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Abstract. Let D = (dn)∞n=1 be a bounded sequence of integers such that dn ≥ 2 and i, j
be non-negative numbers with i + j = 1. With the associated norm | · |D as defined by de
Mathan and Teulié in [4] we prove that the set of x ∈ R which satisfy the inequality

max{|q|1/i
D , ‖qx‖1/j} >

c

q

for some constant c = c(x) > 0 and all q ∈ N has full Hausdorff dimension. In establishing
this result we prove a p–adic variant of Schmidt’s conjecture in simultaneous Diophantine
approximation as a corollary.

1. Introduction

One of the major unproven conjectures in metric number theory is the Littlewood conjec-
ture, first poised by Littlewood in the 1930s, which states that

lim inf
q→∞ q‖qx‖‖qy‖ = 0

for any pair (x, y) of real numbers where ‖ · ‖ denotes the distance to the nearest integer.
Despite a concerted effort over the years to settle the problem, see [6] for examples of some
recent results, the conjecture has so far resisted all attempts to prove it. Probably the
most compelling evidence of the truth of the conjecture is due to Einsiedler, Katok and
Lindenstrauss [6], who have shown that any exceptional set to Littlewood’s conjecture must
have Hausdorff dimension 0. Closely linked to the Littlewood conjecture is the following
conjecture of Schmidt which states that for any i, j, i′, j′ ≥ 0 with i + j = 1 = i′ + j′

Bad(i, j) ∩Bad(i′, j′) 6= ∅
where

Bad(i, j) := {(x, y) ∈ R2 : ∃c(x, y) > 0 with max{‖qx‖1/i‖, qy‖1/j} > c(x, y)q−1 ∀ q ∈ N}.
It is worthing noting that a counterexample to the conjecture of Schmidt would imply Little-
wood’s conjecture.

In [4], de Mathan and Teulié published a paper in which they discussed a number of inter-
esting variations on classical problems in simultaneous Diophantine apporximation. Amongst
these problems, they proposed a mixed Littlewood conjecture. Let D be a bounded sequence
(dn)∞n=1 of integers no smaller than 2 and define the sequence (Dn)∞n=0 as follows; let D0 := 1
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and

Dn :=
n∏

k=1

dk

for all n ≥ 1. Now set

ωD : N→ N : q 7→ sup{n ∈ N : q ∈ DnZ}
and

|q|D := D−1
ωD(q) = inf{1/en : q ∈ DnZ}.

The de Mathan-Teulié conjecture is then

lim inf
q→∞ q|q|D‖qx‖ = 0.

Perhaps the case of most importance is when D is the constant sequence {p, p, p, . . . }
where p is an odd prime. In this case | · |D is the usual p-adic norm and the de Mathan-Teulié
conjecture reduces to

lim inf
q→∞ q|q|p‖qx‖ = 0.

As with Littlewood, the de Mathan-Teulié conjecture is still open, even in the p–adic case.
However, there do exist some partial results. A recent result of Bugeaud, Haynes and Velani,
[2], gives the following analogue of Gallagher’s theorem

lim inf
q→∞ q(log q)k+1|q|p1 . . . |q|pk

‖qx‖ = 0, (1)

for almost every real number x. Note that unlike the mixed Littlewood conjecture, this is a
metric result in the sense that the result holds for almost all real numbers x. Bugeaud and
Moshchevitin, [3] were able to show that for every prime p, the set of α ∈ R satisfying

lim inf
q→+∞ |q|p q(log q)2‖qx‖ > 0

has full Hausdorff dimension. Thus whilst the set of exceptions to Equation (1) is of Lebesgue
measure zero it is of the same dimension as the entire unit interval.

For recent advances towards the “mixed” Littlewood conjecture, the reader is referred to
Bugeaud, Drmota and Mathan, [1], or Einsiedler and Kleinbock, [5].

As there are such strong parallels with the classical problem of Littlewood, one would
reasonably expect there to be a corresponding problems akin to the Schmidt conjecture.
However, most of the work to date has focussed on the mixed Littlewood conjecture and very
little has be done on establishing a “mixed” Schmidt conjecture. In this paper we consider
such a problem .

