
J. reine angew. Math., Ahead of Print Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2013-0035 © De Gruyter 2013

Regularized theta liftings and
periods of modular functions

By Jan H. Bruinier at Darmstadt, Jens Funke at Durham and Özlem Imamoḡlu at Zürich

Abstract. In this paper, we use regularized theta liftings to construct weak Maass forms
of weight 1/2 as lifts of weak Maass forms of weight 0. As a special case we give a new proof
of some of recent results of Duke, Toth and the third author on cycle integrals of the modular
j -invariant and extend these to any congruence subgroup. Moreover, our methods allow us to
settle the open question of a geometric interpretation for periods of j along infinite geodesics in
the upper half plane. In particular, we give the ‘central value’ of the (non-existent) ‘L-function’
for j . The key to the proofs is the construction of a kind of simultaneous Green function for
both the CM points and the geodesic cycles, which is of independent interest.
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1. Introduction

In this paper we use the theta correspondence to study the traces and periods of modular
functions. To place our work in context, we begin by reviewing recent results of Zagier [30,31],
of Duke, Toth and the third author [9], and of [7].
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2 Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions

Generating series of traces of singular moduli. For a non-zero integer d , let Qd

be the set of integral binary quadratic forms Q.x; y/ D ax2 C bxy C cy2 of discriminant
d D b2 � 4ac, where we take Q to be positive definite for d < 0. We write Q D Œa; b; c�.
The natural action of �.1/ D PSL2.Z/ divides Qd into finitely many classes. For d < 0 and
Q 2 Qd , the root

zQ D
�b C

p
d

2a

defines a CM point in the upper half plane H. The values of the classical j -invariant at the CM
points have been of classical interest. For f 2M Š

0 D CŒj �, the space of weakly holomorphic
functions of weight 0 for �.1/, we define for d < 0, the modular trace of f by

(1.1) trd .f / D
X

Q2�.1/nQd

1

j�.1/Qj
f .zQ/:

Here �.1/Q denotes the finite stabilizer of Q. The theory of such traces has enjoyed re-
newed interest thanks to the work of Borcherds [4] and Zagier [31], where connections be-
tween modular traces, automorphic infinite products and weakly holomorphic modular forms
of half-integral weight are established. In particular, a beautiful theorem of Zagier [31] shows
for j1 WD j � 744 that the generating series

(1.2) g1.�/ WD �q�1C2C
X
d<0

trd .j1/q
�d
D �q�1C2�248q3C492q4�4119q7C� � �

is a weakly holomorphic modular form of weight 3=2 for the Hecke subgroup �0.4/. Here
q D e2�i� with � D uC iv 2 H.

On the other hand, an older result of Zagier [30] on the Hurwitz–Kronecker class numbers
H.jd j/ D trd .1/ states that

(1.3) g0.�/ WD �
1

12
C

X
d<0

trd .1/q
�d
C

1

16�
p
v

1X
nD�1

ˇ3=2.4�n
2v/q�n

2

is a harmonic weak Maass form of weight 3=2 for �0.4/. Here

ˇk.s/ D

Z 1
1

e�st t�k dt:

Using the methods of [13], in [7] the first and the second author unified and generalized
(1.2) and (1.3) to traces of arbitrary weakly holomorphic modular functions f of weight zero
on modular curves �nH for any congruence subgroup � . The results in [7] are obtained by
considering a theta lift

(1.4) I3=2.�; f / D

Z
�nH

f .z/ �‚L.�; z; 'KM / d�.z/

of f against a theta series associated to an even lattice L of signature .1; 2/ and the Kudla–
Millson Schwartz function 'KM of weight 3=2, see [20]. Here d�.z/ D dx dy

y2
. The integral

converges, since the decay of the theta kernel turns out to be faster than the exponential growth
of f . For f D j1 and f D 1 and the appropriate choice of the lattice L one obtains the gen-
erating series (1.2) and (1.3) above, while in addition giving a geometric interpretation to the
Fourier coefficients of non-positive index.
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Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions 3

Cycle integrals of modular functions. In a different direction, turning to the natural
question of the case of positive discriminants, Duke, Toth and the third author [9] recently
studied the cycle integrals of modular functions as analogs of singular moduli. Their work
gives an extension and generalization of the results of Borcherds and Zagier. For d > 0, the
two roots of Q 2 Qd lie in P1.R/, and we let cQ be the properly oriented geodesic in H
connecting these roots. For non-square d > 0, the stabilizer �.1/Q is infinitely cyclic, and we
set CQ D �.1/QncQ. Then CQ defines a closed geodesic on the modular curve. For f 2M Š

0

and in analogy with (1.1) let

(1.5) trd .f / D
1

2�

X
Q2�.1/nQd

Z
CQ

f .z/
dz

Q.z; 1/
:

One of the main results of [9] realizes the generating series of traces of both the CM values and
the cycle integrals for any f 2M Š

0 as a form of weight 1=2. More precisely, for f D j1 the
generating series

h1.�/ WD
X
d>0

trd .j1/ q
d
C 2
p
vˇc1

2

.�4�v/q � 8
p
v(1.6)

C 2
p
v
X
d<0

trd .j1/ˇ 1
2
.4�jd jv/qd

is a harmonic weak Maass form of weight 1/2 for �0.4/. Here

ˇc1=2.s/ D

Z 1

0

e�st t�1=2 dt

is the ‘complementary’ function to ˇ1=2.s/. The analog of (1.3) for f D 1 is that

h0.�/ WD
X
d>0

trd .1/ q
d
C

p
v

3
C 2
p
v
X
d<0

trd .1/ˇ 1
2
.4�jd jv/qd(1.7)

C

X
n¤0

˛.4n2v/qn
2

�
1

4�
log v

is a weak Maass form of weight 1/2 for �0.4/. Here

˛.s/ D

p
s

4�

Z 1
0

log.1C t /e��st t�1=2 dt:

Duke, Toth, and the third author prove their results by first constructing an explicit ba-
sis for the space of harmonic weak Maass forms of weight 1/2 constructed out of Poincaré
series. The construction of such a basis is quite delicate, due in part to the residual spectrum.
Then (1.6) is proved by explicitly computing the cycle integrals of weight 0 non-holomorphic
Poincaré series in terms of exponential sums and then relating these to Kloosterman sums.
The construction of h0.z/ is similar using a Kronecker limit type formula for the weight 1=2
Eisenstein series.

The functions obtained in [30] and [31] and the ones in [9] are related via the differential
operator

�1=2 D 2iv
1=2 @

@ N�
;
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which maps forms of weight 1=2 to the dual weight 3=2. We have

(1.8) �1=2.h1/ D �2g1 and �1=2.h0/ D �2g0:

In this way, the results of Duke, Toth, and the third author contain (for SL2.Z/) the previous
work on modular traces.

We note that in contrast to (1.2) and (1.3), in the formulas (1.6) and (1.7), the sums over
CM points now occur in the Fourier coefficients for negative d , while cycle integrals occur
in the Fourier coefficients for positive d . The � operator annihilates the holomorphic cycle
integral terms and shifts the CM traces to the coefficients with positive index.

The coefficients of square index. For square discriminants d , no definition for the
modular trace trd in (1.5) is given in [9], and hence the geometric meaning of the corresponding
coefficients trd .j1/ and trd .1/ in (1.6) and (1.7) is left open. Rather, for d a square, these terms
represent in [9] only the unknown d -th Fourier coefficient of the residual Poincaré series which
define the generating series. Analytically, the Fourier coefficients of square index d are exactly
where the weight 1=2 Poincaré series have poles, and residual terms have to be subtracted to
obtain h1 and h0 (see [9, Lemma 3, (2.26) and (2.27)]). This makes them rather intractable to
compute. Geometrically, the issue is that the stabilizer �.1/Q is trivial for square d and hence
the cycle CQ corresponds to an infinite geodesic in the modular curve. Therefore the integral
of a modular function over CQ does not converge. This represents the principle obstacle to a
geometric definition of the trace analogous to (1.5). In fact, the authors of [9] raise the questions
whether their results can be approached using theta lifts as in [7] and whether one can give more
insight to the mysterious nature of the square coefficients.

In this paper, we indeed use the theta machinery to study the traces and periods of mod-
ular functions. In particular, we succeed in computing the coefficients of square index in (1.6)
and (1.7) and to give a geometric interpretation for those terms. In fact, we consider the modu-
lar traces and periods for any (harmonic) weak Maass form on any modular curve �nH defined
by a congruence subgroup � .

The central L-value of the j -invariant. We first explain how to define the modular
trace for �.1/ for square index d . In view of (1.5) it suffices to regularize the periodZ

CQ

f .z/
dz

Q.z; 1/

whenever CQ is an infinite geodesic. We will do this here only when Q D Œ0;
p
d; 0� such

that Q.z; 1/ D
p
dz and CQ is (the image of) the imaginary axis. In fact, for d D 1, we

have C1 D CQ. Hence the problem reduces to defining the ‘central value’ of the (non-existent)
L-function for f . Note that if there were a cusp form

f .z/ D
X
n>0

a.n/e2�inz

of weight 0, then the cycle integral of f over CQ would converge and equal the value of its
L-function at s D 0 given by

(1.9)
Z
CQ

f .z/
dz

z
D 2

Z 1
1

f .iy/
dy

y
D 2

X
n¤0

a.n/

Z 1
2�n

e�t
dt

t
:
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In analogy to this, for f 2M Š
0, we define

(1.10)
Z reg

CQ

f .z/
dz

z
WD 2

X
n¤0

a.n/EI.2�n/;

where EI.w/ is related to the exponential integrals defined in [1, Sections 5.1.1 and 5.1.2] by

(1.11) EI.w/ WD

Z 1
w

e�t
dt

t
D

´
E1.w/ if w > 0,

�Ei.�w/ if w < 0.

Here in the second case the integral is defined as the Cauchy principal value.
A more geometric characterization for the regularized period is given by the following

result.

Theorem 1.1. Let f 2M Š
0 be a modular function. Then for CQ the imaginary axis as

above and, for any T > 0,Z reg

CQ

f .z/
dz

z
D 2

Z iT

i

f .z/
dz

z
�

Z iTC1

iT

f .z/. .z/C  .1 � z// dz:

Here  .z/ D � 0.z/
�.z/

is the Euler Digamma function.

This formula is strikingly similar to the one in [14, Lemma 4.3 and Theorem 4.4], where
the critical L-values of a modular form (not necessarily cuspidal) are interpreted as coho-
mological periods of holomorphic 1-forms with values in a local system over certain closed
‘spectacle’ cycles. We will discuss the cohomological interpretation of the cycle integrals of
this paper elsewhere.

For T D 1 and using that j1 has real Fourier coefficients we obtain the following beauti-
ful formula for the regularized integral of j1 along the imaginary axis. We have

(1.12)
Z reg

CQ

j1.z/
dz

z
D �2Re

�Z iC1

i

j1.z/ .z/ dz

�
:

In fact, this formula was first suggested to us by D. Zagier, who obtained (1.12) based on
heuristic arguments and verified numerically that defining tr1.j1/ using (1.12) gives the correct
value for tr1.j1/ in (1.6).

The main result. Before we describe the theta lift we employ, we first state our main
result in a special case. Let p be a prime (or p D 1). We consider the set Qd;p of quadratic
forms Œa; b; c� 2 Qd such that a � 0 .mod p/. The group ��0 .p/, the extension of the Hecke
group �0.p/ � �.1/with the Fricke involutionWp D

�
0 �1
p 0

�
, acts on Qd;p with finitely many

orbits. Let f 2M Š
0.�
�
0 .p// be a weakly holomorphic modular function of weight 0 for ��0 .p/.

We define the modular trace of f of index d ¤ 0 by

(1.13) trd .f / D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

X
Q2��0 .p/nQd;p

1

j��0 .p/Qj
f .˛Q/ if d < 0;

1

2�

X
Q2��0 .p/nQd;p

Z reg

��0 .p/QncQ

f .z/
dz

Q.z; 1/
if d > 0:
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Theorem 1.2. Let f .z/ D
P
n��1 a.n/e.nz/ 2M

Š
0.�
�
0 .p// with a.0/ D 0. Then

H.�; f / WD
X
d>0

trd .f / q
d
C 2
p
v
X
m>0

X
n<0

a.mn/ˇc1
2

.�4�m2v/qm
2

� 2
p
v tr0.f /

C 2
p
v
X
d<0

trd .f /ˇ 1
2
.4�jd jv/qd

is a harmonic weak Maass form of weight 1=2 for �0.4p/. Here

tr0.f / D �
1

2�

Z reg

��0 .p/nH
f .z/ d�.z/ D 4

X
n>0

a.�n/�1.n/:

is the suitably regularized average value of f on ��0 .p/nH, defined in (3.12).

For p D 1 and f D j1 we recover h1.�/, now with explicit geometric formulas for the
square coefficients in the generating series. For f D 1 we have a similar theorem which gen-
eralizes h0. The statements for any congruence subgroup are formulated in terms of quadratic
spaces of signature (2,1).

The regularized theta lift. To prove our results we study the theta integral

(1.14) I1=2.�; f / D

Z
�nH

f .z/ �‚L.�; z; '0/ d�.z/:

Here the kernel function‚L.�; z; '0/ is the Siegel theta series associated to the standard Gauss-
ian '0 of weight 1=2 for a rational quadratic space of signature .2; 1/. It is related to the kernel
of (1.4) via

(1.15) �1=2.‚L.�; z; '0// D �
1

�
‚L.�; z; 'KM /;

and we obtain formally the same relation for the theta lifts I1=2 and I3=2, which matches (up
to a constant) the relations given in (1.8). When f is a Maass cusp form, the integral (1.14)
converges, and this lift has been previously studied by Maass [23], Duke [8], and Katok and
Sarnak [17] among others. However, the theta kernel ‚L.�; z; '0/ in contrast to the one used
for I3=2 in [7] is now moderately increasing. Hence when the input function f is not a cusp
form, the integral does not converge (even for f D 1) and has to be regularized.

We analyze in detail two different approaches to regularize (1.14) for any weak Maass
form f .z/ of weight 0 for � with eigenvalue � under the Laplace operator�z . The case � D 0
is the most interesting, which we now describe. First, following an idea of Borcherds [4] and
Harvey–Moore [15], we regularize the integral by integrating over a truncated fundamental
domain FT for �nH and taking a limit. More precisely, for a complex variable s we consider

(1.16) lim
T!1

Z
FT

f .z/ �‚L.�; z; '0/ y
�s d�.z/;

where FT is a suitable truncated fundamental domain for � . For the real part of s sufficiently
large, the limit converges and the resulting holomorphic function of s defined in a right half-
plane admits a meromorphic continuation to the whole s-plane. Then we regularize (1.14) by
taking the constant term in the Laurent expansion of (1.16) at s D 0.
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The second approach uses differential operators in the spirit of the regularized Siegel–
Weil formula of Kudla and Rallis [22]. Using Eisenstein and Poincaré series of weight 0 one
can construct a ‘spectral deformation’ of f , that is, a family of functions fs.z/ such that
�zfs D s.1 � s/f and f1 D f , and then we consider

(1.17)
1

s.1 � s/

Z
�nH

fs.z/ ��z‚L.�; z; '0/ d�.z/:

The point is that�z‚L.�; z; '0/ is of very rapid decay (like the kernel for (1.4)) and hence the
integral converges. Furthermore, by the adjointness of the Laplace operator we see that (1.17)
formally equals (1.14). Then we can regularize (1.14) to be the constant term in the Laurent
expansion of (1.17) at s D 1. The relation between the two regularizations can be described
as follows.

