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ABSTRACT
We assess the detectability of baryonic acoustic oscillation (BAO) in the power spectrum of

galaxies using ultralarge volume N-body simulations of the hierarchical clustering of dark

matter and semi-analytical modelling of galaxy formation. A step-by-step illustration is given

of the various effects (non-linear fluctuation growth, peculiar motions, non-linear and scale-

dependent bias) which systematically change the form of the galaxy power spectrum on large

scales from the simple prediction of linear perturbation theory. Using a new method to ex-

tract the scale of the oscillations, we nevertheless find that the BAO approach gives an un-

biased estimate of the sound horizon scale. Sampling variance remains the dominant source

of error despite the huge volume of our simulation box (=2.41 h−3 Gpc3). We use our re-

sults to forecast the accuracy with which forthcoming surveys will be able to measure the

sound horizon scale, s, and, hence constrain the dark energy equation of state parameter, w

(with simplifying assumptions and without marginalizing over the other cosmological param-

eters). Pan-STARRS could potentially yield a measurement with an accuracy of �s/s = 0.5–

0.7 per cent (corresponding to �w ≈ 2–3 per cent), which is competitive with the proposed

WFMOS survey (�s/s = 1 per cent �w ≈ 4 per cent). Achieving �w � 1 per cent using BAO

alone is beyond any currently commissioned project and will require an all-sky spectroscopic

survey, such as would be undertaken by the SPACE mission concept under proposal to ESA.

Key words: methods: N-body simulations – cosmology: theory – large-scale structure of

Universe.

1 I N T RO D U C T I O N

The discovery that the rate of expansion of the Universe is apparently

accelerating was one of the key advances in physical cosmology in

the 1990s (Riess et al. 1998; Perlmutter et al. 1999). Understand-

ing the nature of the dynamically dominant dark energy, which is

believed to be responsible for this behaviour, is one of the biggest

challenges now facing cosmologists.

Over the past decade our knowledge of the basic cosmological pa-

rameters, which describe the content of the Universe, its expansion

history and ultimate fate has improved tremendously. This progress

is the result of advances on two fronts: the advent of data sets

which have provided fresh views of the Universe with unprece-

dented detail and the development of the theoretical machinery re-

quired to interpret these new measurements. Currently, the values of

many cosmological parameters are known to an accuracy of around

10 per cent (albeit with caveats regarding degeneracies between

certain combinations of parameters and also regarding the precise

number of parameters that are allowed to vary in the cosmological

model; see e.g. Sánchez et al. 2006).

�E-mail: raul.angulo@durham.ac.uk (REA); c.m.baugh@durham.ac.uk

(MB); c.s.frenk@durham.ac.uk (CSF); cedric.lacey@durham.ac.uk (CL)

The cold dark matter (CDM) model has emerged as the most plau-

sible description of our Universe. In the most successful version of

this model, more than 70 per cent of the density required to close the

Universe is in the form of dark energy. Currently, there is no model

which can reconcile the magnitude of the dark energy component

with the value expected from particle physics arguments. A simple

phenomenological description of the dark energy is provided by the

equation of state that relates its pressure, P, and density, ρ, which is

encapsulated in the parameter w = P/ρ c2. If the dark energy has

the form of the cosmological constant, w = −1. The indications

are that the dark energy now has a form close to that expected for

a cosmological constant (Riess et al. 2004; Sánchez et al. 2006).

However, in the absence of a theoretical model for the dark energy,

it is possible that the equation of state could depend on space and/or

time.

A whole range of experiments and surveys is being planned which

number amongst their goals determining the equation of state of the

dark energy as a function of redshift (for a discussion, see Albrecht

et al. 2006; Peacock & Schneider 2006). Several techniques are

being considered, which are sensitive to the influence of the dark

energy on various features of the cosmological world model. These

include the Hubble diagram of Type Ia supernovae (SNe Ia), counts

of clusters of galaxies, the weak gravitational lensing pattern of faint

galaxies and the measurement of the baryonic acoustic oscillation
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(BAO) scale in the matter distribution as a function of redshift. The

measurements and data analysis required to obtain useful constraints

on the equation of state parameter are so demanding, and so open

to potential systematic errors, that it is necessary to pursue as many

different avenues as possible.

In this paper, we focus on the test using the BAO. The BAO is

the name given to a series of peaks and troughs on scales on the

order of 100 h−1 Mpc, imprinted on the power spectrum of matter

fluctuations prior to the epoch of last scattering, when the matter

and radiation components of the Universe were coupled (Peebles &

Yu 1970). The BAO are the counterpart of the acoustic peaks seen

in the power spectrum of the temperature of the cosmic microwave

background (CMB) radiation, though they have a different phase

and a much smaller amplitude (Sunyaev & Zeldovich 1970; Press

& Vishniac 1980; Hu & Sugiyama 1996; Eisenstein & Hu 1998;

Meiksin, White & Peacock 1999). The wavelength of the BAO is

related to the size of the sound horizon at recombination. This does

not depend on the amount or nature of the dark energy, but on the

physical density of matter (�mh2) and baryons (�bh2). Given the

values of these parameters, for example, from the CMB or large-

scale structure data, the sound horizon scale is known and can be

treated as a standard ruler. The apparent size of this feature in the

power spectrum of galaxies or galaxy clusters does depend on the

dark energy and its equation of state through the angular diameter

distance–redshift relation (e.g. Blake & Glazebrook 2003; Hu &

Haiman 2003)

BAO in the galaxy distribution were first glimpsed in the early

stages of the ‘two-degree-Field Galaxy Redshift Survey’ (2dFGRS)

(Percival et al. 2001) and finally detected in the power spectrum of

the completed 2dFGRS (Cole et al. 2005). The equivalent feature, a

spike, was also found in the correlation function measured from the

luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey

(SDSS) (Eisenstein et al. 2005). Cole et al. used the BAO to constrain

the parameter combination (�M/�b, �M) (where �M and �b denote

the matter and baryon density parameters, respectively). Eisenstein

et al. used the location of the spike in the correlation function to

constrain the absolute distance to the median redshift of the SDSS

LRG sample and hence constrained the value of �M. Hütsi (2006a,b)

carried out a power-spectrum analysis of a similar LRG sample, and

combined this measurement with other data sets to constrain the

values of cosmological parameters. More recently, the BAO have

been extracted from the power spectrum measured from a much

larger sample of SDSS LRGs to constrain �M and �b/�m (Tegmark

et al. 2006; Blake et al. 2007; Padmanabhan et al. 2007; Percival

et al. 2007). To date, measurements of the BAO have only yielded

constraints on the dark energy equation of state when combined with

other data sets, such as the spectrum of temperature fluctuations in

the microwave background or when restrictive priors have been

adopted on certain parameters, such as the Hubble constant.

The bulk of the work in the literature on the usefulness of the BAO

has relied upon linear perturbation theory to assess the detectability

of the features and to forecast the errors on the recovered value of

w (Blake & Glazebrook 2003; Hu & Haiman 2003; Blake & Bridle

2005; Glazebrook & Blake 2005; Blake et al. 2006; Parkinson et al.

2007). There are, however, a range of dynamical and statistical ef-

fects which can alter the appearance of the power spectrum rela-

tive to the linear theory prediction, even on the scale of the BAO,

which we review in this paper (Seo & Eisenstein 2003; Angulo

et al. 2005; Seo & Eisenstein 2005; Springel et al. 2005; Eisenstein,

Seo & White 2007). Some simulation work has been done to study

these effects, mostly using computational cubes of side 500 h−1 Mpc

(Seo & Eisenstein 2003, 2005; Springel et al. 2005; Eisenstein et al.

2007). These are only a small factor (2–3) bigger than the scale

of the fluctuations of interest. Calculations with small boxes are

subject to large sampling fluctuations and may even miss some fea-

tures of the non-linear growth of large-scale fluctuations through

the absence of long-wavelength density fluctuations (Crocce &

Scoccimarro 2006a). Very recently, larger simulation volumes have

been used, of around a cubic gigaparsec and larger (Angulo et al.

2005; Schulz & White 2006; Huff et al. 2007; Koehler, Schuecker

& Gebhardt 2007). However, such studies have tended to have rel-

atively poor mass resolution, making it difficult to model galaxies

without resorting to simplified biasing prescriptions (e.g. Cole et al.

1998).

Given the significant commitment of resources required by the

proposed galaxy surveys and the level of precision demanded by the

BAO approach, it is imperative to ensure that accurate theoretical

predictions are available both to help in the design of the survey

strategy and to extract the maximum amount of information from the

observations. This is a tough challenge computationally, because it

requires ultralarge volume N-body simulations with sufficient mass

resolution to identify the haloes likely to host the galaxies to be seen

in the surveys, and a realistic model to populate these haloes with

galaxies.

In this paper, we use a combination of suitable N-body simula-

tions and a semi-analytical model of galaxy formation to assess the

visibility of the BAO. In Section 2, we describe the suite of N-body

simulations used and outline the semi-analytical model. Section 3

gives a blow-by-blow account of how the power spectrum changes

relative to the simple prediction of linear perturbation theory, as

additional layers of realism are added to the modelling, starting

with dark matter and ending with galaxies. We set out our approach

for constraining the dark energy equation of state in Section 4,

and present our results in Section 5. We give our conclusions in

Section 6.

2 M E T H O D

In this section, we introduce the theoretical tools used to pro-

duce synthetic galaxy catalogues. First, we describe the N-body

simulations (Section 2.1) which consist of a high-resolution run

(Section 2.1.1) and an ensemble of lower resolution runs (Sec-

tion 2.1.2). Next, we discuss the measurement of power spectra

from discrete distributions of objects and use the ensemble of low-

resolution simulations to estimate the errors on the power-spectrum

measurement (Section 2.1.3). In the second part of this section, we

explain how a galaxy formation model is used to populate the high-

resolution N-body simulation with galaxies (Section 2.2).

2.1 N-body simulations

The N-body method is a long-established computational tech-

nique which is used to follow the growth of cosmological struc-

tures through gravitational instability (see e.g. the reviews by

Bertschinger 1998 and Springel, Frenk & White 2006). Our goal

in this paper is to simulate the formation of structure within a suf-

ficiently large volume to follow the growth of fluctuations accu-

rately on the scale of the BAO, and with similar statistics for power-

spectrum measurements to those expected in forthcoming surveys.

At the same time, we require a mass resolution which is adequate to

identify the dark matter haloes likely to host the galaxies which will

be seen in these surveys. To achieve these aims, we use a memory-

efficient version of the GADGET-2 code of Springel (2005), which was

kindly provided to us by Volker Springel and the Virgo Consortium.
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We use two types of calculation: a high-resolution simulation,

labelled the ‘Baryon Acoustic Simulation at the ICC’ or BASICC,

which is able to track galactic haloes, and an ensemble of lower res-

olution simulations, labelled L-BASICC, which we use to study the

statistics of power-spectrum measurements on large scales. Here,

we describe some of the common features of the simulations, be-

fore moving on to outline specific details in Sections 2.1.1 and

2.1.2.

We adopt a �CDM cosmology with the same parameters used in

the Millennium Simulation (Springel et al. 2005), which are broadly

consistent with the latest constraints from the CMB data and large-

scale structure measurements (Sánchez et al. 2006; Spergel et al.

