + β̂i for i ∈ G1(⊇ G2).724

Under D1, µ̂i and σ̂2
i in (3) and (4) are now functions of τi as k must be replaced by725

k′/
√

τi and we also replace α by α′, β by β′ and φ by φ′. Consequently, when calculating726

the equivalent of (6) and (7), the integrals with respect to µi can still be done in closed727

form but integration with respect to τi must be approximated numerically .728

A.2. Decision rules under D2729

For M2, it is a straightforward generalisation of standard Bayesian calculations for normal730

sampling to obtain the posterior distribution of µ and σ2 — the parameters of an SSD for731
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a new substance — conditional on known θ and tolerance measurements for a substance:732

1/σ2 has a gamma distribution with shape α̃ = α + 1

2
(n − 1) and mean 1/σ̂2 and, given σ,733

µ has a normal distribution with mean µ̂ and variance σ2/(φ−2 + n − 1), given by (3) and734

(4) respectively after dropping the subscript i. Under M1, σ̂2 simplifies to σ̃2.735

Decision rules are determined to be of the form µ̂ − κpσ̂ for both [AJ] and [EFSA]736

methods. This follows from two standard results for the normal-inverse-gamma posterior737

distribution for µ and σ2: (i) µ−Kpσ has a re-scaled non-central t-distribution; and (ii) the738

predictive distribution of a further observation is a re-located and re-scaled t-distribution.739

For [AJ], the decision rule follows directly from (i), while for [EFSA], one needs to note that740

E(PAF(δ)) is the probability that the tolerance of a random species lies below δ, which is741

given by (ii).742

For the [AJ] rule, ψκp is the γ-th percentile of the non-central t-distribution with η =743

2α+n−1 degrees of freedom and non-centrality parameter ψKp, where ψ2 = φ−2 +n−1 is744

the total weight of the observations. For [EFSA], κp/
√

1 + ψ−2 is the (100−p)-th percentile745

of the (central) t-distribution with η degrees of freedom. Note that κp values differ for M1746

and M2 and are non-comparable as they are to be applied to different estimates of σ. For747

M1, take α = β = 0. Similarly, calculations under exchangeability may be recovered by748

taking k = 0 and φ = 1.749

A.3. Bayes factors750

For Bayes factors for D1 against D2 for a new substance, first consider M2. Let (k′, φ′)751

and (k, φ) denote the estimated values of the non-exchangeability hyper-parameters under752

D1 and D2 respectively and let (α′, β′) and (α, β) be the respective variance heterogeneity753

parameters. We take the hyper-parameters to be fixed in each mode because Bayes factors754

are generally undefined when improper priors are used and also because, as in Section 6.2,755

the models we propose for actual use have fixed hyper-parameters. Next, recall that our756

prior distribution for µ is the improper uniform distribution on the real line so that we757

may exploit (7) to obtain the terms for a single substance under D2. With the form of the758

likelihood function given in Appendix A.1, we obtain the terms for a single substance under759

D1, upon which we can see that the Bayes factor in favour of D1 over D2 is760

β′α
′

βα

Γ(α)

Γ(α′)

φ
√

φ−2 + n − 1

φ′
√

φ′−2 + n − 1

β̃α̃

Γ(α̃)

∫ ∞

0

τ α̃′−1 exp{− 1

2
τ [2β′ + (n − 1)σ̂2(τ)]} dτ, (8)

where α̃ and β̃ are defined as underneath (7) in Appendix A.1 (omitting the subscript i),761

α̃′ = α′ + α̂, and σ̂2(τ) is given by (4) and (5) (omitting the subscript i) with k replaced by762

k′/
√

τ , α by α′, β by β′ and φ by φ′. The integral may be evaluated straightforwardly by763

numerical quadrature to high accuracy. The Bayes factor for M1 is given by (8), omitting764

the term β′α
′

Γ(α)/βαΓ(α′) and taking α′ = α = 0 and β′ = β = 0 in the remainder.765

The prior distributions on µ and σ for M1 and µ for M2 are improper. However,766

following Bernardo and Smith (1994, p. 422), we argue that the Bayes factors are well767

defined as these parameters are identically operationally defined under D1 and D2 with768

respect to a hypothetical infinite population of exchangeable species in the SSD. In such769

contexts the Bayes factor obtained may be viewed as a limit of the one obtained using the770

same proper prior in the numerator and denominator771