Theorem 1.3. Let f be a harmonic weak Maass form of weight 0 for a congruence
subgroup � . If the constant terms of the Fourier expansion of f at all cusps of � vanish,
then the two regularizations of (1.14) coincide. Otherwise, they differ by an explicit linear
combination of holomorphic unary Jacobi theta series of weight 1=2.

By lifting Poincaré series of weight 0, we are also able to realize the Poincaré series of
weight 1=2 which occur in [9] as theta lifts, explicitly relating our approach to the one of Duke,
Toth, and the third author.

The Green function � and the Fourier expansion of the theta lift. The key to com-
puting the Fourier coefficients of the lift I1=2.�; f / is the construction of a Green function � for
the Schwartz function '0. We view the set of all rational quadratic formsQ D Œa; b; c� together
with the discriminant form d D b2 � 4ac as a quadratic space Q of signature .2; 1/ whose as-
sociated symmetric space is equivalent to H. In this way, '0 can be regarded as a function
on Q �H. We explicitly construct a singular function �.Q; z/ for all Q of non-zero discrimi-
nant such that

�z�.Q; z/ D �
1

4�
'0.Q; z/

outside the singularities of �. We call � a Green function for '0. If d < 0, then �.Q/ has
a logarithmic singularity at the point zQ, while for d > 0, the function �.Q/ is differentiable,
but not C 1, and the discontinuity of @� exactly occurs at the geodesic cycle cQ.

Theorem 1.4. Let Q be a integral binary quadratic form with discriminant d ¤ 0, not
a square, with stabilizer �Q in � . Then for f a weak Maass form of weight 0with eigenvalue �,
the integral

R
�QnH

f .z/'0.Q; z/ d�.z/ converges, andZ
�QnH

f .z/'0.Q; z/ d�.z/ D �
1

4�
�

Z
�QnH

f .z/�.Q; z/ d�.z/

C

8̂̂̂<̂
ˆ̂:
�

1

j�Qj
f .zQ/

�
2ˇ 1

2
.4�jd j/e�2�d if d < 0,�Z

CQ

f .z/
dz

Q.z; 1/

�
e�2�d if d > 0:
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8 Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions

This essentially computes the Fourier coefficients of non-square index for I1=2.�; f /
(at least when � D 0). For the other Fourier coefficients we also utilize �. The square coeffi-
cients however require some rather intricate considerations since in that case �Q is trivial andR
�QnH

f .z/'0.Q; z/ d�.z/ does not converge.
The existence of such a Green function is rather surprising, and we believe is of indepen-

dent interest. Moreover, � refines Kudla’s Green function � for 'KM (see [18]) which played
a crucial role in studying (1.4) in [7]. However, � only has singularities along the CM points
and hence cannot detect the periods over the geodesic cycles. Note that � plays an important
role in the Kudla program (see e.g. [19]) which is concerned with the realization of generating
series in arithmetic geometry as automorphic forms, in particular as the derivative of Eisenstein
series. It is therefore an interesting question how the results of this paper and � in particular fit
into this framework.

Other input. One can also study other input functions f for the lift I1=2.�; f /. One
natural extension is to consider a meromorphic function f of weight 0 with at most simple
poles in H. For example, for d > 0 a non-square, taking the d -th coefficient (in � ) of the
lift of fw.z/ D j 0.w/=.j.z/ � j.w// (with w 2 H), one obtains a non-holomorphic form of
weight 2 (in w). Using the techniques of this paper one can prove that this form is a ‘comple-
tion’ of the holomorphic generating series

Fd .w/ D �
X
m�0

trd .jm/e
2�imw ;

which in [9, Theorem 5] is shown to be a holomorphic modular integral of weight 2 with
a rational period function. Here ¹jmº denotes the unique basis of M Š

0 whose members are of
the form

jm.z/ D e
�2�imz

CO.e2�iz/:

The higher weight situation has been considered recently in [2, 3].
Another interesting case is when f D log kF k is the logarithm of the Petersson metric

of a meromorphic modular form F . For example, for F.z/ D �.z/, the discriminant func-
tion, one can show (similarly as in [7, Theorem 1.2]) that I1=2.�; f / is equal to the constant
term in the Laurent expansion at s D 1 of the derivative of an Eisenstein series of weight 1=2.
In general, one can view the lift of such input as the adjoint of the (additive) Borcherds lift,
which uses the same kernel function ‚L.�; z; '0/. We will consider these lifts in a different
paper.

The theta lift has been studied recently also by Matthes [24] using the second regular-
ization via differential operators. More precisely, he considers the analogous lift for general
hyperbolic n-space. In our case, he considers (mainly) input functions with non-zero eigen-
value under the Laplace operator and employs a different method to compute the coefficients
of non-square index leaving the square coefficients open.

Acknowledgement. We thank D. Zagier for his interest and encouragement and for
sharing his formula (1.12) for the ‘central L-value’ of j1 with us. The first two authors thank
the Forschungsinstitut für Mathematik at ETH Zürich for the generous support for this research
throughout multiple visits in the last years.
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Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions 9

2. Vector-valued modular forms for SL2

Let N be a positive integer. Let .V;Q/ be the 3-dimensional quadratic space over Q
given by the trace zero 2 � 2 matrices

(2.1) V WD

´
X D

 
x1 x2

x3 �x1

!
2 Mat2.Q/

µ
;

with the quadratic form Q.X/ D �N det.X/. The corresponding bilinear form is

.X; Y / D N tr.XY /;

and its signature is .2; 1/. We let G D Spin.V /, viewed as an algebraic group over Q, and
write NG for its image in SO.V /. The group SL2.Q/ acts on V by conjugation

g:X WD gXg�1

for X 2 V and g 2 SL2.Q/, which gives rise to isomorphisms G ' SL2 and NG ' PSL2. Let
L � V.Q/ be an even lattice of full rank and write L0 for the dual lattice of L. Let � be
a congruence subgroup of Spin.L/ which takes L to itself and acts trivially on the discriminant
group L0=L.

Example 2.1. A particularly attractive lattice in V is

L D

´ 
b c=N

a �b

!
W a; b; c 2 Z

µ
:

The dual lattice is equal to

L0 D

´ 
b c=N

a �b

!
W a; c 2 Z, b 2

1

2N
Z

µ
:

We have L0=L Š Z=2NZ, the level of L is 4N and we can take � D �0.N /.

We now recall some facts on vector-valued modular forms and weak Maass forms for the
Weil representations. See e.g. [4, 5] for more details.

We let Mp2.R/ be the two-fold metaplectic cover of SL2.R/ realized as the group of
pairs .g; �.g; �//, where g D

�
a b
c d

�
2 SL2.R/ and �.g; �/ is a holomorphic square root of the

automorphy factor j.g; �/ D c� C d , see e.g. [4,5]. Let � 0 � Mp2.R/ be the inverse image of
SL2.Z/ under the covering map. We denote the standard basis of the group algebra CŒL0=L�
by ¹eh W h 2 L0=Lº. Recall that there is a Weil representation �L of � 0 on the group algebra
CŒL0=L�, see [4, Section 4] or [5, Chapter 1.1] for explicit formulas.

Let � 00 � � 0 be a subgroup of finite index. For k 2 1
2
Z, we let Ak;L.� 00/ be the space of

C1 automorphic forms of weight k with respect to �L for � 00. That is, Ak;L.� 00/ consists of
those C1-functions f W H! CŒL0=L� that satisfy

f .
 0�/ D �2k.�/�L.

0; �/f .�/

for .
 0; �/ 2 � 00. Note that the components fh of f define scalar-valued C1 modular forms
of weight k for the subgroup � 00 \ � 0.NL/, where NL denotes the level of the lattice L and
� 0.NL/ is the principal congruence subgroup of level NL.
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10 Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions

Following [6, Section 3], we call a function f 2Ak;L.� 00/ a weak Maass form of weight k
for � 00 with representation �L if it is an eigenfunction of the hyperbolic Laplacian

(2.2) �k D �v
2

�
@2

@u2
C

@2

@v2

�
C ikv

�
@

@u
C i

@

@v

�
;

and if it has at most linear exponential growth at the cusps of � 00. The latter condition means
that there is a C > 0 such that for any cusp s 2 P1.Q/ of � 00 and .ı; �/ 2 � 0 with ı1D s the
function fs.�/ D �.�/�2k��1L .ı; �/f .ı�/ satisfies fs.�/ D O.eCv/ as v !1 (uniformly
in u, where � D uC iv).

The function f is called a harmonic weak Maass form if it is a weak Maass form with
eigenvalue 0 under �k . We write Hk;L.� 00/ for the space of harmonic weak Maass forms of
weight k for � 00 with representation �L.

Recall that there is a differential operator �k D 2ivk @@ N� taking Hk;L.� 00/ to the space of
weakly holomorphic modular forms of ‘dual’ weight 2 � k for � 00 with the dual representation
of �L. We let HC

k;L
.� 00/ be the subspace of those f 2 Hk;L.� 00/ for which �k.f / is a cusp

form. Moreover, we letM Š
k;L
.� 00/ be the kernel of �k , that is, the space of weakly holomorphic

modular forms for � 00. Summarizing we have the chain of inclusions

M Š
k;L.�

00/ � HC
k;L
.� 00/ � Hk;L.�

00/ � Ak;L.�
00/:

In the case where � 00 D � 0 we will drop the � 00 from the notation and, for instance, simply
write M Š

k;L
. If the representation �L is trivial (that is, L is unimodular), we drop the L from

the notation.

Example 2.2. We consider the lattice

L D

´ 
b c=N

a �b

!
W a; b; c 2 Z

µ

of level 4N from Example 2.1. Then given g D
P
h2L0=L gheh in Ak;L, the sum

(2.3) Qg.�/ D
X

h2L0=L

gh.4N�/

gives a scalar-valued form of weight k for �0.4N / satisfying the plus condition, i.e., the n-th
Fourier coefficient vanishes unless n is a square modulo 4N . In fact, if N D p is a prime, and
k 2 2ZC 1

2
, this gives an isomorphism betweenM Š

k;L
and the spaceMC;Š

k
.p/ of scalar-valued

weakly holomorphic forms for �0.4p/ in the Kohnen plus space (see e.g. [4, Example 2.3]
and [10, Section 5]).

For an isotropic line ` in V , we define the space W D W` D `?=` which is naturally
a unary positive definite quadratic space with the quadratic form Q. NX/ D Q.X/. Then

K` D .L \ `
?/=.L \ `/

defines an even lattice in W . Using [5, Proposition 2.2], it is easy to see that the dual lattice is
given by

K 0` D .L
0
\ `?/=.L0 \ `/:
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Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions 11

We have the exact sequence

(2.4) 0! .L0 \ `C L \ `?/=L \ `? ! L0 \ `?=L \ `? ! K 0`=K` ! 0:

The vector-valued theta function

‚K`.�/ D
X
�2K0

`

e.Q.�/�/e�CK`

associated to K` defines a holomorphic modular form in M1=2;K` , whose components we
denote by �

K`; Nh
.�/ for Nh 2 K 0

`
=K`. Recall from [5, Lemma 5.6] (or more generally [27, The-

orem 4.1]) that there is a map from vector-valued modular forms for �K` to vector-valued
modular forms for �L. Using it, we see that

Q‚K`.�/ D
X

h2L0=L
h?`

�
K`; Nh

.�/eh(2.5)

defines a vector-valued holomorphic modular form in M1=2;L. Here Nh denotes the image
of h under the map in (2.4). We let b`.m; h/ be the .m; h/-th Fourier coefficient of Q‚K`.�/.
Note that for m > 0 we have b`.m; h/ D 0 unless m=N is a square and there exists a vec-
tor X 2 LC h perpendicular to ` of length Q.X/ D m. In that case we have b`.m; h/ D 1 if
h 6� �h mod L and 2 otherwise.

3. Cycles and traces

In this section, we introduce the modular curve associated to a given lattice of signa-
ture .2; 1/ and define cycles and traces in our setting. In particular, we explain in detail how to
regularize the periods of weakly holomorphic functions over infinite geodesics.

3.1. Modular curves associated to the orthogonal group SO.2 ; 1/. As in Section 2,
we let .V;Q/ be space of rational traceless 2 � 2 matrices together with the quadratic form
Q.X/ D �N det.X/, see (2.1). We realize the associated hermitian symmetric space as the
Grassmannian of negative lines in V.R/:

D D ¹z � V.R/ W dim z D 1 and Qjz < 0º:

We identify D with the complex upper half plane H as follows, see [18, Section 11]. Let
z0 2 D be the line spanned by

�
0 1
�1 0

�
. Its stabilizer in G.R/ is equal to K D SO.2/. For

z D x C iy 2 H, we choose gz 2 G.R/ such that gzi D z and put

X.z/ WD
1
p
N
gz :

 
0 1

�1 0

!
D

1
p
Ny

 
�x z Nz

�1 x

!
2 V.R/:

We obtain the isomorphism H! D, z 7! gzz0 D RX.z/. We also define the quantity

R.X; z/ D .X;X/C
1

2
.X;X.z//2;

which is nonnegative, and vanishes exactly when X 2 RX.z/.
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12 Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions

For L � V.Q/ an even lattice let � be a congruence subgroup of Spin.L/ which takes L
to itself and acts trivially on the discriminant group L0=L. We set M D �nD.

Since V is isotropic, the modular curve M is a non-compact Riemann surface. The
group � acts on the set Iso.V / of isotropic lines in V . The cusps of M correspond to the
�-equivalence classes of Iso.V /, with 1 corresponding to the isotropic line `0 spanned by
u0 D

�
0 1
0 0

�
. For ` 2 Iso.V /, we pick �` 2 SL2.Z/ such that �``0 D ` and set u` D ��1` u0.

We let �` be the stabilizer of ` in � . Then

��1` �`�` D

´ 
1 k˛`

0 1

!
W k 2 Z

µ
for some ˛` 2 Z>0, the width of the cusp `. There is also a ˇ` 2 Q>0 such that ˇ`u` is
a primitive element of ` \ L. Finally, we write

"` D
˛`

ˇ`
:

Note that "` does not depend on the choice of �` (even if we picked �` in SL2.Q/, see
[13, Definition 3.2]).