2007). The values of the parameters are: the matter density param-

eter, �M = 0.25, the energy density parameter for the cosmologi-

cal constant, �� = 0.75, the normalization of density fluctuations,

σ 8 = 0.9 and Hubble constant, h = H0/(100 km s−1 Mpc−1) =
0.73.

Due to memory restrictions, the Fourier mesh used to set up the

initial particle displacements has a dimension of 15803 grid points

which is not commensurate with the cube root of the particle number

mesh. We therefore avoided using a regular particle grid to set up

the initial conditions, as this would have led to a spurious feature in

the power spectrum of the initial conditions at the beat frequency

between the particle grid and the Fourier mesh. Instead, we used a

glass-like distribution (White 1994; Baugh, Gaztanaga & Efstathiou

1995). The input power spectrum of density fluctuations in linear

perturbation theory is calculated using the CAMB package of Lewis,

Challinor & Lasenby (2000). The amplitude of the Fourier modes

is drawn from a Rayliegh distribution with mean equal to the linear

theory power spectrum and the phase is drawn at random from the

interval 0–2π. The initial density field is generated by perturbing

particles from the glass-like distribution, using the approximation

of Zel’dovich (1970).

The simulations were started at a redshift of z = 63. The

Zel’dovich (1970) approximation used to set up the initial pattern of

density fluctuations produces transients which can be seen in clus-

tering signal measured for the dark matter at expansion factors close

to the starting redshift (Efstathiou et al. 1985; Baugh, Gaztanaga &

Efstathiou 1995; Crocce, Pueblas & Scoccimarro 2006). Later on,

we will use the power spectrum from a high-redshift output from

the simulation, z = 15, as a proxy for linear perturbation theory, so

it is important to check that this power spectrum in particular, and

also the power spectra measured at all subsequent outputs are insen-

sitive to the choice of starting redshift. We test this by comparing

the power spectrum of the dark matter at z = 15 in our standard

run with the spectrum measured in a test run which started at z
= 127, but which did not run all the way through to z = 0. The

top panel of Fig. 1 shows that the power spectra measured for the

dark matter in these two cases, divided by the power spectrum pre-

dicted by linear perturbation theory at z = 15. The fluctuations in

the measured power at low wavenumbers around the linear theory

prediction reflect the sample variance noise which is not negligible

even in a simulation of the volume of the BASICC. The lower panel

in Fig. 1 shows the z = 15 power spectrum measured from the run

started at z = 63 divided by that measured from the run started at

z = 127. At large wavenumbers, the effect of transients is visible,

although quite small, ∼1 per cent. The focus of this paper, however,

is the form of the power spectrum over wavenumbers smaller than

k = 0.4 h Mpc−1, for which the spectra measured at z = 15 for the

two different choices of starting redshift agree to better than 0.3 per

cent. Our results are therefore unaffected by any transients resulting

from the use of the Zel’dovich approximation.

Figure 1. A test of the choice of starting redshift used in the N-body simula-

tions. The upper panel compares the power spectrum measured at z = 15 in

the BASICC when the simulation is started at z = 63 (dashed red curve) and

at z = 127 (solid blue curve). The power spectra plotted in the upper panel

have been divided by the linear perturbation theory prediction for the dark

matter power spectrum at z = 15. The lower panel shows the ratio between

the power spectrum measured from the simulation started at redshift 63 to

that measured from the run which started at redshift 127.

2.1.1 The high-resolution simulation: the BASICC

The BASICC simulation covers a comoving cubical region of side

1340 h−1 Mpc, in which the dark matter is represented by more than

3 billion (14483) particles. The equivalent Plummer softening length

in the gravitational force is ε = 50 h−1 kpc, giving a dynamic range

in length of almost 27 000. The volume of the computational box,

2.41 h−3 Gpc3, is almost 20 times the volume of the Millennium

Simulation (Springel et al. 2005), and more than three times the

volume of the catalogue of LRGs from the SDSS used to detect the

acoustic peak by Eisenstein et al. (2005). The BASICC volume is

within a factor of 2 of that proposed for a survey with WFMOS at

z ∼ 1 (Glazebrook et al. 2005). The simulation occupied the full

0.5 TB of RAM of the second upgrade of the Cosmology Ma-

chine at Durham. The run took 11 CPU days on 506 processors, the

equivalent of 130 000 cpu-hours.

The particle mass in the BASICC simulation is mp = 5.49 ×
1010 h−1 M�. This is approximately 64 times larger than the particle

mass used in the Millennium Simulation. The mass resolution limits

the usefulness of dark matter halo merger trees from the BASICC,

so we have chosen to output at a modest selection of redshifts:

z = 0, 0.3, 0.5, 1, 2, 3, 4, 6, 8, 10, 15 and 63. Each of these outputs

occupies ∼100 GB of disc space. In each snapshot we have identified

groups of dark matter particles using a friends-of-friends algorithm

(Davis et al. 1985) with a linking length of 0.2 times the mean

interparticle separation. We have stored groups with 10 or more

particles, i.e. haloes more massive than 5.49 × 1011 h−1 M�. There

are 17 258 579 haloes in the z = 0 output of the simulation with

10 or more particles. The most massive halo has a mass of 6.74 ×
1015 h−1 M� and 860 haloes have a mass in excess of the Coma

cluster (≈ 1015 h−1 M�).

The BASICC simulation sits between the Millennium and Hubble

Volume (Evrard et al. 2002) Simulations. Its unique combination of
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Table 1. The values of some of the basic parameters used in the simulations.

The columns are as follows. (1) The name of the simulation. (2) The num-

ber of particles. (3) The mass of a dark matter particle. (4) The softening

parameter used in the gravitational force. In both cases, the length of the

computational box is 1340 h−1 Mpc, and the same cosmological parameters

are used, as given in Section 2.1.

Np mdm ε

(h−1 M�) (h−1 kpc)

BASICC 3.03 × 109 5.49 × 1010 50

L-BASICC 8.99 × 107 1.85 × 1012 200

mass resolution and volume makes it ideal for studying the large-

scale distribution of galaxies and clusters alike.

2.1.2 The ensemble of low-resolution simulations: L-BASICC

We also generated an ensemble of 50 ‘low-resolution’ simulations

to study the sample variance in the BASICC and to test an analytic

model for the errors expected on measurements of the power spec-

trum, which we discuss in the next subsection. These low-resolution

runs (L-BASICC) have exactly the same cosmological parameters

as the BASICC and the same box size (see Table 1), but they have

fewer particles (4483). For each realization, a different random seed

is used to set up the initial density field. The starting redshift of

these simulations is z = 63. The particle mass is comparable to that

employed in the Hubble Volume Simulation (Evrard et al. 2002).

Each L-BASICC simulation took 0.8 d to run on 16 processors of the

third upgrade of the Cosmology Machine. The total volume of the

ensemble is 120 h−3 Gpc3, more than four times that of the Hubble

Volume, making this a unique resource for studying the frequency

of rare objects in a �CDM universe. For L-BASICC, the position

and velocity are stored for every particle at four output times (z =
0.0, 0.5, 0.9, 3.8); we also produce a halo catalogue at each red-

shift retaining objects with 10 or more particles (corresponding to

a mass of 1.8 × 1013 h−1 M�). As we shall see in later sections, the

ensemble allows us to assess whether or not a particular result is

robust or simply due to sampling fluctuations. Due to their limited

mass resolution, it is not feasible to populate these simulations with

galaxies using the method outlined below (Section 2.2).

2.1.3 Power-spectrum estimation and errors

The two-point statistics of clustering, the correlation function, and

its Fourier transform, the power spectrum, P(k), are the most com-

monly employed measurements of clustering. In this paper we focus

on the power spectrum; in Sanchez et al. (in preparation), we address

the visibility of the acoustic oscillations in the correlation function.

The standard way to quantify the amplitude of a density fluctuation

is by means of the density contrast, δ(x, t) = (ρ(x, t) − ρ̄)/ρ̄. If

we consider the Fourier transform of the density contrast, ρk, then

the power spectrum is defined as the modulus squared of the mode

amplitude, P(k) = 〈| δk)|2〉.
There are two steps in the computation of the power spectrum

from a distribution of discrete objects, such as dark matter particles,

dark haloes or galaxies. First, a density field is constructed by as-

signing the objects to mesh points on a cubic grid. In the simplest

mass assignment scheme, the nearest grid point, the contribution

of each object to the density field is confined to the cell in which

it is located. In higher order assignment schemes, the mass of the

particle is shared with adjacent cells. Here, we use the cloud-in-cell

assignment scheme (see Hockney & Eastwood 1981). Secondly, we

perform a fast Fourier transform of the density field. The power

spectrum is obtained by spherically averaging the resulting Fourier

mode amplitudes in annuli of radius δk = 2 π/L = 0.0047 h Mpc−1.

The mesh we use to store the density field has N3
FFT = 5123 grid

points. Estimating the density on a grid alters the form of the power

spectrum at wavenumbers approaching the Nyquist frequency of

the grid (kNyquist = 2π/L NFFT/2 = 1.2 h Mpc−1 in our case). The

degree of modification and the precise wavenumber above which the

power spectrum is distorted depend upon the choice of assignment

scheme (Hatton 1999; Jing 2005). In practice, for the size of FFT

mesh we use, this has little impact on the recovered power spectrum

for wavenumbers of interest; the measured amplitude differs by less

than 1 per cent from the true value at a wavenumber k ∼ 0.8 h Mpc−1;

in most cases we focus on the form of the power spectrum on large

scales, k < 0.4 h Mpc−1. Nevertheless, we correct for the effects of

the cloud-in-cell assignment scheme by dividing each mode by the

Fourier transform of a cubical top-hat:

δ(kx , ky, kz) ⇒ δ(kx , ky, kz)

sinc
(

kx L
2NFFT

)
sinc

( ky L
2NFFT

)
sinc

(
kz L

2NFFT

) , (1)

where

sinc(x) = sin(x)

x
. (2)

Note this is different from the approach taken by Jing (2005), who

applied a correction to the spherically averaged power spectrum.

A further possible distortion to the form of the measured power

spectrum is discreteness noise and the associated Poisson or shot

noise. Poisson-sampling a continuous-density field with point ob-

jects of space density, n̄, introduces a spurious contribution that

should be subtracted from the measured power spectrum: Pcorr(k) =
Pmeas(k)−1/n̄. In the case of dark matter halo centres or galaxies, the

need for such a correction is justified. However, in the case of dark

matter particles in our simulations, one should not subtract Poisson

shot noise from the power spectrum because the particles were ini-

tially laid down by perturbing a glass-like configuration which is

sub-Poissonian in nature. This is clear from Fig. 2, which shows the

power spectrum measured for the dark matter in the initial condi-

tions of the BASICC. The red curve shows the spectrum measured in

the simulation and the smooth green curve shows the input spectrum

predicted by linear perturbation theory. The two agree remarkably

well over a wide range of wavenumbers. The power spectrum of

the unperturbed glass-like particle distribution is shown by the blue

curve. For the wavenumbers of interest, the power spectrum of the

glass is many orders of magnitude below the discreteness noise ex-

pected for a Poisson distribution of objects with the same space

density as the dark matter particles, as shown by the dashed line. In

this paper, we do not apply any shot noise correction to power spec-

tra measured for the dark matter, but we do make such a correction

for spectra estimated for samples of haloes and galaxies.