Firstly, we need to introduce a little more notation. With D defined as above, let the set
BadD(i, j) be

BadD(i, j) :=
{

x ∈ R : ∃c = c(x) > 0, ∀q ∈ N, max{|q|1/i
D , ||qx||1/j} >

c

q

}
(2)

where i + j = 1 and i, j > 0. In the case when D = (p, p, p . . . ) where p is an odd prime we
will write Badp(i, j) for BadD(i, j). This is of course a “mixed” variant of the sets Bad(i, j)
defined above.

The main result of this paper is then:
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Theorem 1. For each k ∈ N let Dk be a bounded sequence (dn)n>1 of integer numbers not
smaller than 2. Suppose that the pairs (ik, jk) of positive real numbers satisfy ik + jk = 1 for
all k ∈ N. Then

dim

( ∞⋂

k=1

BadDk
(ik, jk)

)
= 1.

An immediate corollary to Theorem 1 is the p–adic Schmidt conjecture. More exactly, for
any two pairs of positive numbers i, j, i′, j′ with i + j = 1 = i′ + j′,

dim
(
Badp(i, j) ∩Badp(i′, j′)

)
= 1.

2. Schmidt (α, β) games

The main technical device used in the proof of Theorem 1 is the idea of Schmidt games
as introduced by Schmidt in [7]. We present a simplified form of the game suitable for our
purposes here and some of the results related to games which will help us prove Theorem 1.
For further details the reader is referred to the paper of Schmidt cited above.

Schmidt’s game is played by two players, say A and B. Each player has an associated
parameter, say α for A and β for B, where 0 < α, β < 1, with which to play the game. The
game is played as follows. Initially the second player, B, chooses a closed interval I0 ⊂ R to
start the game. Then A chooses an interval J1 ⊂ I0 having length |J1| = α|I0|, B continues by
choosing a closed interval I1 ⊂ J1 having length |I1| = β|J1|. This initerval choosing process
is repeated ad infinitum to construct a nested sequence of closed intervals

I0 ⊃ J1 ⊃ I1 ⊃ J2 ⊃ . . . .

Since all the intervals in the above sequence are closed, they intersect at one point, say γ.
Now given a set S ⊂ R, we say that S is (α, β)-winning if A can play the game in such a

way that

γ ∈ S

regardless of the moves made by B. The set S ⊂ R is called α–winning if it is (α, β)–winning
for all real values 0 < β < 1.

Sets which are α–winning are by necessity large. A fact proved by Schmidt in [7] is

Theorem S1. Let α be a real number such that 0 < α < 1. Then for any α-winning set S,

dimS = 1,

where dim is Hausdorff dimension.

Schmidt was able to extend this result to any countable intersection of α–winning sets.

Theorem S2. The intersection of any countable number of α-winning sets is again α-winning
and thus of full Hausdorff dimension.

It is these two results which we will appeal to in proving Theorem 1.
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3. Proof of Theorem 1

Take any sequence D = (dn)n>1 of integers dn > 2 and any pair (i, j) such that i, j >
0, i + j = 1. We claim that BadD(i, j) is α-winning for α = 1/4. If this is indeed the case,
then Theorems S1 and S2 imply that

dim
( ∞⋂

k=1

BadDk
(ik, jk)

)
= 1

and Theorem 1 follows immediately. Hence we only need to show that the above claim is
true.

With this aim in mind, let c > 0 be a fixed constant and define BadD(c, i, j) to be the set
of x ∈ R such that

max{|q|1/i
D , ||qx||1/j} >

c

q
∀ q ∈ N. (3)

It is easily seen that BadD(c, i, j) ⊂ BadD(i, j).
The idea of the proof is as follows. For any (fixed) β ∈ (0, 1), we will show that there exists

a positive constant c = c(β), dependent only on β, such that the set BadD(c, i, j) is (α, β)-
winning. As BadD(c, i, j) ⊂ BadD(i, j), we must have BadD(i, j) also being (α, β)-winning
and finally as β is arbitrary the desired result would follow.