We compactify M to a compact Riemann surface NM in the usual way by adding a point
for each cusp ` 2 �n Iso.V /. For every cusp ` we choose sufficiently small neighborhoods U`.
We write q` D e.��1` z=˛`/with z 2 U` for the local variable (and for the chart) around ` 2 NM .
For T > 0, we let

U1=T D

²
w 2 C W jwj <

1

2�T

³
;

and note that for T sufficiently large, the inverse images q�1
`
.U1=T / are disjoint in M . We

truncate M by setting

(3.1) MT D
NM n

a
Œ`�2Iso.V /

q�1` .U1=T /:

3.2. Heegner points. Heegner points in M are given as follows, see e.g. [13, 17, 18].
For X 2 V of negative length Q.X/ D m < 0, we put

DX D RX D ¹z 2 D W R.X; z/ D 0º 2 D:

We also write zX D DX for the corresponding point in the upper half plane. Via [18, (11.9)]
we see

(3.2) R.X; z/ D 2jmj sinh2.d.z; zX // D
jmj

2 Im.zX /2y2
jz � zX j

2
jz � zX j

2:

Here d. � ; � / denotes the hyperbolic distance with respect to the standard hyperbolic distance.
We note that in the upper half plane we have

zX D
�b

2a
C
i
p
jd j

2jaj

for X D
�
b 2c
�2a �b

�
with Q.X/ D Nd < 0. We set DX D ; if Q.X/ � 0. The stabilizer GX

of X in G.R/ is isomorphic to SO.2/ and for X 2 L0, the group �X D GX \ � is finite. We
denote the image of DX in M , counted with multiplicity 1

j�X j
, by Z.X/.
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For m 2 Q� and h 2 L0=L, the group � acts on Lm;h D ¹X 2 LC h W Q.X/ D mº
with finitely many orbits. For m < 0, we define the Heegner divisor of index .m; h/ on M
by

Z.m; h/ D
X

X2�nLm;h

Z.X/:

For any function f on M , we then define the trace following [31] and [7] by

trm;h.f / D
X

X2�nLm;h

1

j�X j
f .zX /:

For the lattice in Example 2.1 with N D 1, this gives exactly twice the trace of modular func-
tions defined in the introduction, since our trace counts positive and negative definite binary
quadratic forms of discriminant m.

3.3. Geodesics. A vector X 2 V.Q/ of positive length m defines a geodesic cX in D
via

cX D ¹z 2 D W z ? Xº D ¹z 2 D W .X.z/; X/ D 0º;

see e.g. [17, 21, 28]. In this situation, we have

j.X;X.z//j D 2
p
m sinh.d.z; cX //;(3.3)

where d.z; cX / denotes the hyperbolic distance of z to the geodesic cX . Hence

R.X; z/ D 2m cosh2.d.z; cX //:

Explicitly, for X D
�
b 2c
�2a �b

�
, we have

cX D ¹z 2 D W ajzj
2
C b Re.z/C c D 0º:

We orient the geodesics as follows. For X D ˙
�
1 0
0 �1

�
, the geodesic cX D ˙.0; i1/ is the

imaginary axis with the indicated orientation. The orientation preserving action of SL2.R/
then induces an orientation for all cX .

We define the line measure dzX for cX by

dzX D ˙
dz
p
mz

for X D ˙
p
m=N

�
1 0
0 �1

�
and then by

dzg�1X D d.gz/X

for g 2 SL2.R/. So for X D 1p
N

�
b 2c
�2a �b

�
, we have

dzX D
dz

az2 C bz C c
:

Note

dzX D �2i
.X; @X.z//

R.X; z/
:

Indeed, this holds for X D
p
m=N

�
1 0
0 �1

�
, since then

.X; @X.z// D
i
p
m Nzdz

y2
and R.X; z/ D

2mjzj2

y2
:

Then the G-equivariance properties of X.z/ and R.X; z/ imply the claim for general X .
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14 Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions

The stabilizer �X is either trivial (if the orthogonal complement X? � V is isotropic
over Q) or infinite cyclic (if X? is non-split over Q). We set c.X/ D �XncX , and by slight
abuse of notation we use the same symbol for the image of c.X/ in M . If �X is infinite, then
c.X/ is a closed geodesic in M , while c.X/ is an infinite geodesic if �X is trivial. The last
case happens exactly when Q.X/ 2 N.Q�/2. We define the trace for positive index m and
h 2 L0=L of a continuous function f on M by

trm;h.f / D
1

2�

X
X2�nLm;h

Z
c.X/

f .z/ dzX :

Since

(3.4)
Z
c.X/

f .z/ dzX D

Z
c.g�1X/

f .gz/ dzg�1X ;

for g 2 G, this is independent of the choice of X 2 �nLm;h. Note that a priori the integral
only converges if the geodesics are closed, i.e., m … N.Q�/2. Otherwise the geodesics c.X/
are infinite and

R
c.X/ f .z/ dzX may have to be regularized. We will describe this in the next

subsection.

3.4. Infinite geodesics. Assume that X with Q.X/ D m > 0 gives rise to an infinite
geodesic inM , that is, �X D 1. So c.X/ D cX . In this section we will show how to regularize
the periods of harmonic weak Maass forms over the infinite geodesics. We also define the
complementary trace which gives the contribution of the Fourier coefficients of negative index
of the holomorphic part of f .

3.4.1. Regularized periods and the central L-value of the j -invariant. We now
describe how for f 2 HC0 .�/ we can regularize the period

R
cX
f .z/ dzX . For any isotropic

line `, note that f`.z/ WD f .�`z/ can be written as

f` D f
C

`
C f �` ;

where the Fourier expansions of f C
`

and f �
`

are of the form

f C
`
.z/ D

X
n2 1

˛`
Z

aC
`
.n/e.nz/ and f �` .z/ D

X
n2 1

˛`
Z<0

a�` .n/e.n Nz/;

with aC
`
.n/ D 0 for n� 0.

Now X? is split over Q, a rational hyperbolic plane spanned by two rational isotropic
lines `X and Q̀X . In fact, the geodesic cX connects the corresponding two cusps (which are
not necessarily �-inequivalent). We can distinguish these isotropic lines by requiring that `X
represents the endpoint of the oriented geodesic. Note Q̀X D `�X . We have

��1`X X D
p
m=N

 
1 �2r

0 �1

!
for some r 2 Q. Hence the geodesic cX is explicitly given in D ' H by

(3.5) cX D �`X ¹z 2 D W Re.z/ D rº:
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We call r D rC D Re.cX / the real part of the geodesic cX . It depends on the choice of �`X .
Pick a number c D cC > 0. We then have (still formally)

p
m

Z
cX

f .z/dzX D

Z
Re.z/DrC

fX .z/
dz

z � r

D

Z 1
cC

fX .iy C rC/
dy

y
C

Z 1
c�

f�X .iy C r�/
dy

y
:

Here f˙X .z/ D f .�`˙X z/, r� is the real part of c�X and c� D Im.��1
`�X

.r C icC//. If we
write r D a=b with coprime a; b 2 Z and b > 0, then c� D .cCb2/�1.

The extension of the definition (1.10) to the general situation is the following.

Definition 3.1. Let f 2 HC0 .�/ and let cX be an infinite geodesic connecting two ra-
tional cusps in M . Then with the notation as above we set

p
m

Z reg

cX

f .z/dzX WD �a
C

`X
.0/ log cC C

X
n¤0

aC
`X
.n/e2�inrCEI.2�ncC/(3.6)

� aC
`�X

.0/ log c� C
X
n¤0

aC
`�X

.n/e2�inr�EI.2�nc�/

C

Z 1
cC

f �X .iy C rC/
dy

y
C

Z 1
c�

f ��X .iy C r�/
dy

y
:

Here EI is defined by (1.11). Note that the integrals for f �X and f �
�X converge.

Remark 3.2. This definition is independent of the choice of �`X and of cC. While
a different �`X changes the real part of cX , it also changes the Fourier coefficients of f in
the same way so that the quantities aC

`X
.n/e2�inrC and aC

`�X
.n/e2�inr� are in fact invariant.

A different choice of cC, say c0
C

, changes the first line on the right hand side of (3.6) by

�aC
`X
.0/.log c0C � log cC/C

X
n¤0

aC
`X
.n/e2�inrC.EI.2�nc0C/ � EI.2�ncC//

and the second by

�aC
`�X

.0/.log c0� � log c�/C
X
n¤0

aC
`�X

.n/e2�inr�.EI.2�nc0�/ � EI.2�nc�//:

But both of these expressions are equal to
R cC
c0
C

f CX .iy C rC/
dy
y

, but with opposite signs.

We now give a different characterization of the regularized integral. We will need

 .w/ D
� 0.w/

�.w/
;

the digamma function, see [1], for which we have

(3.7)  .w/ D �
 C

1X
nD0

1

nC 1
�

1

nC w
:

We set
c
c;T
X D ¹z 2 cX W c � Im.�`X z/ � T º:
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16 Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions

Theorem 3.3. Let f 2 HC0 .�/ and assume cX is a vertical geodesic. Then for any
TC; T� > 0 and the notation as above,

p
m

Z reg

cX

f .z/dzX D
p
m

Z
c
cC;TC
X

f .z/ dzX

�
1

2

Z i
TC
˛X
C1

i
TC
˛X

f .˛Xz C rC/. .z/C  .1 � z/C 2 log˛X / dz

C
p
m

Z
c
c�;T�
�X

f .z/ dz�X

�
1

2

Z i
T�
˛�X

C1

i
T�
˛�X

f .˛�Xz C r�/. .z/C  .1 � z/C 2 log˛�X / dz

C

Z 1
cC

f �X .iy C rC/
dy

y
C

Z 1
c�

f ��X .iy C r�/
dy

y
:

In particular for TC D cC and T� D c� and f 2M Š
0.�/,

p
m

Z reg

cX

f .z/dzX D �
1

2

Z i
cC
˛X
C1

i
cC
˛X

f .˛Xz C rC/. .z/C  .1 � z/C 2 log˛X / dz

�
1

2

Z i
c�
˛�X

C1

i
c�
˛�X

f .˛�Xz C r�/. .z/C  .1 � z/C 2 log˛�X / dz:

Proof. Since the general case is similar, for simplicity, we assume that cX is the imag-
inary axis and also f 2M Š

0.�/. We first show that the above formulas are independent of the
choice of T˙. For that we also assume for the moment ˛X D 1, again for simplicity. Pick
another T1 > 0. By Cauchy’s theorem we have

�

Z iTC1

iT

f .z/ .z/ dz D �

Z iTC1

iT1C1

f .z/ .z/ dz �

Z iT1C1

iT1

f .z/ .z/ dz(3.8)

C

Z iT

iT1

f .z/ .z/ dz:

For the first integral on the right hand side we see using  .z C 1/ D  .z/C 1
z

that

(3.9) �

Z iTC1

iT1C1

f .z/ .z/ dz D �

Z iT

iT1

f .z/ .z/ dz �

Z iT

iT1

f .z/
dz

z
:

We also have

(3.10)
Z
c
cC;T

X

f .z/ dzX D

Z iT

icC

f .z/
dz
p
mz

:

Then by (3.10), (3.8), and (3.9) we conclude, recalling that ˛X D 1, thatZ
c
cC;T

X

f .z/ dzX �

Z iTC1

iT

f .z/ .z/
dz
p
m
D

Z
c
cC;T1
X

f .z/ dzX �

Z iT1C1

iT1

f .z/ .z/
dz
p
m
:
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The same holds for  .z/ replaced by  .1 � z/. This shows the independence of the choice
of T . Now assume T D cC D c. With ˛ D ˛X arbitrary, we first have

� a`X .0/

Z ic=˛C1

ic=˛

. .z/C  .1 � z// dz

D �a`X .0/

�
log
�
�.1C ic

˛
/

�. ic
˛
/

�
� log

�
�.1 � .1C ic

˛
//

�.1 � ic
˛
/

��
D �2a`X .0/ log

�
c

˛

�
:

Now consider f0.z/ D f .z/ � a`X .0/. Then from (3.7) we seeZ ic=˛C1

ic=˛

f0.˛z/. .z/C  .1 � z// dz(3.11)

D �

Z ic=˛C1

ic=˛

f0.˛z/
dz

z
C

Z ic=˛�1

ic=˛

f0.˛z/
dz

z
:

Plugging in the Fourier expansion of f0, we obtain

�

Z ic=˛C1

ic=˛

f0.˛z/
dz

z
C

Z ic=˛�1

ic=˛

f0.˛z/
dz

z

D �

X
n¤0

a`X .n/

�Z icC1

ic

e2�inz
dz

z
C

Z icC1

ic

e2�inz
dz

z

�
:

According to [1, equations (5.1.30) and (5.1.31)], we haveZ icC1

ic

e2�inz
dz

z
D

´
E1.2�nc/ if n > 0,

�Ei.2�jnjc/ � i� if n < 0.

So, finally,

�
1

2

Z icC1

ic

f .z/. .z/C .1� z/C 2 log˛/ dz D �a`X .0/ log.c/C
X
n¤0

a`X .n/EI.2�nc/:

Carrying out the same analysis for the other cusp `�X completes the proof of the theorem.

Remark 3.4. We consider j1.z/ 2M Š
0.SL2.Z//. Then applying Theorem 3.3 givesZ 1;reg

0

j1.iy/
dy

y
D �

Z iC1

i

j1.z/. .z/C  .1 � z// dz:

This is exactly Zagier’s regularization for the ‘centralL-value of j1’. He arrived to this formula
by the following heuristic considerations. We need to give a meaning to the expression

2

Z i

0

j1.z/
dz

z
:

We deform the path of integration to the semicircle to the left (respectively right) of the imag-
inary axis starting at 0 and ending at i . Under the transformation z ! �1

z
this path becomes
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the horizontal half line in the upper half plane beginning at1 (respectively �1) ending at i .
Hence we obtain Z iC1

i

j1.z/
dz

z
C

Z i�1

i

j1.z/
dz

z
:

But now these integrals converge, and by (3.11) we obtain

�

Z iC1

i

j1.z/. .z/C  .1 � z// dz D �2Re
�Z iC1

i

j1.z/ .z/ dz

�
:

Here we used that the Fourier coefficients of j1 are real. In fact, one can show that this is equal
to �2Re

R �
�2
j1.z/ .z/ dz, where � D e2�i=6.

Remark 3.5. We work out the trace trm;0.1/ for the constant function 1 when m
N

is an
integral square. Then

trm;0.1/ D �
1

�
q
m
N

X
`2�n Iso.V /

2
p

m
N
"`X

kD1

log
gcd

�
kˇ`; 2

q
m
N

�
2
q
m
N

:

Here "` D
˛`
ˇ`

is defined in Section 3.1. Indeed, we can sort the infinite geodesics Cm by the
cusps ` to which they go. By [13, Lemma 3.7], there exist 2

p
m=N"` manyX in �nLm;0 such

that the corresponding geodesics cX all end in `. They have real part

kˇ`

2
q
m
N

; k D 1; : : : ; 2

r
m

N
"`:

The claim then easily follows from taking cC D 1 in Definition 3.1.