To close this subsection, we turn our attention to the error on the

measurement of the power spectrum. A commonly used expres-

sion for the fractional error in the measured power spectrum was

derived by Feldman, Kaiser & Peacok (1994) (see also Efstathiou

1988, for a similar argument applied to the two-point correlation

function):

σ

P
=

√
2

nmodes

(
1 + 1

Pn̄

)
, (3)

where nmodes is the number of Fourier modes present in a spherical

shell of width δk, which depends upon the survey volume V: for

k 	 2π/V1/3, this is given by nmodes = V 4πk2δk/(2π)3 . The first
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Figure 2. The power spectrum of the dark matter in real space measured at

the starting redshift of the BASICC, z = 63 (red points). The corresponding

prediction of linear perturbation theory is shown by the green (solid) line. The

blue (dot–dashed) curve shows the power spectrum of the unperturbed glass-

like distribution of particle positions. The dashed line shows the Poisson

noise expected for the number density of dark matter particles used in the

BASICC. The noise of the initial particle distribution is much less than

Poisson. The arrow marks the position of the Nyquist frequency of the FFT

grid.

term on the right-hand side of equation (3) quantifies the sample

variance in the measurement, which decreases as the square root

of the number of modes or, equivalently, as the square root of the

volume probed. The second term arises from the discreteness of

the objects under consideration. The combination Pn̄ quantifies the

amplitude of the power spectrum in units of the Poisson shot noise,

effectively giving the contrast of the power-spectrum signal relative

to the shot noise level. In the case where Pn̄ 	 1, σ/P ∝ 1/k.

On the other hand, when the amplitude of the power spectrum is

comparable to the shot noise, and if P(k) ∝ k−1, then the fractional

error in the power is approximately independent of wavenumber.

We have tested this prescription in both regimes against the diagonal

element of the covariance between power-spectrum measurements

extracted from the ensemble of low-resolution simulations, as shown

in Fig. 3. Over the wavenumber range of interest, the agreement is

reasonably good for samples in which the shot noise is negligible

compared to the clustering signal. For samples with low-contrast

power measurements, such as is the case for dark matter haloes

used in the bottom panel of Fig. 3, the analytic expression works

well until k ∼ 0.1 h Mpc−1 and then overpredicts the errors by up

to 50 per cent. We note that non-linearities and the impact of the

window function of a realistic survey could introduce off-diagonal

terms in the power-spectrum covariance matrix. In Section 5.3, we

compare the constraints on the recovered oscillation scale using

the scatter from the ensemble and using the simple mode-counting

argument outlined above. We find good agreement which suggests

that mode-coupling does not make a significant contribution to the

errors on the scales relevant to the BAO.

2.2 Modelling the formation and evolution of galaxies

The N-body simulations described in the previous section follow

the growth of fluctuations in the mass which is dominated by col-

Figure 3. The fractional error in the power spectrum of the dark matter

(top panel) and in the power spectrum of haloes more massive than 1.8 ×
1013 h−1 M� (bottom panel), estimated using the low-resolution simulations

from the dispersion of P(k) around the ensemble mean. The smooth black

curves show the error predicted by the analytical expression given in equa-

tion (3). The red points show the scatter from the ensemble of low-resolution

simulations. The arrow in the bottom panel shows the wavenumber for which

n̄ P(k = 0.2 h Mpc−1) = 1.

lisionless matter. To connect the predictions of the CDM theory to

forthcoming galaxy surveys, we need to predict which structures

host galaxies and how galaxy properties depend on halo mass.

Some authors have chosen to incorporate galaxies into an N-body

simulation empirically by using a parametric model called a halo

occupation distribution function (HOD) to describe the probability

distribution of galaxies expected in haloes of a given mass (Benson

et al. 2000). The form of the HOD is constrained to reproduce a

particular clustering measurement, such as the galaxy correlation

function (e.g. Peacock & Smith 2000; Seljak 2000; Scoccimarro

et al. 2001; Cooray & Sheth 2002). This approach has been applied

to the study of the detectability of acoustic oscillations by several

authors (Seo & Eisenstein 2005; Schulz & White 2006; Huff et al.

2007). Two assumptions are made when using the HOD to populate

an N-body simulation with galaxies. First, the parameterization used

for the HOD is assumed to provide an accurate description of the

manner in which galaxies populate haloes across a wide range of

halo mass. Detailed comparisons between the clustering predictions

made using HODs and those obtained directly from simulations of

galaxy formation show that in practice, the HODs do a reasonable

job (Berlind et al. 2003; Zheng et al. 2005). Recently, one of the

fundamental assumptions which underpins the HOD approach has

been called into question. Using the Millennium Simulations, Gao,
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Springel & White (2005) demonstrated that the clustering of dark

matter haloes depends on a second parameter, such as the formation

time of the halo, in addition to halo mass (see also Harker et al. 2006

and Wechsler et al. 2006; Wetzel et al. 2007). In practice, for typical

galaxy samples, this effect is largely washed out due to the mix of

halo properties sampled (Croton, Gao & White 2007). The second

implicit assumption in the HOD method when applied to an N-body

simulation is that all of the haloes in which galaxies are expected to

be found can be resolved in the simulation; if the mass resolution

of the simulation turns out to be inadequate, then the HOD realized

will be distorted to compensate, compared with the true, underlying

HOD in the Universe.

In this paper, we take a more physical approach and make an

ab initio prediction of which dark matter haloes should contain

galaxies by modelling the physics of the baryonic component of

the Universe. We do this using a semi-analytic model of galaxy

formation (for a review of this technique see Baugh 2006). The

semi-analytic model describes the key physical processes which are

thought to determine the formation and evolution of galaxies. We use

the GALFORM code introduced by Cole et al. (2000) and developed

in a series of papers (Benson et al. 2002, 2003; Baugh et al. 2005;

Bower et al. 2006). The specific model we use is the one proposed

by Baugh et al. (2005), which reproduces the abundance of Lyman-

break galaxies at z = 3 and 4, the number counts of submillimetre

detected galaxies (with a median redshift z ∼ 2), and a rough match

to the abundance of LRGs (Almeida et al. 2007b), whilst at the same

time giving a reasonable match to the observed properties of local

galaxies (e.g. Nagashima et al. 2005a,b; Almeida, Baugh & Lacey

2007a).

A key advantage of using a semi-analytic model is that we can

investigate how the manner in which galaxies are selected affects the

accuracy with which the acoustic oscillations can be measured. The

model predicts the star formation history of each galaxy and uses

this to compute a spectrum, broad-band magnitudes and emission-

line strengths (for examples of the latter, see Le Delliou et al. 2005,

2006). We can therefore select samples of model galaxies by apply-

ing precisely the same criteria which will be applied in the proposed

surveys.

Our methodology mirrors the hybrid schemes introduced by

Kauffmann, Nusser & Steinmetz (1997) and Benson et al. (2000).

We use a Monte Carlo technique to generate merger trees for dark

mater haloes since our simulation outputs do not have the resolution

in time or mass necessary to allow the construction of merger trees.

(See Baugh 2006 for a discussion of the relative merits of these two

approaches.)

We first construct a grid of halo masses at the redshift of interest,

which extends to lower mass haloes than can be resolved in the sim-

ulation. We then generate a number of Monte Carlo realizations of

mass assembly histories for each mass on the grid, using the algo-

rithm introduced by Cole et al. (2000). The number of realizations

is chosen to allow robust predictions to be made for observables

such as the galaxy luminosity function. The halo merger history is

input into the semi-analytic code and the properties of the galaxy

population are output at the redshift for which the galaxy catalogue

is to be constructed. In the calculations in this paper, we output

the broad-band magnitudes in the R, I and K bands and the equiv-

alent widths of Hα and O II[3727] for each galaxy. Finally, haloes

from the grid are matched with haloes of similar mass identified

in the N-body simulation. The central galaxy in each halo is as-

signed to the centre of mass of the matched halo in the simulation.

The satellite galaxies are assigned randomly to dark matter particles

in the halo. Galaxies placed in the simulation box in this way are

called ‘resolved galaxies’. The Monte Carlo merger trees will not, of

course, correspond in detail with those of the matched haloes in the

N-body simulation. However, to the extent that the halo assembly

bias discussed by Gao et al. (2005) can be neglected, the proper-

ties of the trees are statistically similar for haloes in the same mass

range.

Because of the finite mass resolution of the N-body simulation,

galaxy samples generated by populating resolved haloes will be

incomplete fainter than some magnitude limit. In principle, since we

are using Monte Carlo merger trees, we can follow galaxies down

to arbitrarily faint magnitudes within a resolved dark matter halo.

However, as we consider progressively fainter objects, some fraction

of these galaxies should also appear in haloes which the simulation

cannot resolve, causing the sample to become incomplete. Thus,

in some instances we need to consider galaxies which we would

expect to find in haloes below the mass resolution of the simulation.

These galaxies are called ‘unresolved galaxies’ and are placed in the

box in the following way. A volume-limited sample of galaxies is

generated using the semi-analytic model, with a volume equal to that

of the simulation cube. Only galaxies which reside in haloes from the

grid which are less massive than the resolution limit of the N-body

simulation are considered. (Recall that the grid of halo masses used

in the semi-analytic calculation extends to lower mass than those

resolved in the simulation.) These galaxies are assigned to randomly

selected dark matter particles which have not been identified as

members of haloes identified by the friends-of-friends algorithm.

This approach was adopted for one of the mock catalogues used in

Cole et al. (2005). As we will see below, the unresolved galaxies are

a minority within any of the samples we consider. They have little

effect on the measured power spectrum, producing only a modest

change in the amplitude of the clustering signal.

We can use the semi-analytic calculation carried out on the grid of

halo masses to find the completeness limit of the galaxy catalogue

in the N-body simulation. To do this, we use the galaxy formation

calculation carried out using the grid of halo masses to compute

the cumulative luminosity function of galaxies, starting with the

brightest galaxy, for two cases: (1) without any restriction on the

mass of the halo which hosts the galaxy and (2) considering only

those galaxies which reside in haloes above the resolution limit of

the simulation. We then divide the second estimate of the cumulative

luminosity function by the estimate made without any restriction on

halo mass.

The completeness ratios calculated in this way are shown for

z = 0, 1 and 2 in Fig. 4. The vertical lines show the magnitude limit

down to which the ‘resolved galaxy’ catalogues are 100 per cent

complete. The lower panel shows the cumulative luminosity func-

tion in the model at the same redshifts, with horizontal lines marking

the space density of galaxies at the sample completeness limit. (The

magnitudes plotted are observer-frame absolute magnitudes in the R
band. The apparent magnitude is obtained by adding the appropriate

distance modulus for each redshift. All magnitudes are on the AB

scale.) The z = 2 sample is complete down to MR − 5 log h = −23,

or, equivalently to a space density of 3.2 × 10−5 h3 Mpc−3. Faint-

wards of this magnitude, the completeness drops sharply to around

30–40 per cent. The situation is much more encouraging at z = 1.