The set BadD(c, i, j) consists of exactly those real numbers that avoid the neighborhood

∆(r/q) :=
[
r

q
− cj

q1+j
,
r

q
+

cj

q1+j

]

of any rational number r/q which satisfies |q|D < ciq−i. For convenience let’s denote the set
of such rational numbers by C.

Define the value R to be

R :=
1

αβ
.

Without loss of generality suppose that the second player starts with a line segment I0 of
sufficiently short length that |I0| := τβ where τ 6 1. Is is then an easy task to compute the
lengths of the intervals In and Jn. Namely,

|In| = τβR−n and |Jn| = τR−n.

Finally choose c such that

cj <
τβ

4
and ci <

1

2R
2

j+1 τβ
. (4)

We now describe the winning strategy for the first player. Essentially the first player should
choose the interval Jn such that

Jn ∩∆(r/q) = ∅ ∀ r/q ∈ C with q1+j < Rn. (5)

We will use induction to prove that the first player can always choose such an interval Jn.
It is obvious that the interval I0 avoids all the neighbourhoods of numbers r/q with q1+j <

R0 since there are no such numbers.
Assume now that the first player has chosen the intervals In−1 where k ≤ n− 1 subject to

the conditions given above. That is,

In−1 ∩∆(r/q) = ∅ ∀ r/q ∈ C with q1+j < Rn−1. (6)
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Now for each In−1 ⊂ Jn−1, |In−1| = β|Jn−1| we want to construct an interval Jn ⊂ In−1 of
length |Jn| = α|In−1| such that the condition (5) is satisfied. By the inductive assumption
while choosing Jn, we should only take care of the rationals from the collection

C(n) := {r/q ∈ C : Rn−1 6 q1+j < Rn}.
Consider some number r/q ∈ C(n). Then

|∆(r/q)| = 2cj

q1+j
6 2cj ·R−n+1 <

|In−1|
2

,

since 4cj < τβ by the first inequality in (4). Therefore one can always choose an interval Jn

of length |In−1|
4 which avoids ∆(r/q).

Now let’s consider two rational numbers r1/q1, r2/q2 ∈ C(n). Write their denominators in
a form

ql = Dkl
q∗l , ql 6∈ Dkl+1Z, l = 1, 2.

Since |ql|D < ciq−i
l , we have

Dkl
> qi

lc
−i > R

(n−1)i
j+1 c−i.

Therefore we can find the lower bound for the greatest common divisor of q1 and q2:

(q1, q2) > c−iR
(n−1)i

j+1 . (7)

Finally the distance between two rational points from C(n) is at least
∣∣∣∣
r1

q1
− r2

q2

∣∣∣∣ > (q1, q2)
q1q2

>
c−iR

(n−1)i
j+1

R
2n

j+1

= c−iR
− 2

j+1 R−n+1 > 2|In−1|,

since c−iR
− 2

j+1 > 2τβ by the second inequality in (4).
Therefore the distance between two rational numbers from C(n) is large enough so there

can be only one number r/q ∈ C(n) which can intersect In−1. However as we mentioned
before we can take Jn which avoids ∆(r/q). So Jn satisfies (5) and this is the interval the
first player should take. So the induction is finished.

The upshot is that for α = 1/4 and any real positive β there exists a winning strategy for
the first player in (α, β)-game. Therefore BadD(i, j) is 1/4-winning.

Comments. Consider the nonnegative numbers i1, i2, . . . , im, j such that i1+. . .+ik+j = 1.
Then for any collection D1, . . . ,Dk of sequences satisfying the properties given in § ??, similar
arguments to those given above can be applied to show that the set

Bad(i1, . . . , ik, j;D1,D2, . . .Dk) :=
{
x ∈ R : ∃c = c(x) > 0,∀q ∈ N,

max{|q|1/i1
D1

, |q|1/i2
D2

, . . . , |q|1/ik
Dk

, ||qx||1/j} > c
q

}
.

is 1/4-winning.
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