3.4.2. Complementary trace. Assume that X with Q.X/ > 0 gives rise to an infinite
geodesic, that is, �X D 1. Let f 2 HC0 .�/ be a weak Maass form with holomorphic Fourier
coefficients aC

`
.n/. Then we define its complementary trace for m 2 N.Q�/2 and h 2 L0=L

by

trcm;h.f / D
X

X2�nLm;h

X
n<0

aC
`X
.n/e2�i Re.c.X//n

C

X
n<0

aC
`�X

.n/e2�i Re.c.�X//n:

Note that in [7] this quantity is denoted by trm;h.f /. We have (see [7, Proposition 4.7])

trcm;h.f / D 2
p
m=N

X
`2�n Iso.V /

"`

"
ı`.m; h/

X
n2

2
ˇ`

p
m
N

Z

n<0

aC
`
.n/e2�irCn

C ı`.m;�h/
X

n2
2
ˇ`

p
m
N

Z

n<0

aC
`
.n/e2�ir�n

#
:

Here ı`.m; h/ D 1 if the .m; h/-th Fourier coefficient b`.m; h/ of Q‚K`.�/ is nonzero, that is,
if there exists a vectorX 2 Lm;h such that cX ends at the cusp `. In that case r˙ is the real part
of any such X . In particular, trc

m;h
.f / D 0 for m� 0.
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3.5. Average values of harmonic weak Maass forms. We define the regularized ‘av-
erage value’ of a (suitable) function f on M by

(3.12)
Z reg

M

f .z/ d�.z/ D lim
T!1

Z
MT

f .z/ d�.z/

as in [7, (4.6)]. By [7, Remark 4.9] we have for weakly holomorphic f that

(3.13)
Z reg

M

f .z/ d�.z/ D �8�
X

`2�n Iso.V /

˛`
X

N2Z�0

a`.�N/�1.N /:

Here �1.0/ D � 1
24

. The formula also holds for f 2 HC0 .�/. Indeed, we let

E2.z/ D �
3

�y
� 24

1X
nD0

�1.n/e
2�inz

be the (non-holomorphic) Eisenstein series E2.z/ of weight 2 for SL2.Z/. Then

N@.E2.z/ dz/ D �
3

�
d�.z/:

Hence by Stokes’s theorem we obtainZ reg

M

f .z/ d�.z/ D �
�

3
lim
T!1

Z
@MT

f .z/E2.z/ dz C

Z
M

.N@f .z//E2.z/ dz:

The first term gives (3.13), while the second vanishes as the Petersson scalar product of the
cusp form �0.f / against an Eisenstein series.

We define as in [7] the trace of index .0; h/ by

tr0;h.f / D �ıh;0
1

2�

Z reg

M

f .z/ d�.z/:

Here ıh;0 is Kronecker delta. For f D 1, we also write

vol.M/ D �
1

2�

Z
M

d�.z/:

4. The main result

We are now ready to state the main result of this paper. It will be proved using the regu-
larized theta lift in Sections 7 and 8.

Theorem 4.1. Let h 2 L0=L. Let f 2 HC0 .�/ be a weak Maass form and assume that
the constant coefficients aC

`
.0/ vanish at all cusps `. Then the generating series

Hh.�; f / WD �2
p
v tr0;h.f /

C

X
m<0

trm;h.f /
erfc.2

p
�jmjv/

2
p
jmj

e.m�/C
X
m>0

trm;h.f /e.m�/

C 2
X
m>0

trc
Nm2;h

.f /

�Z pv
0

e4�Nm
2w2 dw

�
e.Nm2�/
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defines the h-component of a weak Maass form of weight 1=2 for the representation �L. If f
has non-zero constant coefficients, then one has to add

�
1
p
N�

X
`2�n Iso.V /

aC
`
.0/"`

�
1

2

�
log.4ˇ2`�v/C 
 C  .k`=ˇ`/C  .1 � k`=ˇ`/

�
C

X
m>0

b`.Nm
2; h/F .2

p
�vNm/e.Nm2�/

�
to the generating series. Here b`.m; h/ denotes the .m; h/-th coefficient of Q‚K`.�/ defined
in (2.5). For the quantities "` and ˇ`, see Section 3.1, and k` is defined by

` \ .LC h/ D Zˇ`u` C k`u` and 0 � k` < ˇ`:

Furthermore, we (formally) set  .0/ D �
 , which is justified since �
 is the constant term of
the Laurent expansion of  at 0. Finally, we have set

F .t/ WD log t �
p
�

�Z t

0

ew
2

erfc.w/ dw
�
C
1

2
log.2/C

1

4

;

where

erfc.w/ D
2
p
�

Z 1
w

e�t
2

dt

is the complementary error function. Finally,

��Hh.�; f / D �
X

`2�n Iso.V /

aC
`
.0/"`

4
p
N�

�K`; Nh.�/:

As a special case we consider the constant function f D 1.

Theorem 4.2. Let h 2 L0=L. Then

Hh.�; 1/ D �2
p
v vol.M/C

X
m<0

degZ.m; h/
erfc.2

p
�jmjv/

2
p
jmj

e.m�/

C

X
m>0

m…N.Q�/2

� X
X2�nLm;h

length.c.X//
�
e.m�/C

X
m>0

trNm2;h.1/q
Nm2

�
1
p
N�

X
`2�n Iso.V /

"`
X
m>0

b`.Nm
2; h/.F .2

p
�vNm//e.Nm2�/

�
1

2
p
N�

X
`2�n Iso.V /

"`
�
log.4ˇ2`�v/C 
 C  .k`=ˇ`/C  .1 � k`=ˇ`/

�
defines the h-component of a weak Maass form for �L of weight 1=2.

Remark 4.3. The special functions F above and ˛ in (1.7) differ by a constant, since
both map to ˇ3=2 under the differential operator

�1=2 D 2iv
1=2 @

@ N�
:

This constant is absorbed by the undefined term trNm2.1/ in (1.7).
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Remark 4.4. Applying �1=2 toHh.�; f / we recover the generating series for the traces
of modular functions over CM points obtained in [7] (and [13] for f D 1) which in turn gen-
eralized the results of Zagier [30, 31].

Example 4.5. We recover the theorems in the introduction by considering the lattice
of Example 2.1 for N D p using Example 2.2. Alternatively, one can consider for N D 1 the
lattice

L D

´ 
b 2c

�2ap �b

!
W a; b; c 2 Z

µ
and employ the same arguments as in [7, Section 6].

Example 4.6. We consider for N D 1 the lattice L of Example 2.1. Let

h 2 L0=L Š Z=2Z

be the non-trivial element. Then for m 2 Z>0 we have

tr�m;L.1/ D 2H.4m/ and tr�m=4;L.1/C tr�m=4;LCh.1/ D 2H.m/;

where H.m/ is the Kronecker–Hurwitz class number, see e.g. [13, Section 3]. We let r3.m/
be the representation number of m as the sum of three squares. Then the famous class number
relation states r3.m/ D 12.H.4m/ � 2H.m//. Hence if we define

H.�/ WD 6
�
2HL.4�; 1/C 2HLCh.4�; 1/ �HL.�; 1/

�
;

we obtain
�1=2H.�/ D �

3.�/:

5. Theta series and the regularized theta lift

In this section we define regularized theta lifts of automorphic functions with singularities
on M against the theta function ‚L.�; z; '0/.

5.1. Some Schwartz functions. We consider the standard Gaussian '0 on V.R/,

'0.X; z/ D e
��.X;X/z ;

where .X;X/z is the majorant associated to z 2 D which is given by

(5.1) .X;X/z D .X;X/C .X;X.z//
2:

Hence .X;X/z D �.X;X/C 2R.X; z/. Recall that the Schwartz function '0 has weight 1=2
under the Weil representation acting on the space of Schwartz functions on V.R/, see e.g. [28].
Accordingly, for � D uC iv 2 H, we define

'0.X; �; z/ D
p
v'0.
p
vX; z/e�i.X;X/u D

p
ve�i.X;X/�;z ;

where
.X;X/�;z D u.X;X/C iv.X;X/z D .X;X/ N� C 2ivR.X; z/:
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To distinguish between the Laplacians acting on functions in the two variables z 2 D and
� 2 H, we often write

�z D �0;z D �y
2

�
@2

@x2
C

@2

@y2

�
for the hyperbolic Laplacian of weight 0 on D, and write

�� D �1=2;�

for the hyperbolic Laplacian on H of weight 1=2 as in (2.2). We have

��1=2;� D L5=2R1=2 C
1

2
D R�3=2L1=2;

where

Rk D 2i
@

@�
C kv�1;

Lk D �2iv
2 @

@ N�

are the weight k raising and lowering operators acting on functions on H. The following lemma
is well known, see e.g. [28], [17, p. 205, equation (2.10)].

Lemma 5.1. We have

��'0.X; �; z/ D
1

4
�z'0.X; �; z/:

We define another Schwartz function by

(5.2) '1.X; �; z/ WD �
1

�
L 1
2
'0.X; �; z/:

Hence '1 has weight �3=2. The next lemma is then immediate.

Lemma 5.2. We have

�z'0.X; �; z/ D 4�R�3=2'1.X; �; z/:

Remark 5.3. The Schwartz function 'V1 D '1 associated to the space V of signa-
ture .2; 1/ is very closely related to the Kudla–Millson Schwartz form 'V

�

KM for the space V �,
which is the vector space V together with the quadratic form �Q.X/ of signature .1; 2/ (see
also [7, Section 7]). The form 'V

�

KM has weight 3=2 and

'V
�

KM .X; �; z/ D v
�3=2'1.X; �; z/ d�.z/:

Here d�.z/ D dx dy

y2
is the invariant volume form on D. Moreover, we see that

'V
�

KM .X; �; z/ D �
1

�
�1=2'0.X; �; z/ d�.z/;

where
�kf D v

k�2Lkf D R�kv
kf :
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5.2. Theta series and theta lifts. We let ' be the Schwartz function '0 or '1 on V.R/
of weight k (equal to 1=2 or �3=2). Then for h 2 L0=L, we define a theta series by

�h.�; z; '/ D
X

X2hCL

'.X; �; z/:

In the variable z it is �-invariant and therefore descends to a function on M . We also define
a vector-valued theta series by

‚L.�; z; '/ D
X

h2L0=L

�h.�; z; '/eh:

As a function of � 2 H, we have that ‚L.�; z; '/ 2 Ak;L, see e.g. [4].
We let f .z/ be a �-invariant function on D. We define the theta lift of f by

I.�; f / D

Z
M

f .z/‚L.�; z; '0/ d�.z/(5.3)

D

X
h2L0=L

�Z
M

f .z/�h.�; z; '0/ d�.z/

�
eh;

where d�.z/ D dx dy

y2
is the invariant volume form on D. We also write

(5.4) Ih.�; f / D

Z
M

f .z/�h.�; z; '0/d�.z/

for the individual components. If f is of sufficiently rapid decay at the cusps, the theta integral
converges and defines a (in general non-holomorphic) modular form on the upper half plane of
weight 1=2 of type �L. In fact, for f a Maass cusp form, the lift was considered by Katok–
Sarnak [17]. In the present paper, we are particularly interested in the case when f is not of
rapid decay at the cusps. Then the theta integral typically does not converge and needs to be
regularized. We will carry this out in the remainder of this section. In Sections 7 and 8 will show
that I.�; f / for f 2 HC0 .�/ will give the generating series for the traces given in Section 4.

5.3. The growth of the theta kernel. The growth of the theta functions ‚L.�; z; '/
near the cusps of M is given as follows.

Proposition 5.4. As y !1,

(i) ‚L.�; �`z; '0/ D y 1p
Nˇ`

Q‚K`.�/CO.e
�Cy2/.

In particular, if `? \ .LC h/ D ;, then �h.�; �`z; '0/ D O.e�Cy
2

/.

(ii) ‚L.�; �`z; '1/ D O.e�Cy
2

/.

(iii) ‚L.�; �`z;�z'0/ D O.e�Cy
2

/.

In particular, �h.�; z; '1/ and �h.�; z;�z'0/ are ‘square exponentially’ decreasing at all cusps
of M .

Proof. This follows from a very special case of [4, Theorem 5.2]. For '0 also see [5,
Theorem 2.4], and for '1 in view of Remark 5.3 see the proof of [13, Proposition 4.1] and
[7, Proposition 4.1]. For convenience we sketch the proof.
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(i) Since
‚L.�; �`z; '/ D ‚��1

`
L.�; z; '/;

it is enough to consider the cusp1D `0. A primitive norm 0 vector of ��1
`
L in `0 is given by

B` WD

 
0 ˇ`

0 0

!
:

We may now apply [4, Theorem 5.2] for the lattice ��1
`
L, the Schwartz function '0, and the

primitive norm 0 vector B` to obtain the assertion.
(ii) Since '1 D � 1�L1=2'0 and since Q‚K`.�/ is holomorphic, we obtain (ii) by applying

the lowering operator L1=2 to (i).
(iii) This follows from (ii) by applying the raising operator R�3=2 to ‚L.�; z; '1/.

5.4. Regularization using truncated fundamental domains. Following an idea of
Borcherds [4] and Harvey–Moore [15], we regularize the theta integral by integrating over
a truncated fundamental domain and then taking a limit.

If h.s/ is a meromorphic function in a neighborhood of s0 2 C, we shall denote by
CTsDs0 Œh.s/� the constant term in the Laurent expansion of h at s D s0. Let

F D ¹z 2 H W jxj � 1=2 and jzj � 1º

be the standard fundamental domain for the action of �.1/ D SL2.Z/ on the upper half plane.
For a positive integer a we put

F a
WD

a�1[
jD0

 
1 j

0 1

!
F :

As before, let � � �.1/ be a congruence subgroup. Recall that for ` 2 Iso.V / we choose
�` 2 �.1/ such that �``0 D `, and ˛` denotes the width of the cusp `, see Section 3.1.

Lemma 5.5. We have the disjoint left coset decomposition

�.1/ D
[

`2�n Iso.V /

[
j2Z=˛`Z

N��`

 
1 j

0 1

!
:

Consequently, a fundamental domain or the action of � on D is given by

(5.5) F .�/ D
[

`2�n Iso.V /

�`F
˛` :

Moreover, if f is of rapid decay, the theta integral (5.3) is given by

(5.6) I.�; f / D
X

`2�n Iso.V /

Z
F ˛`

f .�`z/‚L.�; �`z; '0/ d�.z/:

Now assume that f is a function on M which is not necessarily decaying at the cusps.
For T > 0, we truncate F a and put F a

T WD ¹z 2 F a W y � T º.
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Definition 5.6. We define the regularized theta lift of f by

I reg.�; f / D CTsD0
�
I reg.�; s; f /

�
;

where

(5.7) I reg.�; s; f / D
X

`2�n Iso.V /

lim
T!1

Z
F
˛`
T

f .�`z/‚L.�; �`z; '0/y
�s d�.z/:

Here s is an additional complex variable. If f is rapidly decaying at the cusps, then it is
easily seen that the regularized theta lift agrees with the classical lift (5.6). However, as we will
now see, the regularized lift makes sense for a much wider class of functions f .

Proposition 5.7. Let f be a weak Maass form of weight zero for � with eigenvalue
� D s0.1 � s0/. Denote the constant term of the Fourier expansion of f at the cusp ` by
A`y

s0 C B`y
1�s0 with constants A`; B` 2 C. Then I reg.�; s; f / converges locally uniformly

in s for Re.s/ > max.Re.s0/; 1 � Re.s0// and defines an element of A1=2;L. It has a meromor-
phic continuation to the whole s-plane, which is holomorphic in s up to first order poles at
s D s0 and s D 1 � s0. The function

I reg.�; s; f / �
1
p
N

X
`2�n Iso.V /

"` Q‚K`.�/

�
A`

s � s0
C

B`

s C s0 � 1

�
has a holomorphic continuation to all s 2 C. Moreover, the regularized theta lift I reg.�; f /

defines an element of A1=2;L.