Here, the galaxy catalogue is complete to MR − 5 log h = −22.3

(corresponding to a space density of just under 10−4 h3 Mpc−3) and

faintwards of this there is a much more modest drop in the fraction of

galaxies resolved in the simulation. The simulation resolves around

two-thirds of the space density of galaxies expected in the proposed

WFMOS survey. At z = 0, the galaxy samples are complete to a

much higher space density, in excess of 10−3 h3 Mpc−3.
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Figure 4. Upper panel: the fraction of ‘resolved galaxies’ in the high-

resolution N-body simulation as a function of magnitude, at different output

redshifts (as given by the key in the lower panel). The magnitude is in

the observer-frame R band; to obtain an apparent R-band magnitude, the

distance modulus corresponding to the redshift should be added to the plot-

ted magnitude. The vertical lines mark the magnitude at which the galaxy

sample is 100 per cent complete at each redshift. Lower panel: the cumu-

lative luminosity function of galaxies brighter than a given R-band magni-

tude, for different redshifts as given in the key. The vertical lines show the

100 per cent completeness limits at each redshift and the horizontal lines

indicate the associated space density of galaxies.

3 T H E P OW E R S P E C T RU M O F G A L A X Y
C L U S T E R I N G

In this section we examine the various phenomena which are re-

sponsible for changing the form of the power spectrum of galaxy

clustering from that expected in linear perturbation theory. We sys-

tematically add in new effects and elements of sample selection,

considering first the power spectrum of the dark matter, looking

at non-linear evolution (Section 3.1) and the impact of peculiar

velocities (Section 3.2), before moving on to dark matter haloes

(Section 3.3) and finally to synthetic galaxy samples (Section 3.4).

For completeness, we first explain some of the terminology we use

in this section. There are three types of phenomena responsible for

distorting the linear theory power spectrum: (i) non-linear growth of

fluctuations, (ii) redshift-space distortions and (iii) bias. Non-linear

growth refers to the coupled evolution of density fluctuations on

different scales. Redshift-space distortions describe the impact of

gravitationally induced peculiar motions on the clustering pattern.

We will refer to clustering measurements as being made in ‘real

space’ or ‘redshift space’; in the latter case peculiar motions are

taken into account, as we describe in Section 3.2. The term ‘bias’

has a range of meanings in the literature. Bias is used to describe

the boost in the clustering of a particular tracer (e.g. galaxies or

clusters) relative to a reference point, which could be the clustering

of the dark matter in either linear perturbation theory or taking into

account non-linear evolution. One of the earliest uses of the concept

of bias was in the application of the high-peak model to explain the

enhanced clustering of Abell clusters (Kaiser 1984). In this model,

clusters are associated with rare peaks in the initial, Gaussian density

field. The bias is defined as the square root of the ratio of the two-

point correlation function of peaks of a certain minimum height to

the clustering of the mass expected in linear perturbation theory.

When considering galaxies, it is perhaps more natural to think in

terms of a modulation of clustering relative to that displayed by the

underlying mass at the same epoch, since galaxies populate dark

matter haloes. In this case, the galaxy clustering will be measured

relative to that of the evolved matter distribution. On large scales,

these two reference points, the clustering of the matter expected

in linear perturbation theory or the evolved clustering, should be

essentially the same. We shall see later that this is approximately

the case for the scales over which we compare clustering signals to

measure bias factors.

3.1 The non-linear growth of matter fluctuations

The early stages of the growth of a density fluctuation are particularly

simple to describe analytically. The fluid equations can be written

in terms of the perturbation to the density and Fourier transformed.

In the simplest case, when the density contrast δ � 1, the Fourier

modes evolve independently of one another. This is called linear

growth. In this regime, the power spectrum changes in amplitude

with time, but not in shape. The shift in amplitude is described by the

growth factor D, which is a function of the densities of matter and

dark energy (as quantified by the present-day density parameters,

�M and ��, for matter and dark energy, respectively) and redshift

(see Heath 1977; Peebles 1980):

P(k, z) = D2(z, �M, ��)P(k, z = 0), (4)

where D(z = 0) = 1.

We plot the power spectrum of the dark matter in real space

measured from the BASICC at different output redshifts in Fig. 5.

The approximately linear growth of the power spectrum is readily

apparent on large scales (low k). In an Einstein–de Sitter universe

(�M = 1), the growth factor is equal to the expansion factor. If dark

energy plays a role in setting the rate at which the Universe expands,

the growth of fluctuations is suppressed relative to the Einstein–de

Sitter case at late times. The BASICC started at zs = 63, so if �M

= 1, we would expect to see the power spectrum grow in amplitude

by a factor of (1 + zs)
2 = 4096 by z = 0. Using the approximate

formula provided by Carroll, Press & Turner (1992), we expect a

suppression in the growth of the power by a factor of 0.5537 for

the cosmological parameters used in the simulation. This gives an

overall growth in power from the initial conditions to the present of

a factor of 2268. This agrees to within 0.6 per cent with the factor

expected from a direct numerical integration of the equation giving

the growth factor (equations 28 and 9 from Carroll et al. 1992),

which gives 2281.01. In the simulation, we find that the power in

the fundamental mode grows by a factor of 2285.21 from the initial
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Figure 5. The growth of the power spectrum of density fluctuations in the

dark matter, as measured in real space. The smooth curves show the predic-

tions of linear perturbation theory at the redshifts indicated by the key. The

power spectra measured in the low-resolution ensemble at z = 0 are plotted

to show the sampling variance for a simulation box of side 1340 h−1 Mpc.

The smallest wavenumber plotted corresponds to the fundamental mode in

the simulation, 2π/L = 0.0469 h−1 Mpc. The maximum wavenumber shown

is 0.67 times the Nyquist frequency of the FFT grid, chosen to avoid any

aliasing effects.

conditions at z = 63–0, which agrees with the growth predicted by

linear perturbation theory to 0.02 per cent.

Fig. 5 shows that the growth of the power spectrum is clearly

not linear at high wavenumbers. The shape of the spectrum at high

k at late times is different from that at high redshift, because the

growth of modes of different k becomes coupled. This behaviour

can be followed to some extent using second-order and higher or-

der perturbation theory (Peebles 1980; Baugh & Efstathiou 1994;

Jain & Bertschinger 1994; Crocce & Scoccimarro 2006b). How-

ever, as the density contrast approaches unity, second-order pertur-

bation theory breaks down (Baugh & Efstathiou 1994). The coupled

evolution of the Fourier modes starts on surprisingly large scales,

which demonstrates the necessity of a large volume simulation to

accurately follow the development of the power spectrum (Smith,

Scoccimarro & Sheth 2007). This can be seen more clearly if we

divide the measured spectrum by the growth expected according to

linear perturbation theory, as is done approximately in Fig. 6. In this

plot, we have divided the power spectra measured from the simula-

tion by the spectrum measured at z = 15, scaled by the square of the

appropriate growth factor. This reduces the noise in the ratio arising

from the finite number of modes realized at small wavenumbers in

the simulation volume (Baugh & Efstathiou 1994; Springel et al.

2005). Any deviation away from unity signifies a departure from

linear perturbation theory due to coupling between modes. The ra-

tio shows a characteristic dip at low k, i.e. less power than expected

in linear theory, before showing a strong enhancement at higher

wavenumbers (Baugh & Efstathiou 1994). It is remarkable that the

transition between a deficit and excess of power happens at the same

wavenumber, k ∼ 0.1 h Mpc−1, at different epochs. The suppression

in power at low k, on the order of a 3 per cent, is not as strong

as that seen in an Einstein–de Sitter universe (see fig. 4 of Baugh

& Efstathiou 1994). Nevertheless, this drives the spectacular boost

in power seen at higher wavenumbers. The dip in power is largest

Figure 6. The non-linear growth of the power spectrum. Here we divide the

power spectrum in real space measured at the redshift indicated by the key

by the power spectrum at z = 15, after taking into account the change in

the growth factor. Any deviation of the resulting ratio from unity indicates a

departure from linear perturbation theory. The dashed lines show the same

ratio as predicted using the ansatz of Smith et al. (2003).

around k ∼ 0.05 h Mpc−1, which corresponds to a length-scale of

2 π/k ∼ 125 h−1 Mpc, close to the wavelength of the acoustic oscil-

lations. Several authors have proposed ansatzes which transform the

linear perturbation theory power spectrum into the non-linear power

spectrum (e.g. Hamilton et al. 1991; Peacock & Dodds 1994, 1996;

Smith et al. 2003). We plot the predictions of the model proposed

by Smith et al. (2003) in Fig. 6 using dashed lines. The ratio is com-

puted by dividing the power spectrum at the epoch of interest by the

suitably scaled prediction of the model for z = 15. The agreement

is excellent at high redshift. At z = 0, at higher wavenumbers, the

Smith et al. (2003) formula recovers the simulation results to within

5 per cent over the range plotted.

3.2 The impact of redshift-space distortions
on the power spectrum

In a spectroscopic galaxy survey, the radial distance to an object is

inferred from its measured redshift. The shift in the spectral features

of the galaxy is produced by two contributions to its the apparent

velocity: the expansion of the Universe, which is responsible for

the Hubble flow at the true distance to the galaxy, and local in-

homogeneities in the gravitational field around the object, which

generate an additional, ‘peculiar’ velocity. Since we cannot correct

a priori for the effects of the local gravitational field when inferring

the radial distance from the Hubble law and the measured redshift,

an error is made in the distance determination. The impact of such

errors on the form of the measured power spectrum of clustering is

called the redshift-space distortion.

Peculiar motions display two extremes which produce different

types of distortion to the power spectrum. (i) On large scales, co-

herent bulk flows out of voids and into overdense regions lead to

an enhancement in the density inferred in redshift space, and hence

to a boost in the recovered power. Kaiser (1987) derived a formula

for the enhancement of the spherically averaged power, under the

assumption of linear perturbation theory for an observer situated at
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Figure 7. The ratio of the power spectrum measured for the dark matter in

redshift space, i.e. including the impact of peculiar motions in the distance

determination, to the power spectrum measured in real space. The deviation

from unity shows the redshift-space distortion to the non-linear power spec-

trum. The results are shown for selected output redshifts, as indicated by

the key. The horizontal dotted lines indicate the boost in the redshift-space

power expected due to coherent flows, as predicted by equation (5). The

dashed lines show a simple fit to the distortions (see equation 6).

infinity (the plane parallel approximation):

f = Ps(k)

Pr(k)
=

(
1 + 2

3
β + 1

5
β2

)
, (5)

where Ps(k) is the power spectrum in redshift space, Pr(k) is the

spectrum in real space and β = (d log δ/d log a)/b � �0.6
M (z)/b,

where b is the bias factor (b = 1 for the dark matter; for a discussion

of the dependence of the growth factor on �M, see Linder 2005;

Linder & Cahn 2007). (ii) On small scales, the random motions of

objects inside virialized dark matter haloes cause structures to ap-

pear elongated when viewed in redshift space, leading to a damping

of the power. Peacock & Dodds (1994) discussed a model for the

redshift-space power spectrum, which takes into account both limits

of peculiar motions (see also Scoccimarro 2004).