Proof. It suffices to show that for any ` 2 �n Iso.V /, the integral

I
reg
`
.�; s; f / D lim

T!1

Z
F
˛`
T

f .�`z/‚L.�; �`z; '0/y
�s d�.z/(5.8)

converges for Re.s/ > max.Re.s0/; 1 � Re.s0// and has a meromorphic continuation in s with
the appropriate poles and residues. In view of Proposition 5.4, we split up the integral as fol-
lows:

I
reg
`
.�; s; f / D lim

T!1

Z
F
˛`
T

f .�`z/

�
‚L.�; �`z; '0/ � y

1
p
Nˇ`

Q‚K`.�/

�
y�s d�.z/

C lim
T!1

Z
F
˛`
T

f .�`z/
1

p
Nˇ`

Q‚K`.�/y
1�s d�.z/:

Because of Proposition 5.4, the function in the integral of the first summand is of square ex-
ponential decay as y !1. Therefore the first summand converges for all s 2 C and defines
a holomorphic function of s.

For the second summand we split up the integral as

lim
T!1

Z
F
˛`
T

f .�`z/
Q‚K`.�/
p
Nˇ`

y1�s d�.z/ D
1

p
Nˇ`

Q‚K`.�/

Z
F
˛`
1

f .�`z/y
1�s d�.z/

C
1

p
Nˇ`

Q‚K`.�/

Z 1
yD1

Z ˛`

xD0

f .�`z/ dx
dy

y1Cs
:

The first summand on the right hand side is an integral over a compact domain. It converges
for all s and defines a holomorphic function in s. For the second summand on the right hand
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side we use the Fourier expansion of f at the cusp `,

f .z/ D
X
n2Z

a`.n; y/e

�
nx

˛`

�
:

We find that it is given by

(5.9)
˛`
p
Nˇ`

Q‚K`.�/

Z 1
yD1

a`.0; y/
dy

y1Cs
:

If we write
a`.0; y/ D A`y

s0
C B`y

1�s0 ;

we see that the integral exists for Re.s/ > max.Re.s0/; 1 � Re.s0//, and it is equal to

˛`
p
Nˇ`

Q‚K`.�/

�
A`

s � s0
C

B`

s C s0 � 1

�
:

Using "` D ˛`=ˇ` and putting together the contributions of the different cusps `, we obtain
the assertion.

In the next proposition we give a formula for I reg.�; f / as a limit, not involving the
additional parameter s.

Proposition 5.8. Let f be a weak Maass form of weight zero for � with eigenvalue
� D s0.1 � s0/. Denote the constant term of the Fourier expansion of f at the cusp ` by
A`y

s0 C B`y
1�s0 with constants A`; B` 2 C. If s0 ¤ 0; 1, then I reg.�; f / is equal toX

`2�n Iso.V /

lim
T!1

�Z
F
˛`
T

f .�`z/‚L.�; �`z; '0/d�.z/ �

�
A`
T s
0

s0
C B`

T 1�s
0

1 � s0

�
"` Q‚K`.�/
p
N

�
:

If s0 D 0, then the same formula holds when T s
0

s0
is replaced by log.T /. If s0 D 1, then the same

formula holds when T 1�s
0

1�s0
is replaced by log.T /.

Proof. For a cusp `, we let I reg
`
.�; f / D CTsD0ŒI

reg
`
.�; s; f /�. Then we have

I reg.�; f / D
X

`2�n Iso.V /

I
reg
`
.�; f /;

and it suffices to show that I reg
`
.�; f / is given by

lim
T!1

�Z
F
˛`
T

f .�`z/‚L.�; �`z; '0/ d�.z/ �

�
A`
T s
0

s0
C B`

T 1�s
0

1 � s0

�
"` Q‚K`.�/
p
N

�
:

The proof of Proposition 5.7 shows that I reg
`
.�; f / is equal to

lim
T!1

Z
F
˛`
T

f .�`z/

�
‚L.�; �`z; '0/ � y

1
p
Nˇ`

Q‚K`.�/

�
d�.z/

C
1

p
Nˇ`

Q‚K`.�/

Z
F
˛`
1

f .�`z/y d�.z/

C
"`
p
N
Q‚K`.�/CTsD0

�Z 1
yD1

.A`y
s0
C B`y

1�s0/
dy

y1Cs

�
:
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Now the simple observationZ
F
˛`
T

f .�`z/y d�.z/ D

Z
F
˛`
1

f .�`z/y d�.z/C

Z T

yD1

Z ˛`

xD0

f .�`z/y d�.z/

together with the identity

CTsD0

�Z 1
yD1

.A`y
s0
C B`y

1�s0/
dy

y1Cs

�
D lim
T!1

�
A`

�Z T

1

ys
0 dy

y
�
T s
0

s0

�
C B`

�Z T

1

y1�s
0 dy

y
�
T 1�s

0

1 � s0

��
D lim
T!1

�Z T

yD1

Z ˛`

xD0

f .�`z/y d�.z/ �

�
A`
T s
0

s0
C B`

T 1�s
0

1 � s0

��
gives the result when s0 ¤ 0. The s0 D 0 case follows similary using the identity

CTsD0

�Z 1
yD1

dy

y1Cs

�
D lim
T!1

�Z T

1

dy

y
� log.T /

�
:

5.4.1. The Laplacian. We now consider the action of the hyperbolic Laplacian on the
regularized theta lift.

Theorem 5.9. Let f be a weak Maass form for � with eigenvalue � D s0.1 � s0/. De-
note the constant term of the Fourier expansion of f at the cusp ` by A`ys

0

C B`y
1�s0 with

constants A`; B` 2 C. Then

4��I
reg.�; f / D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�I reg.�; f / if s0 ¤ 0; 1,

�

X
`2�n Iso.V /

A`"`
p
N
Q‚K`.�/ if s0 D 0,

�

X
`2�n Iso.V /

B`"`
p
N
Q‚K`.�/ if s0 D 1.

To prove this theorem we need two propositions. We start by noting that in the view of
Proposition 5.4, for f 2 A0.�/ which has at most linear exponential growth at the cusps of � ,
the integral Z

M

f .z/‚L.�; z;�z'0/ d�.z/

converges.

Proposition 5.10. Let f 2 A0.�/ and assume that f has at most linear exponential
growth at the cusps of � . Denote the constant term of the Fourier expansion of f at the cusp `
by a`.0; y/. ThenZ
M

f .z/‚L.�; z;�z'0/ d�.z/ D
X

`2�n Iso.V /

lim
T!1

"Z
F
˛`
T

.�zf /.�`z/‚L.�; �`z; '0/ d�.z/

�
"` Q‚K`.�/
p
N

��
1 � y

@

@y

�
a`.0; y/

�
yDT

#
:

In particular, the limit on the right hand side exists.
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Proof. According to (5.5), we haveZ
M

f .z/‚L.�; z;�z'0/ d�.z/(5.10)

D

X
`2�n Iso.V /

lim
T!1

Z
F
˛`
T

f .�`z/‚L.�; �`z;�z'0/ d�.z/:

We use Stokes’ theorem to rewrite the integral. For smooth functions f and g on D we have

�2i.@N@f /g D .�f /g d�.z/(5.11)

D f .�g/ d�.z/ � 2i d
�
.N@f /g C f .@g/

�
:

Consequently,Z
F
˛`
T

f .�`z/‚L.�; �`z;�z'0/ d�.z/

D

Z
F
˛`
T

.�zf /.�`z/‚L.�; �`z; '0/ d�.z/

C 2i

Z
@F

˛`
T

h�
N@f .�`z/

�
‚L.�; �`z; '0/C f .�`z/

�
@‚L.�; �`z; '0/

�i
:

Using Proposition 5.4 and inserting the Fourier expansions of f at the cusps, we find for
T !1 that X

`2�n Iso.V /

Z
F
˛`
T

f .�`z/‚L.�; �`z;�z'0/ d�.z/(5.12)

D

X
`2�n Iso.V /

Z
F
˛`
T

.�zf /.�`z/‚L.�; �`z; '0/ d�.z/

� 2i
X

`2�n Iso.V /

Q‚K`.�/

ˇ`
p
N

Z ˛`CiT

zD0CiT

�
@

@ Nz
a`.0; y/

�
y C a`.0; y/

�
@

@z
y

�
dx

CO

�
1

T

�
:

The second term on the right hand side is equal to

�

X
`

"` Q‚K`.�/
p
N

��
1 � y

@

@y

�
a`.0; y/

�
yDT

:

Inserting this into (5.12) and then into (5.10), we obtain the assertion.

Proposition 5.11. Let f be a weak Maass form of weight zero for � with eigenvalue
� D s0.1 � s0/. Denote the constant term of the Fourier expansion of f at the cusp ` by
a`.0; y/ D A`y

s0 C B`y
1�s0 with constants A`; B` 2 C. If s0 ¤ 0; 1, then

I reg.�;�zf / D

Z
M

f .z/‚L.�; z;�z'0/ d�.z/:
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If s0 D 0, then

0 D I reg.�;�zf / D

Z
M

f .z/‚L.�; z;�z'0/ d�.z/C
X

`2�n Iso.V /

A`"`
p
N
Q‚K`.�/:

If s0 D 1, then

0 D I reg.�;�zf / D

Z
M

f .z/‚L.�; z;�z'0/ d�.z/C
X

`2�n Iso.V /

B`"`
p
N
Q‚K`.�/:

Proof. We use Proposition 5.10 forZ
M

f .z/‚L.�; z;�z'0/ d�.z/

together with the fact that��
1 � y

@

@y

�
a`.0; y/

�
yDT

D .1 � s0/A`T
s0
C s0B`T

1�s0 :

Comparing this with the formula for I reg.�;�zf / of Proposition 5.8, we obtain the assertion
of the proposition.

Proof of Theorem 5.9. According to Proposition 5.8 and Lemma 5.1 we have

4��I
reg.�; f / D 4

X
`2�n Iso.V /

lim
T!1

Z
F
˛`
T

f .�`z/��‚L.�; �`z; '0/ d�.z/

D

Z
M

f .z/‚L.�; z;�z'0/:

Now the assertion of the theorem follows from Proposition 5.11.

5.5. Regularization using differential operators. Proposition 5.11 also leads to a dif-
ferent way of defining the regularized integral for weak Maass forms with non-zero eigenvalue.
This regularization uses differential operators, in fact, the Laplace operator �z on M . It is in
the spirit of the regularized Siegel–Weil formula of Kudla–Rallis via regularized theta lifts [22].
For a related treatment, see Matthes [24].

Proposition 5.12. Let f be a weak Maass form for � with eigenvalue � ¤ 0. Then

I reg.�; f / D
1

�

Z
M

f .z/‚L.�; z;�z'0/:

The integral on the right hand side converges absolutely.

Proof. According to Proposition 5.11, we have

I reg.�; f / D
1

�
I reg.�;�zf /

D
1

�

Z
M

f .z/‚L.�; z;�z'0/:

By Proposition 5.4, the integral converges. This proves the proposition.
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30 Bruinier, Funke and Imamoḡlu, Regularized theta liftings and periods of modular functions

The next lemma is a direct consequence of Proposition 5.12 and

�z'0.X; �; z/ D 4�R�3=2'1.X; �; z/:

Lemma 5.13. If f is a weak Maass form for � with eigenvalue � ¤ 0, then

I reg.�; f / D
4�

�
R�3=2

�Z
M

f .z/‚L.�; z; '1/ d�.z/

�
:

5.5.1. Eigenvalue zero. We now explain how the regularization by means of differen-
tial operators described in Proposition 5.12 can be extended to the case when the eigenvalue
is 0. The idea is to use a ‘spectral deformation’ of f into a family of eigenfunctions.

Proposition 5.14. Let f 2 H0.�/ be a harmonic weak Maass form. There exists an
open neighborhood U � C of 1 and a holomorphic family of functions .fs/s2U on D such
that fs.z/ is a weak Maass form of weight 0 for � with eigenvalue s.1 � s/, and f1 D f .

Proof. This result can be proved using Poincaré and Eisenstein series for � . See for
example [12, Section 3], [16, p. 660], or [5, Proposition 1.12].

Let f 2 H0.�/ and .fs/s2U be as in Proposition 5.14. Denote the constant term of the
Fourier expansion of fs at the cusp ` by a`.0; y; s/ D A`.s/ys C B`.s/y1�s with holomorphic
functions A`.s/; B`.s/. In view of Proposition 5.12, we have for s 2 U n ¹1º that

I reg.�; fs/ D
1

s.1 � s/

Z
M

fs.z/‚L.�; z;�z'0/ d�.z/:

The right hand side defines a meromorphic function for all s 2 U . In view of Proposition 5.11,
it has a first order pole at s D 1 with residue

(5.13)
X

`2�n Iso.V /

B`.1/"`
p
N
Q‚K`.�/:

We can define a regularized theta integral by putting

(5.14) J reg.�; f / WD CTsD1

�
1

s.1 � s/

Z
M

fs.z/‚L.�; z;�z'0/ d�.z/

�
:

We now compare this with the regularized theta integral of Definition 5.6.

Proposition 5.15. Let f 2 H0.�/ and .fs/s2U be as in Proposition 5.14. Denote the
constant term of the Fourier expansion of fs at the cusp ` by

a`.0; y; s/ D A`.s/y
s
C B`.s/y

1�s

with holomorphic functions A`.s/; B`.s/. Then we have

J reg.�; f / D I reg.�; f /C
X

`2�n Iso.V /

B 0
`
.1/"`
p
N
Q‚K`.�/:
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Proof. We put the Laurent expansion

fs.z/ D f .z/C f
0
1.z/.s � 1/CO..s � 1/

2/

of fs at s D 1 into the definition of J reg.�; f /. Here f 01.z/means the value of f 0s .z/ D
@
@s
fs.z/

at s D 1. Noticing that

CTsD1

�
1

s.1 � s/

�
D 1;

we obtain that

J reg.�; f / D

Z
M

f .z/‚L.�; z;�z'0/ d�.z/(5.15)

�

Z
M

f 01.z/‚L.�; z;�z'0/ d�.z/:

According to Proposition 5.11, we get for the first term on the right hand sideZ
M

f .z/‚L.�; z;�z'0/ d�.z/ D �
X

`2�n Iso.V /

B`.1/"`
p
N
Q‚K`.�/:

We compute the second term on the right hand side of (5.15) by means of Proposi-
tion 5.10. We have��

1 � y
@

@y

�
a`.0; y; s/

�
yDT

D .1 � s/A`.s/T
s
C sB`.s/T

1�s:

Consequently, for the derivative with respect to s at s D 1 we find��
1 � y

@

@y

�
a0`.0; y; 1/

�
yDT

D �A`.1/T C B`.1/C B
0
`.1/ � B`.1/ log.T /:

If we call this quantity C`.T /, we obtainZ
M

f 01.z/‚L.�; z;�z'0/ d�.z/

D

X
`2�n Iso.V /

lim
T!1

�Z
F
˛`
T

.�zf
0
1/.�`z/‚L.�; �`z; '0/d�.z/ �

"` Q‚K`.�/
p
N

C`.T /

�
:

Since �fs D s.1 � s/fs , we have
�f 01 D �f :

By means of Proposition 5.8, we getZ
M

f 01.z/‚L.�; z;�z'0/ d�.z/ D �I
reg.�; f / �

X
`2�n Iso.V /

.B`.1/C B
0
`.1//

"` Q‚K`.�/
p
N

:

Inserting this into (5.15), we obtain the assertion.