Fig. 7 shows the ratio of the power spectrum measured for the dark

matter in redshift space to that measured in real space, at redshifts

z = 3, 1 and 0. The dotted lines indicate the boost expected in the

redshift-space power, computed using the expression in equation (5)

(Kaiser 1987). This factor changes with redshift because the matter

density parameter is changing. Fig. 7 shows that this behaviour is

only approached asymptotically, on scales in excess of 100 h−1 Mpc.

At higher wavenumbers, the power measured in redshift space is

suppressed by random motions. The dashed lines in this plot show

a simple fit to this ratio

f = Ps(k)

Pr(k)
=

(
1 + 2

3
β + 1

5
β2

)(
1 + k2σ 2

)−1
, (6)

where σ is a free parameter, which is loosely connected to the pair-

wise velocity dispersion. The degree of damping grows between

z = 3 and 1, but changes relatively little by z = 0. We shall see

in later sections that the form of the redshift-space distortion to the

power spectrum depends on the type of object under consideration.

3.3 The power spectrum of dark matter haloes in real
and redshift space

In modern theories of galaxy formation, dark matter haloes play host

to galaxies. It is therefore instructive to compare the power spectra

measured for different samples of haloes to that of the dark matter

as a step towards understanding the power spectrum of galaxies.

A common conception is that the clustering of haloes is a scaled

version of the clustering of the underlying mass, with the shift in

clustering amplitude quantified in terms of a bias factor, b, where

b2 = Phaloes/Pdm (Cole & Kaiser 1989; Mo & White 1996). As we

commented earlier, since we use the dark matter power spectrum on

large scales to define a bias, this is approximately the same as using

the linear perturbation theory spectrum. Many authors have tested

analytical prescriptions for computing the bias parameter using ex-

tensions of the theory of Press & Schechter (1974) (e.g. Mo, Jing &

White 1997; Sheth, Mo & Tormen 2001; Jing 1998; Governato et al.

1999; Colberg et al. 2000; Seljak & Warren 2004). In the extended

Press–Schechter theory, the bias is only a function of halo mass and

redshift. However, recent analyses of high-resolution, large volume

simulations have revealed some dependence of halo clustering on

a second parameter besides mass, such as the halo’s formation red-

shift or concentration parameter (Gao et al. 2005; Harker et al. 2006;

Wechsler et al. 2006).

In Fig. 8, we show that this simple picture, in which the clustering

of haloes is a shifted version of that of the dark matter, is actually

a poor approximation to what we find in the simulation. We show

the ratio of the power spectrum of a sample of dark matter haloes

measured in real space to a scaled version of the linear perturbation

theory power spectrum. The amplitude of the linear theory spectrum

used in the ratio takes into account the growth factor appropriate to

the output redshift and an effective bias, which is set by matching

the linear theory prediction for the mass spectrum to the measured

halo spectrum on large scales, i.e. for wavenumbers in the range

0.0046 < k (h Mpc−1) < 0.1. Each panel in Fig. 8 corresponds to

a different output redshift from the simulation. For each redshift,

we have defined three samples of dark matter haloes, which contain

the same number of objects. The mass intervals are set relative to

the average halo mass present in the respective outputs, with ‘low’,

‘mean’ and ‘high’ mass samples considered. Each of these contains

20 per cent of the total number of haloes present at each epoch,

with the mass ranges used at each redshift indicated on the keys.

The effective bias factors of the halo samples are also written in

the key. For comparison, the dashed line in each panel shows the

corresponding ratio for the dark matter.

Fig. 8 shows that at z = 3, all of the haloes considered have

effective biases much greater than unity, indicating they are more

strongly clustered than the mass. This situation is reversed at z = 0.

At this epoch, the halo mass resolution of the BASICC is smaller

than the corresponding value of M∗1 (=5.78 × 1012 h−1 M� at z =
0). The z = 0 samples have a bias of unity or smaller. In addition

to the difference in the effective bias parameters, the shape of the

spectrum of the haloes in these extremes is also different (see also

Smith et al. 2007). The plot shows the shape of the power spectrum,

after accounting for the effective bias on large scales. Any difference

between the curves plotted for the haloes and that for the dark matter

(dashed line) shows a difference in the clustering signal over and

1 M∗ is a characteristic mass scale defined as the mass within a sphere for

which the rms variance in linear perturbation theory is σ (M) = δcrit(z), where

δcrit is the extrapolated critical linear overdensity given by the spherical

collapse model at redshift z.
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Figure 8. The power spectrum of dark matter haloes measured in real space compared to a scaled version of the prediction of linear perturbation theory, which

takes into account the growth factor and an effective bias computed on large scales k < 0.1 h Mpc−1. Each panel corresponds to a different output redshift.

Different mass samples are considered, as indicated by the key, which correspond to low, average and high masses, defined in terms of the average halo mass

present at each output time. The black dashed line shows the real-space power spectrum of the mass divided by the appropriate linear perturbation theory

prediction.

Figure 9. The power spectrum of dark matter haloes measured in redshift space divided by the power spectrum measured in real space for the same sample.

Each panel corresponds to a different output redshift. Different mass samples are considered, as indicated by the key, which correspond to low, average and

high masses, defined in terms of the average halo mass present at each output time. The horizontal dotted lines show the expected ratio for the boost in the

amplitude of the redshift-space power spectrum due to coherent flows, computed using an effective bias factor estimated on large scales. The dashed lines show

the best-fitting model of equation (6), which turns out to be a poor description of the redshift-space distortions. No suitable fits were obtained at z = 3.

above that quantified by a constant effective bias. Similar behaviour

was found for samples of cluster mass haloes in the Hubble Volume

Simulation by Angulo et al. (2005).

We now consider the clustering of haloes as viewed in redshift

space, taking the centre of mass velocity of the halo as its peculiar

velocity. In Fig. 9, we plot the ratio of the redshift-space power

spectrum for the halo samples used in Fig. 8 to the power spectrum

measured in real space. As we did before for the case of the dark

matter (Fig. 7), we indicate the boost in power expected on large

scales (small k) due to coherent bulk flows of haloes. The boost is

calculated from equation (5) using the effective bias of the halo sam-

ple. The plot shows that the redshift-space power spectrum at low

wavenumbers is in reasonable agreement with this simple model.

However, a range of behaviour is seen at higher wavenumbers. For

haloes comparable to M∗, the boost in power in redshift space is

less than predicted by equation (5). For the more extreme, mas-

sive haloes, there is actually more power in redshift space than is

suggested by Kaiser’s formula. This ‘excess’ power was previously

noted by Padilla & Baugh (2002) and Angulo et al. (2005). The

Kaiser formula assumes linear perturbation theory and breaks down

in the case of objects with strongly non-linear clustering. In the case

of the less extreme haloes, the reduction in power is not due to viri-

alized motions of haloes within larger structures. The halo finder

we have used is designed to return an overdensity corresponding to

virialized structures and not substructures. If the haloes were really

part of a larger structure and were executing random motions, the

group finder would simply have lumped them together as one larger

structure. We are perhaps seeing instead haloes that have started to

merge with one another, and whose motions have broken away from

a coherent large-scale flow. We know of no analytical description of

the redshift-space clustering of dark matter haloes which explains

this behaviour.

3.4 The power spectrum of galaxies

The galaxy power spectrum can be very different from the power

spectrum of a sample of dark matter haloes. The way in which the

galaxies are distributed among haloes changes the form of the power
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spectrum. In a mass-limited sample of haloes, the contribution of

each halo to the power spectrum can be determined through its space

density, which acts as a weighting factor when computing the con-

tribution of the halo to the clustering signal. The number of galaxies

per halo acts to modify this weight, e.g. more massive haloes could

contain more galaxies than less massive haloes. Furthermore, the

presence of satellite galaxies within a halo means that one expects

to see a damping in power on small scales in redshift space, due

to the random motions of the satellites within the virialized dark

halo. The precise modification of the power spectrum depends in

detail on how galaxies populate dark matter haloes. As we discussed

in Section 2.2, we have carried out an ab initio calculation of the

number of galaxies per halo, using a semi-analytic model of galaxy

formation. We are able to predict observable properties of galaxies,

such as broad-band magnitudes and the strength of emission lines.

We consider a range of galaxy samples, defined either by a mag-

nitude limit alone (set in the R band) or by combining an R-band

magnitude limit with a colour selection (in R − I) or a cut on the

strength of the O II[3727] emission line.

(i) Sample A: magnitude limited to reach a space density of 5 ×
10−4 h3 Mpc−3.

(ii) Sample B: magnitude limited to reach half the space density

of sample A, i.e. 2.5 × 10−4 h3 Mpc−3.

(iii) Sample C: the reddest 50 per cent of galaxies from sample

A, using the R − I colour.

(iv) Sample D: the 50 per cent of galaxies from sample A with the

strongest emission lines, using the equivalent width of O II[3727].

(v) Sample E: the bluest 50 per cent of galaxies from sample A,

using the R − I colour.

(vi) Sample F: the 50 per cent of galaxies from sample A with the

weakest emission lines, using the equivalent width of O II[3727].

The power spectra measured in real space from the various galaxy

samples are plotted in Fig. 10. The spectra have been divided by

the linear perturbation theory power spectrum multiplied by the

square of an effective bias factor, which was estimated by comparing

the galaxy spectra to the power spectrum measured for the dark

matter for wavenumbers k < 0.1 h Mpc−1. In all cases, for the space

Figure 10. The power spectrum of different galaxy samples measured in real space, divided by the square of an effective bias parameter and the appropriately

scaled linear perturbation theory power spectrum. The sample definition and the value of the effective bias used are given by the key. The power spectrum of

the dark matter spectrum in real space, also divided by the linear perturbation theory spectrum, is shown by the black dashed line. The left-hand panel shows

the ratios at z = 0 and the right-hand panel at z = 1.

densities we have chosen, the effective bias factors estimated for the

samples are modest. For comparison, the ratio of the power spectrum

of the dark matter in real space to the linear theory prediction is also

plotted, using a dashed line. The deviation of the dashed line from

unity shows where non-linear effects are important for the dark

matter. Any differences between the plotted ratios for galaxies and

mass indicate a scale-dependent bias. The comparison between the

dashed and solid curves in Fig. 10 shows that a constant bias is only

a good approximation on large scales, k < 0.15 h Mpc−1.

The redshift-space distortion in the galaxy power spectrum is

shown in Fig. 11, where we plot the ratio of the redshift-space

spectrum to the real-space spectrum for the galaxy samples shown

in Fig. 10. The horizontal lines show the Kaiser boost (equation 5)

expected for the effective bias of the galaxy sample. This ratio is only

attained on the very largest scales and seems to be an overestimate

of the size of the effect at z = 1. The damping of the power on

intermediate and small scales is readily apparent and, unlike the

case with dark matter haloes, is well described by the form given in

equation (6).

4 C O N S T R A I N I N G T H E DA R K E N E R G Y
E QUAT I O N O F S TAT E

In this section we outline the procedures we follow to place con-

straints on the dark energy equation of state parameter, w, by mea-

suring the length-scale imprinted by BAO on the power spectrum

of the various tracers of the density field. The transformation of a

measurement of a distance scale into a constraint on w requires var-

ious approximations to be made, and depends upon the survey in

question and upon the time variation assumed for the dark energy.