In particular, we see that the regularized theta integral J reg.�; f / depends on the choice
of the spectral deformation fs . However, the dependency is mild, since only the derivatives of
the constant terms in the Fourier expansions at s D 1 enter.
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6. The lift of Poincaré series and the regularized lift of jm

6.1. Scalar-valued Poincaré series of weight 0. We construct scalar-valued Poincaré
series of weight 0 for the group � � G.Q/. We will show in Section 6.3 that the theta lifts of
these series are given by linear combinations of vector-valued Poincaré series constructed in
Section 6.2. For simplicity we assume here that � D �0.N /, since this is the only case which
we will need later for the comparison of our results with [9]. We let

�1 D

* 
1 1

0 1

!+
be the subgroup of translations.

Let I�.z/ be the usual modified Bessel function as in [1, Chapter 9.6]. For s 2 C,
y 2 R>0 and n 2 Q, we let

(6.1) In.y; s/ D

´
2�jnj

1
2y

1
2 Is� 1

2
.2�jnjy/ if n ¤ 0,

ys if n D 0.

For m 2 Z we define

(6.2) Gm.z; s/ D
1

2

X

2�1n�

ŒIm.y; s/e.mx/�j0
:

The series converges for Re.s/ > 1 and defines a weak Maass form of weight 0 for �0.N /. It
has the eigenvalue s.1 � s/ under�0. The function G0 is the usual Eisenstein series while Gm
for m ¤ 0 was studied by Neunhöffer [25] and Niebur [26], among others. If m ¤ 0, it fol-
lows from its Fourier expansion, Weil’s bound and the properties of the I -Bessel function that
Gm.z; s/ has a holomorphic continuation to Re.s/ > 3

4
. If m < 0, then Gm.z; 1/ 2 HC0 .�/.

6.2. Vector-valued Poincaré series of half-integral weight. We recall the definition
of vector-valued Poincaré series for the Weil representation in a setup which is convenient
for the present paper. These series are vector-valued analogues of the Poincaré series of
weight 1=2 considered in [9, Section 2].

Let M�;�.z/ and W�;�.z/ be the usual Whittler functions (see [1, p. 190]). For s 2 C,
v 2 R>0 and n 2 Q, we let

(6.3) Mn.v; s/ D

´
�.2s/�1.4�jnjv/�1=4M 1

4
sgnn; s� 1

2
.4�jnjv/ if n ¤ 0,

vs�
1
4 if n D 0.

For h 2 L0=L, and m 2 ZCQ.h/ we define

(6.4) Pm;h.�; s/ D
1

2

X

2� 01n� 0

ŒMm.v; s/e.mu/eh�j1=2;L
:

Here we have set � 01 WD hT i � Q� with T D
��
1 1
0 1

�
; 1
�
. The series converges for Re.s/ > 1

and defines a weak Maass form of weight 1=2 for � 0 with representation �L. It has the eigen-
value .s � 1

4
/.3
4
� s/ under �1=2. When Q.h/ 2 Z and m D 0, the function P0;h.�; s/ is

a vector-valued Eisenstein series of weight 1=2.
For L as in Example 2.1 we may apply the map (2.3) to Pm;h.�; s/ for m D d

4N
and

d 2 Z to obtain the scalar-valued Poincaré series PC
d
.�; s/ considered in [9].
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6.3. The lift of Poincaré series. We now assume that L is the lattice defined in Ex-
ample 2.1. We identify the finite quadratic module L0=L with Z=2NZ equipped with the
quadratic form r 7! r2=4N . Moreover, we assume that � D �0.N /. In this section we will
explicitly calculate the regularized lift of the Poincaré series G�m.z; s/ defined in Section 6.1
for m � 0.

For the cusp `0 D1, we can realize the space W D V \ `?0 =`0 as Q
�
1
�1

�
. Hence

K WD K`0 D Z
�
1
�1

�
. Moreover we have L0=L ' K 0=K. For ˛; ˇ 2 W.R/ we define the

CŒK 0=K�-valued theta series

‚K.�; ˛; ˇ/ D
X
�2K0

e
�
Q.�C ˇ/� � .�C ˇ=2; ˛/

�
e�CK ;

and we write �K;h.�; ˛; ˇ/ for the individual components. Notice that the theta function‚K.�/
defined earlier is equal to ‚K.�; 0; 0/. The following proposition is a special case of [4, Theo-
rem 5.2].

Proposition 6.1. We have the identity

‚L.�; z; '0/ D
p
Ny‚K.�; 0; 0/

C

p
Ny

2

1X
nD1

X

2� 01n� 0

�
exp

�
�
�Nn2y2

v

�
‚K.�; nx; 0/

�ˇ̌̌̌
1=2;K


:

Theorem 6.2. Assume that Re.s/ > 1. If m is a positive integer, then

I reg.�; G�m.z; s// D
p
�N�

�
s

2

�X
njm

P m2

4Nn2
;m
n

�
�;
s

2
C
1

4

�
:

For m D 0, then

I reg.�; G0.z; s// D
N
1
2
� s
2

2
��.s/P0;0

�
�;
s

2
C
1

4

�
:

Here

��.s/ D ��s=2�

�
s

2

�
�.s/;

and Pm;h.�; s/ denotes the CŒL0=L�-valued weight 1=2 Poincaré series defined in Section 6.2.

Proof. According to Proposition 5.12 we have

I reg.�; G�m.z; s// D
1

s.1 � s/

Z
M

G�m.z; s/‚L.�; z;�z'0/ d�.z/:

The theta function on the right hand side is square exponentially decreasing at all cusps. Hence,
by the usual unfolding argument, we find that

I reg.�; G�m.z; s// D
1

s.1 � s/

Z
�1nH

I�m.y; s/e.�mx/‚L.�; z;�z'0/ d�.z/:

By Proposition 6.1, we may replace ‚L.�; z;�0;z'0/ by �0;z Q‚L.�; z; '0/, where

Q‚L.�; z; '0/ D

p
Ny

2

1X
nD1

X

2� 01n� 0

�
exp

�
�
�Nn2y2

v

�
‚K.�; nx; 0/

�ˇ̌̌̌
1=2;K


:
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The function Q‚L.�; z; '0/ and its partial derivatives have square exponential decay as y !1.
Therefore, for Re.s/ large, we may move the Laplace operator to I�m.y; s/e.�mx/ to obtain

I reg.�; G�m.z; s// D
1

s.1 � s/

Z
�1nH

�
�zI�m.y; s/e.�mx/

�
Q‚L.�; z; '0/ d�.z/(6.5)

D

Z
�1nH

I�m.y; s/e.�mx/ Q‚L.�; z; '0/ d�.z/

D

p
N

2

1X
nD1

X

2� 01n� 0

I.�; s;m; n/j1=2;K
;

where

I.�; s;m; n/ D

Z 1
yD0

Z 1

xD0

I�m.y; s/e.�mx/ exp
�
�
�Nn2y2

v

�
‚K.�; nx; 0/y d�.z/:

Using the fact that K 0 D Z
�
1=2N

�1=2N

�
and the identification K 0=K Š Z=2NZ, we have

‚K.�; nx; 0/ D
X
b2Z

e

�
b2

4N
� � nbx

�
eb:

Inserting this in the formula for I.�; s;m; n/, and by integrating over x, we see that I.�; s;m; n/
vanishes when n − m. If n j m, then only the summand for b D �m=n occurs, and so

(6.6) I.�; s;m; n/ D

Z 1
0

I�m.y; s/ exp
�
�
�Nn2y2

v

�
dy

y
e

�
m2

4Nn2
�

�
e�m=n:

We first compute the latter integral for m > 0. In this case we have

I�m.y; s/ D 2�m
1
2y

1
2 Is� 1

2
.2�my/:

Inserting this and substituting t D y2 in the integral, we obtainZ 1
0

I�m.y; s/ exp
�
�
�Nn2y2

v

�
dy

y

D 2�

Z 1
0

p
myIs�1=2.2�my/ exp

�
�
�Nn2y2

v

�
dy

y

D �
p
m

Z 1
0

Is�1=2.2�m
p
t / exp

�
�
�Nn2t

v

�
t�3=4 dt:

The latter integral is a Laplace transform which is computed in [11, equation (20) on p. 197].
Inserting the evaluation, we obtainZ 1

0

I�m.y; s/ exp
�
�
�Nn2y2

v

�
dy

y

D

p
��.s=2/

�.s C 1=2/

�
Nn2

�m2v

�1=4
M1=4;s=2�1=4

�
�m2v

Nn2

�
exp

�
�m2v

2Nn2

�
D
p
��

�
s

2

�
M m2

4Nn2

�
v;
s

2
C
1

4

�
exp

�
�m2v

2Nn2

�
:

Consequently, we have in the case n j m that

I.�; s;m; n/ D
p
��

�
s

2

�
M m2

4Nn2

�
v;
s

2
C
1

4

�
e

�
m2

4Nn2
u

�
e�m=n:
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Substituting this in (6.5), we see that

I reg.�; G�m.z; s// D
p
�N�

�
s

2

�X
njm

P m2

4Nn2
;�m
n

�
�;
s

2
C
1

4

�
:

Since Pm;h.�; s/ D Pm;�h.�; s/, this concludes the proof of the theorem for m > 0.
We now compute integral in (6.6) for m D 0. In this case we have I0.y; s/ D y

s . Insert-
ing this into (6.6), we findZ 1

0

I0.y; s/ exp
�
�
�Nn2y2

v

�
dy

y
D

Z 1
0

exp
�
�
�Nn2y2

v

�
ys�1 dy

D
�.s=2/

2

�
v

�Nn2

�s=2
:

Hence, we obtain

I.�; s;m; n/ D
�. s

2
/

2

�
v

�Nn2

�s=2
e0:

Substituting into (6.5), we see that

I reg.�; G0.z; s// D
N
1
2
� s
2

4
��s=2�

�
s

2

�
�.s/

X

2� 01n� 0

vs=2e0j1=2;K


D
N
1
2
� s
2

2
��.s/P0;0

�
�;
s

2
C
1

4

�
:

This concludes the proof of the theorem for m D 0.

6.4. The case of level 1. As an application, we consider the special case N D 1 where
� D SL2.Z/. We compute the lift of the space M Š

0.�/ D CŒj �. A basis for this space is given
by the functions jm for m 2 Z�0 whose Fourier expansion starts as

jm.z/ D q
�m
CO.q/:

For instance, j0 D 1 and j1 D j � 744.
We begin by computing the lift of the constant function in terms of Eisenstein series.

As a spectral deformation of the constant function j0 D 1 in the sense of Proposition 5.14 we
choose

j0.z; s/ D
��.2/

��.2s � 1/
G0.z; s/:

It is well known that G0.z; s/ has a first order pole at s D 1, which cancels out against the pole
of ��.2s � 1/. We have j0.z; 1/ D 1, and the constant term of j0.z; s/ at the cusp `0 D1 is
given by A1.s/ys C B1.s/y1�s with

A1.s/ D
��.2/

��.2s � 1/
D
�

3
.s � 1/CO..s � 1/2/;

B1.s/ D
��.2/

��.2s/
D 1C

�

 C log.�/ �

12�0.2/

�2

�
.s � 1/CO..s � 1/2/:
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According to Theorem 6.2, for Re.s/ > 1, the lift of j0.z; s/ is equal to

(6.7) I reg.�; j0.z; s// D
���.s/

12��.2s � 1/
P0;0

�
�;
s

2
C
1

4

�
:

By (5.13), the right hand side has a meromorphic continuation to C with a first order pole at
s D 1with residue B1.1/‚K.�/ D ‚K.�/. In particular, we see that P0;0.�; s2C

1
4
/ has a first

order pole at s D 1 with residue 6
�
‚K.�/. We obtain the following corollary to Theorem 6.2.

Corollary 6.3. We have

J reg.�; 1/ D CTsD1

�
���.s/

12��.2s � 1/
P0;0

�
�;
s

2
C
1

4

��
;

I reg.�; 1/ D J reg.�; 1/ � B 01.1/‚K.�/:

We now compute the lift of jm for m > 0 in terms of Poincaré series. It follows from
the Fourier expansion, Weil’s bound and the properties of the I -Bessel function thatG�m.z; s/
has a holomorphic continuation to Re.s/ > 3

4
. The constant term of the Fourier expansion of

G�m.z; s/ is equal to
4�m1�s�2s�1.m/

.2s � 1/��.2s/
y1�s;

where �2s�1.m/ D
P
d jm d

2s�1, see e.g. [12, 26]. We define

(6.8) jm.z; s/ WD G�m.z; s/ �
4�m1�s�2s�1.m/

.2s � 1/��.2s � 1/
G0.z; s/:

This function has an analytic continuation to Re.s/ > 3=4. The constant term in its Fourier
expansion is given by A1.s/ys C B1.s/y1�s with

A1.s/ D �
4�m1�s�2s�1.m/

.2s � 1/��.2s � 1/
;

B1.s/ D 0:

Moreover, we have

(6.9) jm.z; 1/ D jm.z/:

Hence, we may use the functions jm.z; s/ as spectral deformations of the jm.z/.
According to Theorem 6.2, for Re.s/ > 1, the lift of jm.z; s/ is equal to

I reg.�; jm.�; s// D
p
��

�
s

2

�X
njm

P m2

4n2
;m
n

�
�;
s

2
C
1

4

�
C A1.s/

��.s/

2
P0;0.�;

s

2
C
1

4
/:

By (5.13), the right hand side has a holomorphic continuation to a neighborhood of s D 1. Its
value at s D 1 is equal to the regularized integral J reg.�; jm/. Since B1.s/ D 0, we obtain the
following corollary to Proposition 5.15.

Corollary 6.4. Assume m > 0. Then

I reg.�; jm/ D J
reg.�; jm/:
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7. A Green function for '0

In this section, we introduce a Green function � for the Schwartz function '0. Its proper-
ties will be the key for the proof of the results in Section 4.

7.1. The singular function �. We first recall the definition of Kudla’s Green function �
for '1 (see [18, Section 11] and for our setting Remark 5.3). It is defined for non-zero vectors
X 2 V.R/ and given by

�.X; �; z/ D v3=2E1.2�vR.X; z//e.Q.X/ N�/(7.1)

D v3=2
�Z 1

1

e�2�vR.X;z/t
dt

t

�
e.Q.X/ N�/:

Here

E1.w/ D

Z 1
w

e�t
dt

t

with w 2 CnR�0 is the exponential integral as in [1]. Since

(7.2) E1.w/ D �
 � log.w/C
Z w

0

.1 � e�t /
dt

t
;

(the last function on the right hand is entire and is denoted by Ein.w/) we directly see that
� has a logarithmic singularity for z D DX when R.X; z/ D 0 and is smooth for Q.X/ � 0.
Outside the singularity one has, see [18],

(7.3) dd c�.X; �; z/ D '1.X; �; z/ d�.z/;

which can be also obtained via Lemma 5.2. Here d c D 1
4�i

.@ � N@/ so that

dd c D �
1

2�i
@N@ D �

1

4�
�zd�.z/:

For the relationship between � and '1 as currents, see (7.6).
We now define for X ¤ 0 our Green function � by

�.X; �; z/ D �

�Z 1
v

E1.2�R.X; z/t/e
2�.X;X/t dt

p
t

�
e.Q.X/�/:

We often drop the dependence on � in the notation. We easily calculate

(7.4) @z�.X; z/ D �� sgn.X;X.z//
.X;X 0.z//

R.X; z/
erfc

�p
�vj.X;X.z//j

�
e.Q.X/�/ dz;

where X 0.z/ D @
@z
X.z/ and

erfc.t/ D 1 � erf.t/ D
2
p
�

Z 1
t

e�r
2

dr

is the complimentary error function. Note that

X 0.z/ D
i

2y
X.z/C

1
p
Ny

 
�
1
2
Nz

0 1
2

!
:

For Q.X/ ¤ 0, we now analyze the singularities of � in more detail.
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Lemma 7.1. (i) Let X 2 V.R/ such that Q.X/ D m < 0. Then � has a logarithmic
singularity at z D zX . More precisely,

Q�.X; z/ WD �.X; z/C �
erfc.2

p
�jmjv/p
jmj

e.m�/ log jz � zX j2

is a smooth function in a neighborhood of zX . Furthermore, �.X/ and its derivatives
@�.X/, N@�.X/ are square exponential decreasing (in the coordinates x; y of z) at the
boundary of D.

(ii) Let X 2 V.R/ such that Q.X/ D m > 0. Then �.X; z/ is differentiable, but not C 1.
The 1-form @�.X; z/ is discontinuous at the cycle cX D ¹z 2 D W .X;X.z// D 0º, and
outside the cycle cX we have

@�.X; z/ D
�i

2
sgn.X;X.z// erfc

�p
�vj.X;X.z//j

�
e.m�/ dzX :

Furthermore, assume that �X is infinitely cyclic. Then �.X/ and its derivatives @�.X/,
N@�.X/ are square exponential decreasing (in the coordinates x; y) at the boundary of
the ‘tube’ �XnD.

Proof. For (i), we have m < 0. Via (7.2) we therefore immediately see that

�.X; z/C � logR.X; z/
�Z 1

v

e�4�jmjt
dt
p
t

�
e.m�/

is smooth. By (3.2) the singularity of �.X; z/ at z D zX is hence given by

��

�Z 1
v

e�4�jmjt
dt
p
t

�
e.m�/ log jz � zX j2 D ��

erfc.2
p
�jmjv/p
jmj

e.m�/ log jz � zX j2:

Since E1.w/ � e�w=w, we have

j�.X/j � �

�Z 1
v

e��.X;X.z//
2

R.X; z/
t�3=2 dt

�
e.m�/:

Now the growth behavior follows from

.X;X.z//2 D
N

y2

�
x3jzj

2
� 2x1 Re.z/ � x2

�2
for X D

�
x1 x2
x3 �x2

�
. Note that since Q.X/ < 0, we must have x3 ¤ 0.

By the G-equivariance properties of �, X.z/, and dzX , it suffices to show (ii) for

X D ˙

 p
m=N

�
p
m=N

!
:

Then we have .X;X.z// D �2x
p
m=y, R.X; z/ D 2mjzj2=y2, .X; @X.z// D i

p
m Nz=y2 dz,

and dzX D ˙dz=
p
mz. Hence by (7.4) we obtain

(7.5) @�.X/ D � sgn.x/
�i

2
p
m

erfc
�
2
p
�vm

jxj

y

�
e.m�/

dz

z
;
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which is the asserted equality for thisX . For thisX , we have �X D
˝�
r 0
0 r�1

�˛
with some r > 1.

Hence cX is the imaginary axis and a fundamental domain for �XnD is given by the annulus
¹z 2 D W 1 � jzj < rº. Then (7.5) implies the very rapid decay in �XnD.

We now state the analog to (7.3).

Proposition 7.2. Outside the singularities,

dd c�.X; �; z/ D '0.X; �; z/ d�.z/:

Proof. Using (7.3) we compute

dd c�.X; �; z/ D �

�Z 1
v

dd cE1.2�R.X; z/t/e
2�.X;X/t dt

p
t

�
e�i.X;X/�

D �

�Z 1
v

t�3=2'1.X; uC i t; z/e
��i.X;X/.uCit/ dt

p
t

�
e�i.X;X/� d�.z/

D �

�Z 1
v

t�2
�
L 1
2
'0.X; uC i t; z/

�
e��i.X;X/.uCit/ dt

�
e�i.X;X/� d�.z/

D �

�Z 1
v

@

@t

�p
te��.X;X.z//

2t
�
dt

�
e�i.X;X/� d�.z/

D '0.X; �; z/ d�.z/:

Here we used '0.X; uC i t; z/ D
p
te��.X;X.z//

2te�i.X;X/.uCit/.

The next lemma gives the relationship to Kudla’s Green function.

Lemma 7.3. Outside the singularity DX ,

L 1
2
�.X; �; z/ D ���.X; �; z/:

Proof. We compute

L 1
2
�.X; �; z/ D �2�iv2

@

@ N�

�Z 1
v

E1.2�R.X; z/t/e
2�.X;X/t dt

p
t

�
e.Q.X/�/

D �v2
�
@

@v

Z 1
v

E1.2�R.X; z/t/e
2�.X;X/t dt

p
t

�
e.Q.X/�/

D ���.X; �; z/;

as claimed.

To summarize, we have the following diagram:

�.X; �; z/
� �

1
�
L1=2

//
_

ddc

��

�.X; �; z/
_

ddc

��

'0.X; �; z/d�.z/
� �

1
�
L1=2

// '1.X; �; z/ d�.z/.

Brought to you by | University of Durham
Authenticated | 129.234.252.67
Download Date | 5/7/14 3:02 PM
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7.2. Current equations. We now consider � as a current. The current equations we
obtain for � can be viewed as a refinement of Kudla’s current equation for � , see [18, Proposi-
tion 11.1], namely, for X ¤ 0,

(7.6) dd cŒ�.X; �; z/�C v3=2e.m N�/ıDX D Œ'1.X; �; z/ d�.z/�;

as currents acting on functions with compact support on D. Here DX D ; if Q.X/ � 0. We
recover (7.6) by applying the lowering operator L1=2 to the current equations for � below.

We first note that by Proposition 7.2 for a C 2-function f on D we have

2�if .z/'0.X; z/d�.z/ D d
�
f .z/@�.X; z/

�
� d

�
N@f .z/�.X; z/

�
(7.7)

C @N@f .z/�.X; z/;

away from the singularities of �.

7.2.1. The elliptic case. Throughout this subsection we assume that X 2 V is a vector
of length Q.X/ D m < 0. Then the stabilizer �X of X is finite.

Proposition 7.4. The function �.X; �; z/ satisfies the following current equation:

dd cŒ�.X; �/�C �
erfc.2

p
�jmjv/

2
p
jmj

e.m�/ıDX D Œ'0.X; �/ d�.z/�

as currents on C 2-functions on D with at most linear exponential growth, that is, for such f ,Z
D

f .z/'0.X; �; z/ d�.z/ D
�e2�m�

2
p
jmj

erfc.2
p
�jmjv/f .zX /

�
1

4�

Z
D

.�f .z//�.X; �; z/ d�.z/:

Proof. For functions with compact support this can be easily seen using (7.7), Stokes’
theorem, and the logarithmic singularity of �. In fact, it is very special case of the Poincaré–
Lelong Lemma, see e.g. [29, pp. 41–42]. For functions with at most linear exponential growth
the same argument goes through since �.X/ and its derivatives are square exponentially de-
creasing.

Corollary 7.5. Let f 2 HC0 .�/. ThenZ
M

f .z/
X


2�Xn�

'0.X; �; 
z/ d�.z/

converges, andZ
M

f .z/
X


2�Xn�

'0.X; �; 
z/ d�.z/ D
1

j�X j

Z
D

f .z/'0.X; �; z/ d�.z/

D
�e2�m�

2
p
jmj

erfc.2
p
�jmjv/

1

j�X j
f .DX /:

Proof. This is immediate from Proposition 7.4 and the linear exponential growth of
weak Maass forms.
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7.2.2. The non-split hyperbolic case. Throughout this subsection we will assume that
X 2 V is a vector of positive lengthQ.X/ D m > 0. In addition, we assume that the stabilizer
�X is infinite cyclic.

Proposition 7.6. For X as above, the function �.X; �; z/ satisfies the following current
equation:

dd cŒ�.X; �/�C
1

2
e.m�/ıc.X/;dzX D Œ'0.X; �/ d�.z/�

as currents on C 2-functions on �XnD with at most linear exponential growth. That is, for
such f ,Z

�XnD

f .z/'0.X; �; z/ d�.z/ D
1

2
e.m�/

Z
c.X/

f .z/ dzX

�
1

4�

Z
�XnD

.�f .z//�.X; �; z/ d�.z/:

Proof. We can assume that X D
p
m=N

�
1
�1

�
so that

cX D

²
z 2 D W .X;X.z// D �

x

y
D 0

³
is the imaginary axis, �X D

˝�
r 0
0 r�1

�˛
, and �XncX inside the annulus

�XnD D ¹z 2 D W 1 � jzj � rº

is given by ¹z D iy W 1 � y � rº. We define an "-neighborhood for cX in �XnD by

U".cX / D

²
z 2 �XnD W j.X;X.z//j D

jxj

y
< "

³
:

We haveZ
�XnD

f .z/'0.X; �; z/ d�.z/ D lim
"!0

Z
�XnD�U".cX /

f .z/'0.X; �; z/ d�.z/:

Using (7.7) we see that for fixed " the integral on the right hand side is equal to

�
1

2�i

Z
@U".cX /

f .z/@�.X; z/C
1

2�i

Z
@U".cX /

N@f .z/�.X; z/C
1

2�i

Z
�XnD�U".cX /

@N@f .z/�.X; z/:

(Note @U".cX / D �@.�XnD � U".cX //.) Here we also used the very rapid decay of '0, �, and
@� at the boundary of the tube �XnD. As "! 0 the last term becomesZ

�XnD

.dd cf .z//�.X; �; z/ d�.z/:

The second term vanishes since � is continuous. For the first term, we define

cX;˙" D

²
z 2 �XnD W �.X;X.z// D

x

y
D ˙"

³
:

Then by (7.5) we obtainZ
@U".cX /

f .z/@�.X; z/ D

�Z
cX;"

f .z/ dzX C

Z
cX;�"

f .z/ dzX

�
erfc

�p
�mv"

�
e.m�/:

Taking the limit completes the proof.
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This holds in particular if f is a weak Maass form of weight 0. As an immediate conse-
quence of Proposition 7.6, we obtain the following result.

Corollary 7.7. Let f 2 HC0 .�/. ThenZ
M

f .z/
X


2�Xn�

'0.X; �; 
z/ d�.z/

converges, andZ
M

f .z/
X


2�Xn�

'0.X; �; 
z/ d�.z/ D

Z
�XnD

f .z/'0.X; �; z/ d�.z/

D
1

2
e.m�/

Z
c.X/

f .z/ dzX :

Remark 7.8 (The split hyperbolic case). Assume that X 2 V is a vector of positive
length Q.X/ D m > 0 such that the stabilizer �X is trivial. Hence �XnD D D. Then Propo-
sition 7.6 carries over to the present situation if one assumes that f is a function of compact
support on D. However, for a function f not of sufficient decay,Z

M

f .z/
X

2�

'0.X; �; 
z/ d�.z/

does not converge. In fact, exactly these terms require the theta lift to be regularized.

8. The Fourier expansion of the regularized theta lift

In this section, we give the proofs for the results stated in Section 4. We set

(8.1) �m;h.�; z/ D
X

X2Lm;h

'0.X; �; z/;

which defines a �-invariant function on D. We then have

(8.2) Ih.�; f / D
X
m2Q

Z reg

M

f .z/�m;h.�; z/ d�.z/;

which is the Fourier expansion of Ih.�; f /. (Since picking out the m-th Fourier coefficient
is achieved by integrating over a circle, we can interchange the regularized integral with the
‘Fourier integral’.) More precisely, let f 2 HC0 .�/ be a harmonic weak Maass form for �
with constant terms aC

`
.0/ at the cusp `. Then by Proposition 5.8 the m-th Fourier coefficient

of the regularized lift is given byZ reg

M

f .z/�m;h.�; z/ d�.z/ D lim
T!1

�Z
MT

f .z/�m;h.�; z/ d�.z/(8.3)

�
log.T /
p
N

X
`2�n Iso.V /

aC
`
.0/"`b`.m; h/

�
:

Here MT is the truncated surface MT defined in (3.1) and b`.m; h/ is the .m; h/-Fourier
coefficient of the unary theta series Q‚K`.�/ as before. For m ¤ 0, the set �nLm;h is finite.
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Therefore, for these m, we seeZ reg

M

f .z/�m;h.�; z/ d�.z/(8.4)

D lim
T!1

� X
X2�nLm;h

Z
MT

f .z/
X


2�Xn�

'0.X; �; 
z/ d�.z/

�
log.T /
p
N

X
`2�n Iso.V /

aC
`
.0/"`b`.m; h/

�
:

For non-zero m in the elliptic and the split hyperbolic situation we have seen in Sec-
tion 7.2 that Z

M

X

2�Xn�

f .z/'0.X; �; 
z/ d�.z/

actually converges, corresponding to the fact that b`.m; h/ D 0. Then the current equations in
Section 7.2, Corollaries 7.5 and 7.7, give the Fourier coefficients for Theorem 4.1 for those m.
In the next section we will consider the split hyperbolic periods, as well as the 0-th coefficient.

8.1. The split hyperbolic Fourier coefficients. We now consider the case m=N is a
square, when the associated cycles are infinite geodesics. Throughout X 2 V denotes a vector
of length Q.X/ D m with m=N is a square and f 2 HC0 .�/ is a harmonic weak Maass form.

In view of the characterization of the regularized integral in (8.4), we need to consider
the behavior of

R
MT

P

2� f .z/'0.X; �; 
z/ d�.z/ as T !1.

Proposition 8.1. The asymptotic behavior ofZ
MT

X

2�

f .z/'0.X; �; 
z/ d�.z/

as T !1 is given by

1

2

�Z reg

cX

f .z/ dzX

�
e.m�/ �

1

2
p
m

"�
log 2
p
�vmC

1

2
log 2C

1

4



�
p
�

Z 2
p
�vm

0

ew
2

erfc.w/ dw
�
.aC
`X
.0/C aC

`�X
.0//

C 2�

�Z pv
0

e4�mw
2

dw

��X
n<0

aC
`X
.n/e2�i Re.c.X//n

C aC
`�X

.n/e2�i Re.c.�X//n
�

C .aC
`X
.0/C aC

`�X
.0// log.T /

#
e.m�/:

Before we prove the proposition, we first show how this implies the formula for this
Fourier coefficient given in Theorem 4.1. In view of (8.4) we only need to show

Lemma 8.2. We have

(8.5)
1

2
p
m

X
X2�nLm;h

.aC
`X
.0/C aC

`�X
.0// D

1
p
N

X
`2�n Iso.V /

aC
`
.0/"`b`.m; h/:
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Proof. We can sort the infinite geodesics by the cusps ` to which they go. We define
ı`.m; h/ to be 1 if there exists a X 2 Lm;h such that cX ends at the cusp `, that is, if X is
perpendicular to `. By [13, Lemma 3.7], there are either no or 2

p
m=N"` many X in �nLm;h

such that the corresponding cX end in `. Hence the left hand side of (8.5) is equal to
1
p
N

X
`2�n Iso.V /

"`.ı`.m; h/C ı`.m;�h//a
C

`
.0/ D

1
p
N

X
`2�n Iso.V /

"`b`.m; h/a
C

`
.0/:

This proves the lemma.