Nevertheless it is instructive to go through this exercise, bearing

these caveats in mind, to get a feel for how well future experiments

will be able to measure w for the case of a constant equation of state.

The form of the power spectrum of density fluctuations contains

information about basic cosmological parameters, and measure-

ments of the galaxy power spectrum on large scales have been ex-

ploited to extract the values of these parameters (e.g. Cole et al. 2005;

Sánchez et al. 2006; Tegmark et al. 2006; Padmanabhan et al. 2007;
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Figure 11. The ratio of the power spectrum of galaxies measured in redshift space to that in real space, at z = 0 (left-hand panel) and z = 1 (right-hand panel).

The samples are defined by the key in each panel. The dotted horizontal lines show the predictions of equation (5) for the various samples.

Percival et al. 2007). The apparent scale of features in the power

spectrum offers another route to constrain selected cosmological

parameters through the dependence of the distances parallel and per-

pendicular to the line of sight on the matter density parameter, �M,

the dark energy density parameter, �DE, the dark energy equation of

state parameter, w and the Hubble constant. For such an approach to

work, we either need to know the true physical scale of a particular

feature in the power spectrum beforehand or to compare the relative

size of a feature when measured parallel and perpendicular to the

line of sight (Alcock & Paczynski 1979). The baryonic oscillations

present a promising candidate for such a feature. If we assume for

the sake of argument that the cosmological parameters, apart from

the equation of state of the dark energy, are well constrained, then

the scale of the acoustic oscillations becomes a standard ruler. These

features are expected on smaller scales than the turnover and have

already been seen in current surveys at low redshift, although at too

low a signal-to-noise ratio to use in isolation to extract a competi-

tive constraint on the dark energy equation of state (Cole et al. 2005;

Eisenstein et al. 2005).

We can see how the value of the equation of state parameter of

the dark energy influences the form of the BAO with the follow-

ing simple argument. To measure the power spectrum of galaxy

clustering, we need to convert the angular positions and redshifts

of the galaxies into comoving spatial separations. This requires a

choice to be made for values of the cosmological parameters, in-

cluding w. In our case, we set the parameters equal to the values

used in the N-body simulations, with w = wtrue = −1 for the par-

ticular case we have run. The effect of a change in the value of

w, wassumed = wtrue + δw is to change the separations between pairs

of galaxies, which leads to a change in the appearance of the power

spectrum. For small perturbations away from the true equation of

state, we assume that the alteration in the measured power spec-

trum can be represented by a rescaling of the wavenumber from

ktrue to kapp. The ratio of these wavenumbers gives a ‘stretch’ pa-

rameter, α, which describes the change in the recovered oscillation

scale:

α = kapp

ktrue

. (7)

If wassumed = wtrue, then there is no shift in the BAO in the estimated

power spectrum and α = 1. In the case of a wide-angle, deep galaxy

survey with spectroscopic redshifts, the stretch parameter can be

approximated by

α ≈
[

DA(z, wassumed)

DA(z, wtrue)

]−2/3 [
H (z, wtrue)

H (z, wassumed)

]1/3

, (8)

where

H (z, w) = H0[�m(1 + z)3 + �DE(1 + z)3(1+w)]1/2, (9)

DA(z, w) = c

1 + z

∫ z

0

dz

H (z)
. (10)

The values of the exponents in equation (8), 2/3 for the distance

transverse to the line of sight and 1/3 for the distance parallel to

the line of sight are motivated by the number of Cartesian compo-

nents in these directions (e.g. Eisenstein et al. 2005). The precise

value of these exponents will depend upon the geometry and con-

struction of the galaxy survey. For example, in a survey which re-

lies upon photometric redshifts, the exponent parallel to the line of

sight would be greatly reduced and it would be beneficial to com-

pute the power spectrum transverse to the line of sight. Note that

in equations (9) and (10) we assume that w is independent of red-

shift. There are many models in which w is a function of redshift.

In this case, the exponent of �DE in the expression for the Hub-

ble parameter (equation 9) would be replaced by an integral over

w(z).

It is instructive to see how the constraints on α translate into limits

on the value of w. We can do this approximately using equation (8),

for the case of a redshift independent equation of state, considering

perturbations around wtrue = −1. We consider two illustrative cases:

a ‘pessimistic’ case in which we consider the constraints from BAO

in isolation from any other data which constrain the cosmological

parameters and an ‘optimistic’ case, in which we perturb w and only

consider cosmological models that give similar predictions for the

CMB.2 The translation in the pessimistic case is shown in the upper

panel of Fig. 12 for two different redshifts. Here we have assumed

fixed values for �M and �� and we have not marginalized over

2 We acknowledge the referee for suggesting this second case to us and for

encouraging us to perform the calculation.
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Figure 12. The relation between the dark energy equation of state parameter,

w, and the scalefactor, α, defined by equation (8), for perturbations in the

equation of state around wtrue = −1. Two cases are shown. In the upper

panel, the values of the other cosmological parameters are kept fixed. In the

lower panel, the ratio of the sound horizon scale to the angular diameter

distance to the last scattering surface is held fixed. The relation between

α and w is shown for z = 1 (solid lines) and z = 3 (dashed lines). The

horizontal and vertical lines guide the eye to show how a 1 per cent error in

α translates into an error in w.

these parameters. This is the case discussed most commonly in the

literature. Under these conditions, at z = 1, a 1 per cent error in α

corresponds approximately to a 4 per cent error in the value of w.

At z = 3, the boost is about 50 per cent larger, with δw ≈ 6δα.

In the ‘optimistic’ case, we only consider models which give the

same angular location for the first peak in the CMB spectrum. Hence,

when the value of w is perturbed, we restrict our attention to those

models which give the same ratio of the sound horizon scale to the

angular diameter distance to the last scattering surface as our default

cosmology. Given the parametric forms quoted for these distances

by Eisenstein & Hu (1998), this is equivalent to keeping �b/�M

and h fixed, and varying �M. We have called this case ‘optimistic’

because it does not include any error on the fixed parameters. In this

scenario, shown in the lower panel of Fig. 12, the error on w is now

only around 50 per cent larger than the corresponding error on α.

We now explore two of the approaches which have been advocated

in the literature to measure the value of w. Both methods involve

making fits to the ratio of a measured power spectrum divided by a

smooth reference spectrum. In the first approach, a parametric form

is assumed for the ratio (Blake & Glazebrook 2003). The second

approach is more general as it does not assume a specific form for the

ratio, but instead uses the linear perturbation theory power spectrum

without any further approximations (Percival et al. 2007; see also

Eisenstein et al. 2005). We shall henceforth refer to these methods

as the parametric and general schemes, respectively. In their original

forms, there are also differences in the way in which a ‘featureless’

reference spectrum is constructed, as we will briefly discuss when

describing these approaches below.

Blake & Glazebrook (2003; see also Glazebrook & Blake 2005)

studied the feasibility of extracting measurements of the acoustic

oscillations from forthcoming galaxy surveys using linear pertur-

bation theory. Their starting point is to divide the power spectrum,

including the imprint of baryons, divided by a smooth reference

spectrum which is chosen to be free from any signature of acoustic

oscillations. This method therefore does not use any of the infor-

mation contained in the overall shape of the power spectrum, which

Blake & Glazebrook argue could be susceptible to large-scale gra-

dients arising from the effects we discussed in Section 3, such as

galaxy bias or redshift-space distortions. Instead, they focused on

the location and amplitude of the acoustic oscillations. The smooth

reference spectrum is obtained using the zero-baryon transfer func-

tion written down by Eisenstein & Hu (1998). The parametric form

suggested by Blake & Glazebrook as a fit to the resulting ratio is

a Taylor expansion of the ratio of a power spectrum for CDM plus

a small baryonic component, divided by a pure CDM power spec-

trum. The sound horizon, which is a free parameter in their method,

is treated as the oscillation wavelength in this parametric form. This

is an approximation, as the wavelength of the acoustic oscillations

actually changes with wavenumber, albeit slowly, and is therefore

not a constant (see equation 22 of Eisenstein & Hu 1998). Some au-

thors have criticized this approach due to the sensitivity of the ratio to

the choice of the reference power spectrum. Angulo et al. (2005) de-

scribe how realistic power spectra, which include non-linear growth,

bias effects and redshift-space distortions, require a ‘linearization’

process before they become adequately described by the parametric

form put forward by Blake & Glazebrook. Due to the sensitivity of

the ratio to the choice of reference spectrum at low wavenumbers,

Koehler et al. (2007) proposed ignoring power-spectrum measure-

ments below k ∼ 0.05 h Mpc−1 to avoid this problem (although we

note that they also discuss a different approach to measuring the

equation of state parameter).

Percival et al. (2007) proposed a new technique which has a num-

ber of appealing features compared with that of Blake & Glazebrook.

First, the shortcut of fitting an approximate parametric form to the

ratio of the measured power spectrum to a reference is dropped

in favour of using a full linear perturbation theory power spectrum

(with a modification; see later) to model the ratio. This is completely

general, and permits one to use the most accurate description avail-

able of the linear perturbation theory power spectrum, such as the

tabulated output of CAMB. Secondly, the reference power spectrum

is defined separately in the case of the data and the linear theory

model, by using a coarse rebinning of the relevant power spectrum.

The reference is constructed using a spline fit to a reduced number of

wavenumber bins over the range in which the spectrum in question

is defined. Thus, any deviations in the general form of the measured
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spectrum away from linear theory are naturally accounted for in

the reference spectrum. Thirdly, Percival et al. allow for a damping

of the amplitude of the oscillations in the theoretical ratio beyond

some wavenumber, which is treated as a free parameter in their fit.

The quality of the fits is dramatically improved when damping of

the higher harmonics is allowed. Percival et al. applied their method

to extract the matter density parameter from the power spectrum of

LRGs in the SDSS.

The majority of the results we present are obtained using the

general method suggested by Percival et al. For completeness, and

because Percival et al. did not actually apply their method to the

extraction of the equation of state parameter, we set out the general

approach step by step below.

(1) A smooth reference spectrum (i.e. without any oscillatory fea-

tures), Pref, is constructed from the measured power spectrum using

a cubic spline fit over the wavenumber range 0.0046 < k(h Mpc−1) <

1.2, using the measured spectrum smoothed over 25 bins in

wavenumber. The spline is constrained to pass through the data

points in this coarse rebinning of the measured power spectrum.

(2) We compute the ratio, R(k), of the measured power spectrum,

P(k), to the reference spectrum, Pref(k), obtained in step 1:

R(k) = P(k)

Pref(k)
. (11)

(3) A linear perturbation theory power spectrum is generated with

CAMB for the cosmological parameters used in the BASICC simula-

tion. A smooth reference spectrum, PL
ref, is defined for this spectrum

in the same manner as described for the measured spectrum in step

1, using the same wavenumber bins. A ratio, RL, is derived for the

linear perturbation theory spectrum by dividing by this reference

spectrum.

(4) The linear theory ratio, RL, is compared with the measured

ratio, R. Two modifications are considered to the linear theory ratio.