The remainder of the section will be devoted to the proof of Proposition 8.1. We begin
with a few lemmas.

Lemma 8.3. Let f 2 HC0 .�/. ThenZ
MT

f .z/
X

2�

'0.X; �; 
z/ d�.z/ D
1

2
e.m�/

Z
cTX

f .z/ dzX

C
1

2�i

Z
@MT

f .z/
X

2�

@�.X; �; 
z/

C
1

2�i

Z
@MT

N@f .z/
X

2�

�.X; �; 
z/:

Here cTX D cX \MT .

Proof. Proceed as in the proof of Proposition 7.6. Since in a truncated fundamental do-
main for � , the only singularities of

P

2� @�.X; �; 
z/ are along cTX , everything goes through

as before except that one obtains in addition the boundary terms above.

Lemma 8.4. For f 2 HC0 .�/, the differential N@f .z/ is rapidly decreasing and hence

1

2�i
lim
T!1

Z
@MT

N@f .z/
X

2�

�.X; �; 
z/ D 0:

The main task is to consider

(8.6)
1

2�i

Z
@MT

f .z/
X

2�

@�.X; �; 
z/:

By arguments exactly analogous to [7, Lemma 5.2] (where the integral of f against @�.X/ is
considered), we see that the asymptotic behavior of (8.6) as T !1 is the same as that of

1

2�i

Z
@MT;`X

f .z/
X

2�`X

@�.X; �; 
z/(8.7)

C
1

2�i

Z
@MT;`�X

f .z/
X


2�`�X

@�.X; �; 
z/:

Here @MT;`X ; @MT;`�X are the boundary components of MT at the cusps `X ; Q̀X D `�X re-
spectively. All other terms are rapidly decaying.
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The key is the asymptotic behavior of
P

2�`X

@�.X; �; 
z/, which is given in the next
lemma.

Lemma 8.5. Let r 2 Q be the real part of the geodesic c.X/ and write ˛ D ˛`X for the
width of the cusp `X . For a nonzero integer n define the function g.n; y/ by

g.n; y/ D

Z 1
1

e4�vm=w
2

�
e�C.w/

2

�
2�
p
vm

w
erfc.C.w//

�
dw

w
;

where

C.w/ D

�
2
p
�vm

w
C

�nyw

2
p
�vm˛

�
:

Then for r < Re.�`X z/ � r C ˛,

1

2�i

X

2�`X

@�.X; �; 
�`X z/e.�m�/

D
1

2
p
m˛

"X
n¤0

g.n; y/e

�
�
n.z � r/

˛

�
�
p
�

Z 2
p
�vm

0

ew
2

erfc.w/ dw C log
�
2
p
�vm

y

�

C
1

2
 

�
z � r

˛

�
C
1

2
 

�
1 �

z � r

˛

�
C log˛ C

1

2
log.2/C

1

4



#
dz:

Proof. By applying �`X we can assume that

X D

r
m

N

 
1 �2r

0 �1

!

so that cX D ¹z 2 D W Re.z/ D rº is a vertical geodesic. Hence `X represents the cusp1 and
�`X D

®�
1 ˛k
0 1

�
W k 2 Z

¯
with ˛ D ˛`X . Then (see also (7.5))

1

2�i
@�.X; z/ D �

p
v
x � r

y

1

z � r

�Z 1
1

e
�4�vm .xCr/

2

y2
w2
dw

�
e.m�/ dz:

Replacing z by z C r , we can assume r D 0. We set for s 2 C

!.z; s/ D �
p
v
x

y

1

z

Z 1
1

e
�4�vmx

2

y2
w2
ws dw;

so that
1

2�i
@�.X; z/ D !.z; 0/e.m�/ dz:

We also define
�.z; s/ WD

X
n2Z

!.z C ˛n; s/;

so that
1

2�i

X

2�`X

@�.X; �; 
z/ D �.z; 0/e.m�/ dz:
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Note that �.z; s/ is a holomorphic function in s. For Re.s/ > �1, we write

�.z; s/ D �
p
v
1

y

X
n2Z

x C ˛n

z C ˛n

Z 1
0

e
�4�vm .xC˛n/

2

y2
w2
ws dw(8.8)

C
p
v
1

y

X
n2Z

x C ˛n

z C ˛n

Z 1

0

e
�4�vm .xC˛n/

2

y2
w2
ws dw:(8.9)

For the term on the right hand side of (8.8), we compute

(8.10) � 2�s�2v�s=2.�m/�.sC1/=2˛�s�1ys�

�
s C 1

2

�X
n2Z

sgn.x C ˛n/
. z
˛
C n/jx

˛
C njs

:

Since 0 < x � ˛, we see

X
n2Z

sgn.x C ˛n/
. z
˛
C n/jx

˛
C njs

D

1X
nD0

1

. z
˛
C n/jx

˛
C njs

C

1X
nD0

1

.nC .1 � z
˛
//jnC .1 � x

˛
/js
:

Now (using (3.7))

lim
s!0C

1X
nD0

1

.w C n/jw0 C njs
�

1

.w0 C n/sC1
D

1X
nD0

1

w C n
�

1

w0 C n
D � .w/C  .w0/:

Since the constant term of the Laurent expansion of the Hurwitz zeta-function H.w0; s/ at
s D 1 is � .w0/, we conclude

1X
nD0

1

.w C n/jw0 C njs
D
1

s
�  .w/CO.s/:

Via (8.10) we therefore easily see

�
p
v
1

y

X
n2Z

x C ˛n

z C ˛n

Z 1
0

e
�4�vm .xC˛n/

2

y2
w2
ws dw(8.11)

D
1

2
p
m˛

�
�
1

s
C
1

2
 

�
z

˛

�
C
1

2
 

�
1 �

z

˛

�
�
� 0.1

2
/

4
p
�
C log

�
2
p
�vm˛

y

��
CO.s/:

Note � 0.1=2/ D �
p
�.2 log.2/C 
/.

To compute (8.9), we first substitute w ! 1
w

in the integral and obtain

(8.12)
p
v
1

y

X
n2Z

x C ˛n

z C ˛n

Z 1
1

e
�4�vm .xC˛n/

2

y2w2 w�2�s dw:

Now we apply Poisson summation. Using [7, Lemma 5.1], we see that (8.12) equals

1

2
p
m˛

X
n2Z

g.n; y; s/e

�
�
nz

˛

�
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with

g.n; y; s/ D

Z 1
1

e4�vm=w
2

�
e
�

�2p�vm
w

C
�nyw

2
p
�vm˛

�2
�
2�
p
vm

w
erfc

�
2
p
�vm

w
C

�nyw

2
p
�vm˛

��
w�s

dw

w
:

For n ¤ 0, the function g.n; z; s/ is holomorphic at s D 0, while for n D 0 we have

g.0; z; s/ D

Z 1
1

w�s�1 dw � 2�
p
vm

Z 1
1

e4�vm=w
2

erfc
�
2
p
�vm

w

�
w�s�2 dw

D
1

s
�
p
�

Z 2
p
�vm

0

ew
2

erfc.w/ dw CO.s/:

Combining this with (8.11) completes the proof of Lemma 8.5.

Lemma 8.5 now immediately gives the next result.

Lemma 8.6. Let r 2 Q be the real part of the geodesic c.X/ and write ˛ D ˛`X . Let

f .�`X z/ D
X
n2Z

aC
`X
.n/e2�inz=˛ C

X
n<0

a�`X .n/e
2�in Nz=˛

be the Fourier expansion of f at the cusp `X . Then

1

2�i

Z
@MT;`X

f .z/
X

2�`X

@�.X; �; 
z/

D �
1

2
p
m

X
n¤0

g.n; T /e

�
nr

˛

��
aC
`X
.n/C a�`X .n/e

4�ny
�

�
1

4
p
m˛

Z iTC˛

zDiT

�
 

�
z

˛

�
C  

�
1 �

z

˛

�
C 2 log˛

�
f .�`X .z C r// dz

�
1

2
p
m

�
1

2
log.2/C

1

4

 C log

�
2
p
�vm

T

�
�
p
�

Z 2
p
�vm

0

ew
2

erfc.w/ dw
�
aC
`X
.0/:

We consider the first term on the right hand side in Lemma 8.6.

Lemma 8.7. We have

�
1

2
p
m

lim
T!1

X
n¤0

g.n; T /e

�
nr

˛

��
aC
`X
.n/C a�`X .n/e

4�ny
�

D 2�

�Z pv
0

e4�mw
2

dw

��X
n<0

aC
`X
.n/e

�
nr

˛

��
:

Proof. The statement follows from erfc.t/ D O.e�t
2

/ as t !1 and erfc.t/ D 2 as
t ! �1.
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Summarizing, in view of (8.7), using Lemmas 8.6, 8.7, and Theorem 3.3 we finally obtain
the asymptotic behavior of (8.6).

Lemma 8.8. The asymptotic behavior of

1

2
p
m

Z
cTX

f .z/dzX C
1

2�i

Z
@MT

f .z/
X

2�

@�.X; �; 
z/e.�m�/

as T !1 is given by

1

2

Z reg

cX

f .z/ dzX �
1

2
p
m

�
log

2
p
�vm

T
C
1

2
log 2C

1

4



�
p
�

Z 2
p
�vm

0

ew
2

erfc.w/ dw
��
aC
`X
.0/C aC

`�X
.0/
�

C 2�

�Z pv
0

e4�mw
2

dw

��X
n<0

aC
`X
.n/e

�
nRe.c.X//

˛

�
C aC

`�X
.n/e

�
nRe.c.�X//

˛

��
:

Combining Lemma 8.8 with Lemma 8.4 and using Lemma 8.3 completes the proof of
Proposition 8.1!

8.2. The parabolic Fourier coefficient. Let f 2 HC0 .�/. For m D 0, noteZ reg

M

f .z/�0;h.�; z/ d�.z/ D

Z reg

M

f .z/ d�.z/C

Z reg

M

X
X2L0;h
X¤0

f .z/'0.X; �; 
z/ d�.z/;

where Z reg

M

f .z/ d�.z/ D lim
T!1

Z
MT

f .z/ d�.z/

as in [7] and Z reg

M

f .z/
X

X2L0;h
X¤0

'0.X; �; 
z/ d�.z/(8.13)

D lim
T!1

X
`2�n Iso.V /

�Z
MT

f .z/
X


2�=�`

X
X2`\L0;h
X¤0

'0.X; �; 
z/ d�.z/

�
aC
`
.0/"`b`.0; h/
p
N

logT
�

by (8.3). Note that b`.0; h/ D 1 if and only if Nh D 0. Otherwise b`.0; h/ D 0.
ForQ.X/ D 0, the function �.X; z/ and its derivatives have no singularities inD so that

the equation
dd c�.X; z/ D '0.X; z/

holds everywhere. The following lemma is therefore immediate.
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Lemma 8.9. Let f 2 HC0 .�/. Fix a cusp `. Then for T sufficiently large we haveZ
MT

f .z/
X


2�=�`

X
X2`\L0;h
x¤0

'0.X; �; 
z/ d�.z/

D
1

2�i

�Z
@MT

f .z/
X


2�=�`

X
X2`\L0;h
X¤0

@�.X; �; 
z/

C

Z
@MT

N@f .z/
X


2�=�`

X
X2`\L0;h
X¤0

�.X; �; 
z/

�
:

As before, the second term on the right hand side in Lemma 8.9 vanishes in the limit. In
view of (8.13) the following proposition gives the constant coefficient in Theorem 4.1.

Proposition 8.10. Write ` \ .LC h/ D Zˇ`u` C k`u` for some 0 � k` < ˇ`. Then
the asymptotic behavior as T !1 of

1

2�i

Z
@MT

f .z/
X


2�=�`

X
X2`\L0;h
X¤0

@�.X; �; 
z/

is given by

�aC
`
.0/

"`

2
p
N

�
log.4ˇ2`�v/C 
 C  

�
k`

ˇ`

�
C  

�
1 �

k`

ˇ`

�
� 2 logT

�
:

Here we (formally) set  .0/ D �
 , which is justified since �
 is the constant term of the
Laurent expansion of  at 0.

Proof. We have

X
X2`\L0;h
X¤0

@�.X; �; z/ D

1X0

nD�1

@�.nu` C h`/; z/:

Here
P0 indicates that we omit n D 0 in the sum in the case of the trivial coset. We can assume

that ` corresponds to the cusp1 so that u` D
�
0 ˇ
0 0

�
with ˇ D ˇ` and h` D

�
0 k
0 0

�
for some

0 � k D k` < ˇ. We easily see

1

2�i
@�.nX` C h`; z/ D �

p
v

2y

�Z 1
1

e��.nˇCk/
2vNt=y2 dt

p
t

�
dz:

Hence X

2�=�`

X
X2`\L0;h
X¤0

@�.X; �; 
z/

is rapidly decaying at all cusps except 1, and for that cusp in the limit all terms in the sum
over �=�` vanish except 
 D 1.
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We set

�.s/ D �

p
v

2y

1X0

nD�1

Z 1
1

e��.nˇCk/
2vNt=y2 ts

dt
p
t

(8.14)

D �

p
v

2y

1X0

nD�1

Z 1
0

e��.nˇCk/
2vNt=y2 ts

dt
p
t

(8.15)

C

p
v

2y

1X0

nD�1

Z 1

0

e��.nˇCk/
2vNt=y2 ts

dt
p
t
:

For the first term in (8.15), we have

�
1

2ˇ
p
�N

�
�ˇ2vN

y2

��s
�

�
s C

1

2

��
H

�
2s C 1;

k

ˇ

�
CH

�
2s C 1; 1 �

k

ˇ

��
(8.16)

D
1

2ˇ
p
N

�
�1

s
C log

�
�ˇ2vN

y2

�
C 2 log 2C 


C  

�
k

ˇ

�
C  

�
1 �

k

ˇ

��
CO.s/:

Here H.s;w/ D
P1
nD0.nC w/

�s denotes the Hurwitz zeta function, where for w D 0 we set
H.s;w/ D �.s/. Then H.s;w/ has a simple pole at s D 1 with constant term � .w/ in the
Laurent expansion. With our convention for  .0/ above, (8.16) also holds for k D 0.

For the second term in (8.15), we substitute t ! 1
t

and apply the theta transformation
formula to obtain

1

2ˇ
p
N

Z 1
1

X
n2Z

e2�ink=ˇe��y
2n2t=ˇ2vN t�s

dt

t
� ık;0

p
v

y

Z 1
1

t�s�3=2 dt(8.17)

D
1

2ˇ
p
N

1

s
C g.y/CO.s/;

for a function g with limy!1 g.y/ D 0. Combining (8.16) and (8.17) gives an expression
for �.0/ dz D 1

2�i
@�.nX` C h`; z/ which we can easily integrate over @MT;` to obtain the

lemma.
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