The first is a stretch or scaling of the wavenumber used in the linear

theory ratio, as described above, to mimic the act of changing the

dark energy equation of state parameter, w. The goal here is to

see what variation in w can be tolerated before RL is no longer a

good fit to the measured ratio R. The second change is to allow for a

damping of the oscillations beyond some characteristic wavenumber

by multiplying the theoretical power spectrum by a Gaussian filter:

W (k) = exp

(
− k2

2k2
nl

)
, (12)

where knl is a free parameter. Hence, the linear theory ratio is mod-

ified to

RL(k) =
[

P L

P L
ref

(αk) − 1

]
W (k, knl) + 1. (13)

(5) A likelihood is computed for each combination of the param-

eters knl and α, assuming Gaussian errors:

−2 ln L = χ2 =
∑

i

(
Ri − Ri

L

σ i/Pi

)2

, (14)

where the summation is over wavenumber and σ i is the error on the

power spectrum estimated in the ith bin (as given by equation 3).

We generate a grid of models using 2002 different combinations of

α and knl in the ranges [0.9, 1.1] and [0, 0.4], respectively.

(6) Finally, the best-fitting values for α and knl correspond to those

for the model with the maximum likelihood. We obtain confidence

limits on the parameter estimation by considering the models within

�χ 2 equal to 2.3 and 6.0; in the case of a Gaussian likelihood, these

would correspond to the 68 per cent (1σ error) and 95 per cent (2σ

error) confidence levels on the best fit. We note that in some cases

presented later (see Fig. 15), the distribution of the likelihood is not

Gaussian.

In some cases, we also present constraints on w derived using a

slightly modified version of the approach of Blake & Glazebrook.

The main difference is that we follow step 1 to construct a ratio

from the measured power spectrum, rather than using a zero-baryon

transfer function.

One issue to be resolved is the range of wavenumbers which

should be used in the fitting process. To address this, we used the

power spectrum of the dark matter measured at z = 6. We system-

atically varied the minimum and maximum wavenumbers used in

our fit and compared the values of the scaling parameter, α, recov-

ered. Our results are fairly insensitive to the choice of the maximum

wavenumber, particularly when damping of the oscillations is in-

cluded in the fitting algorithm. However, the recovered α shows

a systematic shift once the minimum wavenumber exceeds k ∼
0.1 h Mpc−1. For minimum wavenumbers smaller than this, there

is little difference in the recovered value of α or in the size of the

errors on α, as these modes have relatively large errors in our sim-

ulation. This is encouraging news for realistic survey geometries,

for which the power spectrum measured at low wavenumbers will

be distorted due to the window function of the survey. In the rest of

the paper, we use the power spectrum in the wavenumber interval

k(h Mpc−1) = [0, 0.4] to constrain the value of α.

5 R E S U LT S

In this section, we present the expected constraints on the dark

matter equation of state using the power spectra measured from

our simulations. We first show how our algorithm for extracting

the equation of state parameter works in practice, for dark matter

particles, haloes and galaxies, comparing the results obtained in

real and redshift space (Section 5.1). We then assess the need for an

accurate model of the linear theory power spectrum and the relative

merits of the general and parametric fitting procedures (Section 5.2).

In Section 5.3, we present our main results, which are summarized

in Fig. 19 and Table 2, which lists the best-fitting value of α and

the estimated error for different samples of galaxies at z = 1, along

with the corresponding fractional error in w. Finally, in Section 5.4,

we use the results presented in Section 5.3 to make forecasts for

the accuracy with which several forthcoming surveys will be able

to measure the value of w.

5.1 The algorithm to extract the scale of the acoustic
oscillations in action

We present a series of plots for samples at z = 0, which illustrate the

various stages in the fitting process. Fig. 13 shows the power spectra

measured for different tracers, both in real and redshift space. The

sample of dark matter haloes includes all objects with a mass in ex-

cess of 5.4 × 1012 h−1 M�. The galaxy sample is magnitude limited

with a space density of n̄ = 5 × 10−4 h−3 Mpc3. For reference, the

linear perturbation theory power spectrum for the mass at z = 0 is

shown by the blue line in each panel: this is the power spectrum of

the dark matter measured in real space at z = 15, scaled by the ratio

of growth factors in order to have the amplitude expected at z = 0. It

is important to bear in mind that the y-axis in this plot covers more
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Table 2. The results of applying the general fitting procedure described in Section 4 to power spectra measured for different galaxy catalogues at z = 0 (top)

and z = 1 (bottom). In each table, the first row gives the results for the dark matter and the final row lists results for a sample of dark matter haloes (all haloes

with mass in excess of 2.7 × 1013 h−1 M�). The first column gives the label of the sample, as defined in Section 2. The second column gives the space density

of galaxies. The first two samples, A and B, are constructed by applying a magnitude limit. Samples C–F are derived from sample A by applying a second

selection criterion, as listed in the third column. Samples C and E correspond to the red and blue halves of sample A, respectively. Samples D and F comprise

the 50 per cent of galaxies from sample A with the strongest and weakest (in terms of equivalent width) O II[3727] emission lines, respectively. Column 4

(10) gives the effective bias of the sample, computed from the square root of the ratio of the measured galaxy power spectrum in real (redshift) space to the

real-space power spectrum of the dark matter over the wavenumber interval 0.01 < k (h Mpc−1) < 0.05. Column 5 (11) gives the ratio of the clustering signal

to the shot noise for the power-spectrum measurement, averaged over the wavenumber range 0.19 < k (h Mpc−1) < 0.21. Columns 6 and 7 (12 and 13) give the

best-fitting values of the scaling parameter α and the 1σ error on the fit, in real (redshift) space. Column 9 (15) gives the error expected on the scale parameter

from Seo & Eisenstein (2007). The rms Lagrangian displacement was set equal to 1 over the best-fitting non-linear scale (1/knl) for each case.

Sel I Sel II Real space Redshift space

ID n̄ b n̄ P knl α �α �α b n̄ P knl α �α �α

(h3 Mpc−3) (h Mpc−1) (per cent) (per cent) (h Mpc−1) (per cent) (per cent)

(SE07) (SE07)

z = 0

DM 0.99 3567 0.120 0.993 0.91 1.02 1.15 3635 0.110 0.989 1.05 1.17

A 5.0e−4 1.18 1.78 0.144 0.975 1.16 1.10 1.32 2.15 0.125 0.972 1.26 1.23

B 2.5e−4 1.33 1.11 0.155 0.971 1.34 1.18 1.47 1.34 0.139 0.966 1.35 1.23

C 2.5e−4 Red 1.32 1.15 0.152 0.978 1.35 1.21 1.46 1.36 0.127 0.975 1.49 1.37

D 2.5e−4 Strong 1.06 0.67 0.155 0.956 1.75 1.41 1.20 0.86 0.138 0.956 1.67 1.42

E 2.5e−4 Blue 1.03 0.66 0.141 0.964 1.92 1.56 1.17 0.83 0.130 0.962 1.79 1.53

F 2.5e−4 Weak 1.30 1.16 0.132 0.980 1.55 1.40 1.44 1.34 0.115 0.972 1.66 1.54

Haloes 5.9e−5 1.56 0.81 0.197 0.980 1.32 1.07 1.71 1.04 0.148 0.975 1.43 1.25

z = 1

DM 0.99 1269 0.163 0.997 0.61 0.68 1.29 1710 0.133 0.991 0.77 0.88

A 5.0e−4 1.34 0.87 0.188 0.980 1.30 1.10 1.60 1.19 0.164 0.976 1.21 1.07

B 2.5e−4 1.31 0.43 0.212 0.975 2.02 1.47 1.57 0.59 0.174 0.970 1.72 1.38

C 2.5e−4 Red 1.39 0.48 0.235 0.977 1.81 1.32 1.65 0.65 0.208 0.975 1.52 1.17

D 2.5e−4 Strong 1.31 0.40 0.624 0.971 1.90 1.14 1.57 0.55 0.186 0.970 1.79 1.31

E 2.5e−4 Blue 1.30 0.40 0.219 0.973 2.31 1.47 1.56 0.54 0.159 0.962 1.98 1.48

F 2.5e−4 Weak 1.37 0.47 0.218 0.987 1.91 1.38 1.63 0.64 0.190 0.978 1.61 1.25

Haloes 5.9e−5 3.07 0.59 0.226 1.000 1.65 1.24 3.34 0.77 0.146 0.994 1.82 1.53

than a factor of 1000 in amplitude. Fig. 13 shows that there is con-

siderable variation in the power spectra measured for different types

of objects, and between the results in real and redshift space, which

reinforces the points made in Section 3 regarding deviations from

the predictions of linear perturbation theory on large scales. The

red curve in each panel shows the corresponding reference power

spectrum, which is constructed from the measured power spectrum

as explained in Section 4.

In Fig. 14, the symbols show the ratio obtained by dividing the

measured power spectrum by the appropriate reference spectrum

for the same samples plotted in Fig. 13. The ratios look remarkably

similar for the different tracers up to k ≈ 0.15 h Mpc−1. Beyond this

wavenumber, the appearance of the oscillations varies from panel

to panel, but the ratio stays close to unity. This similarity illustrates

how well the approach for producing the reference spectrum works.

The red curves in each panel show the best-fitting model produced in

the general scheme whilst the blue curves show the fit obtained in the

parametric approach. The best fits have somewhat different forms

at wavenumbers below k ∼ 0.05 h Mpc−1. The constraints on the

values of the parameters knl and α are presented in Fig. 15, where

we show the 1, 2 and 3σ ranges in the case of two parameters,

computed assuming Gaussian errors. There is a weak systematic

trend for the best-fitting result for α to shift to lower values when

galaxies are considered instead of the dark matter. The errors on the

recovered parameters are larger in the case of galaxies than for the

dark matter or for haloes, reflecting the lower signal-to-noise ratio

of the predicted galaxy power spectrum.

5.2 Two tests of the algorithm

Before presenting the main results of applying our algorithm to

extract the acoustic oscillation scales for various samples drawn

from the BASICC run, we use the L-BASICC ensemble to address

two questions. (1) How accurately do we need to model the linear

perturbation theory matter power spectrum to avoid introducing a

systematic bias into the results for the oscillation scale? (2) How does

the performance of the new method for constraining the oscillation

scale introduced in this paper compare with earlier approaches? To

help answer these questions, we use the power spectrum of the dark

matter measured from the L-BASICC runs in real space at z = 0

and 3.8, the highest output redshift besides the initial conditions.

The results of applying our standard algorithm for extracting the

oscillation scale are shown by the red histogram labelled CAMB in

Fig. 16, which gives the distribution of the best-fitting value of

α. The ensemble returns an unbiased mean value for the stretch

parameter, α = 1. At z = 3.8, the standard deviation on the best fit is

0.3 per cent; by z = 0, this rises to 1 per cent.

To address the first issue above, regarding how well we need to

model the linear theory power spectrum to get an unbiased result for

the oscillation scale, we replace the CAMB generated power spectrum

in our algorithm by the approximation introduced by Eisenstein &

Hu (1998). These authors proposed a physically motivated expres-

sion for the linear theory power spectrum, with parameters set to

achieve a reasonable match to the results obtained from detailed

calculations using Boltzmann codes over a much wider range of
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Figure 13. The power spectra of dark matter particles, dark matter haloes

and galaxies at z = 0 (error bars). The real-space power spectra are plotted

in the left-hand column and the redshift-space power spectra appear in the

right-hand column. The red curves show the reference spectra derived from

the measured spectra using a cubic spline fit, as described in Section 4.

The blue curve is the same in each panel, showing the linear perturbation

theory prediction for the z = 0 matter power spectrum (plotted using a

high-redshift output obtained from the BASICC simulation, which has been

scaled in amplitude according to the difference in growth factors between the

two epochs expected in linear perturbation theory) The errors on the power

spectrum are estimated using equation (3).

Figure 14. The ratio of the measured power spectrum divided by a smooth

reference spectrum. The symbols correspond to the measurements plotted

in Fig. 13 divided by the red curve in each panel of that figure. The red lines

here show the best-fitting model in each case using the general method and

the blue curves show the best fit for the parametric method. The errors on

the power spectrum are estimated using equation (3).

Figure 15. The constraints on the parameters knl and α for the power spectra

plotted in Fig. 13. The contours show the 1, 2 and 3σ confidence limits for

two parameters.

wavenumbers than are typically considered for BAO. Eisenstein &

Hu’s motivation was to provide physical insight into the form of the

power spectrum in a CDM universe and to produce a code which

could rapidly calculate large numbers of power spectra for grids

cosmological parameters. Of course, the correct approach in our fit-

ting procedure is to use the same code to compute the linear theory

spectrum as was used to generate the initial conditions in the N-body

simulation. In the case of real data, we do not have the luxury of

knowing which Boltzmann code to use, so we should use the one

which claims to be the most accurate representation of the model

we are testing. Nevertheless, it is instructive to perform this test to

see what error is introduced by using a less accurate calculation of

the transfer function. The choice of Eisenstein & Hu’s code is par-

ticularly relevant for this purpose as Blake & Glazebrook used this

formalism to inspire their parametric expression to fit the acoustic

oscillations. The use of Eisenstein & Hu’s formalism to model the

linear theory power spectra generated with CAMB introduces a small

but measurable systematic shift in the mean value of α. At z = 0, the

mean α indicated by the blue histogram in Fig. 16 is 0.98 ± 0.01.

We answer the second question by adopting the fitting algorithm

of Blake & Glazebrook (2003), which assumes a parametric form

for the ratio of the power spectrum with baryons to a smooth, CDM-

only power spectrum. Changing the fitting method in this way also

introduces a similar magnitude of shift in the best-fitting value of α.

The green histogram shows the results when we use the parametric

approach introduced by Blake & Glazebrook (2003). The mean

value of α in this case is 1.01 ± 0.01. These shifts are small but one

must bear in mind that the corresponding bias in the dark energy

equation of state parameter is several times larger than the shift

in α.

5.3 The main results

We now turn our attention back to the general results shown in

Figs 17 and 18, and discuss the conclusions for different tracers
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Figure 16. The best-fitting value for the scaling parameter α, recovered from

the ensemble of low-resolution simulations, using the dark matter power

spectrum in real space. The results are show for two different redshifts: z =
3.8 (top) and z = 0 (bottom). The histograms marked CAMB and BG03 show

the results for the general and parametric fitting procedures, respectively.

The blue histogram shows the results if the general method is followed with

the CAMB power spectrum replaced by the formula for the linear theory power

spectrum presented by Eisenstein & Hu (1998).

of the density field in turn. In these plots, the symbols refer to the

constraints obtained from the high-resolution BASICC simulation

and the shading shows results from the ensemble of low-resolution

simulations, L-BASICC.

The blue triangles in Fig. 17 show the values obtained for α from

the power spectrum of the dark matter. There is a trend for the best-

fitting value to deviate away from unity with decreasing redshift,

although the result at z = 0 is still within 1σ of α = 1. The mean of

the ensemble of low-resolution runs does not, however, show any

deviation away from α = 1 as a function of redshift, although the

scatter on the recovered value of α increases towards the present

day. If we examine the analogous results for individual simulations

taken from the low-resolution ensemble, we find a wide range of

behaviour for the best-fitting value of α for the dark matter. Some

low-resolution runs give results which look like the high-resolution

one, whereas others show deviations away from α = 1, with values

of α > 1, as z = 0 is approached. The trend seen for the dark

matter in the high-resolution run serves to illustrate the importance

of sampling fluctuations, even in such large volumes. In redshift

space, the scatter in the recovered value of α is larger than in real

space (see also Seo & Eisenstein 2005; Eisenstein et al. 2007).

Figure 17. The best-fitting value of the scalefactorα as a function of redshift,

for different tracers of the density distribution, in real space (top) and redshift

space (bottom). The symbols show results from the high-resolution BASICC

simulation: dark matter (blue triangles), dark matter haloes with mass in

excess of 5.4 × 1012 h−1 M� (green circles) and galaxies (red squares).

The error bars show the 1σ range on α, calculated from �χ2. The hatched

region shows the central 68 per cent range of the results obtained using the

dark matter in the ensemble of low-resolution simulations. Recall that α = 1

corresponds to an unbiased measurement of the equation of state parameter,

w, and that δw ≈ 4δα at z = 1.

To obtain the errors quoted in Table 2 on the parameters α and

knl, we assume Gaussian mode counting errors on the power spec-

tra measured in the BASICC simulation, as given by equation (3).

In Fig. 3, we showed that this simple estimate of the errors on the

power spectrum agreed fairly well with the scatter found in the mea-

surements from the L-BASICC ensemble, particularly for the case

of the dark matter. We have extended this comparison to look at

how the errors on α and knl quoted in Table 2 match the scatter in

these parameters obtained from the L-BASICC runs. We find the

scatter estimated from the ensemble is somewhat larger than the er-

ror inferred using the mode counting argument. At z = 0, the mode

counting errors are 20 per cent smaller for α for the dark matter

in real space. In redshift space, the discrepancy increases to nearly

30 per cent. The mismatch between the two estimates is smaller

at z = 1. The level of disagreement is not remarkable. It could be

the case that the scatter from the ensemble has not converged, even

with 50 realizations of the density field. A more likely explanation,

particularly in view of the redshift dependence of the discrepancy, is

mode coupling in the power-spectrum measurements arising from

non-linearities and redshift-space distortions, which could increase
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Figure 18. The best-fitting value of the damping scale knl as a function of

redshift, for different tracers of the density distribution, in real space (top) and

redshift space (bottom). The symbols show results from the high-resolution

BASICC simulation: dark matter (blue triangles), dark matter haloes with

mass in excess of 5.4 × 1012 h−1 M� (green circles) and galaxies (red

squares). The error bars show the 1σ range on α. The hatched region shows

the central 68 per cent range of the results obtained using the dark matter in

the ensemble of low-resolution simulations.

the variance in the power spectrum compared with the Gaussian

estimate.

Fig. 18 shows that there is a strong trend for the best-fitting value

of the smoothing scale, knl, to decrease with decreasing redshift.

This results from the oscillations being erased and modified down

to smaller wavenumbers as the non-linearities in the density field

grow. The variation of the smoothing scale knl on redshift is well

described by a linear relation: knl = a + bz. In real space, a = 0.108

± 0.0082 and b = 0.054 ± 0.0110. In redshift space, a = 0.096 ±
0.0074 and b = 0.036 ± 0.0094.

The constraints on α and knl for dark matter haloes (with masses

in excess of 5 × 1012 h−1 M�) are plotted with green circles in

Figs 17 and 18. The parameter constraints obtained for this sample

of haloes are very similar to those found for the dark matter, except

for the value of knl at high redshift. Considering haloes in place

of dark matter represents a step closer to the observations, so it is

reassuring that the conclusions do not change significantly.

Finally, in Figs 17 and 18, we show using red squares the results

for magnitude-limited samples of galaxies. The magnitude limit is

varied with redshift such that in each case the galaxy sample has a

space density n̄ = 5 × 10−4 h−3 Mpc3. There is a weak systematic

shift in the best-fitting values ofα compared with the results obtained

for the dark matter. At the same time the signal-to-noise ratio of

Figure 19. The recovered value of the stretch parameter α for the galaxy

samples listed in Table 2. Recall that α = 1 corresponds to the equation of

state parameter w = −1. At z = 1, a shift in α away from unity implies a

shift in the recovered value of w given by δw ≈ 4δα.

the power-spectrum measurement is lower for the galaxy samples

than for the dark matter, so the errors on the best-fitting parameters

are correspondingly larger for the galaxies. The galaxy samples are

consistent with α = 1 at slightly over 1σ . The size of this systematic

shift is comparable to the random measurement errors, so we cannot

reach a firm conclusion. It will be very interesting to repeat our

calculation with a larger simulation volume to reduce the size of the

random errors and to assess if such shifts could genuinely provide

an ultimate limitation to the accuracy of this method.

As a result of using a semi-analytic galaxy formation model which

makes predictions for the observable properties of galaxies, we can

vary the selection criteria used to construct samples and compare

the constraints on the equation of state. The results of this exercise

at z = 1 are presented in Table 2 and in Fig. 19, where we consider

a range of samples defined either by a simple magnitude limit, or

by a magnitude limit applied in combination with a colour cut or

a restriction on the strength of an emission line. The key result

from comparing the constraints for different samples is that whilst

there are no strong systematic differences between the results, the

accuracy of the constraints varies significantly. For example, using

a catalogue of red galaxies, we predict that one could measure the

dark energy equation of state with an accuracy 40 per cent better

than that with the same number density of galaxies chosen by the

strength of their emission lines.

We compare the error on the acoustic scale extracted from our

simulations with the results of the prescription set out by Seo &

Eisenstein (2007). The Seo & Eisenstein (2007) algorithm contains

a parameter which is equivalent to 1/knl. If we use our best-fitting

values of knl, we find that the Seo & Eisenstein prescription gives a

similar estimate of the error on the acoustic scale to that we obtain

by fitting directly to the simulation results. However, if we use the

value of knl suggested by Seo & Eisenstein (2007), which they extract

from a dark matter simulation, we find that their prescription gives

an optimistic estimate of the error on α. The reason we recover

a larger value of knl from our galaxy samples than we do for the

dark matter is due to the increased discreteness shot noise in these
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samples, which results in noisier power spectra at high k. This causes

an elongation in the confidence levels in the knl versus α plane.

It is interesting to compare the results for the dark matter and for

the galaxy samples with those for a set of massive haloes. Table 2 also

gives the constraints on α and knl for a sample of massive haloes (see

also Angulo et al. 2005). There are 142 000 haloes in the BASICC

output at z=1 with a mass in excess of 2.7 × 1013 h−1 M�. Although

the effective bias of this sample of massive haloes is greater than

that of any of the galaxy samples listed in Table 2, the reduction in

space density means that n̄ P ≈ 1 and the estimated error on w is

comparable to that found for the galaxy samples.

5.4 Forecasts for future surveys

We can use the results presented in Table 2 to make a rough estimate

of the accuracy with which future surveys are likely to be able to

constrain the scale of the acoustic oscillations. This can be done

using a simple calculation motivated by the expression for the frac-

tional error in the power spectrum given by equation (3). We assume

that the error in the distance scale, �α, scales with the volume of

the survey, Vsurvey, and the product of the space density of galaxies

and the power spectrum, n̄ P(k = 0.2 h Mpc−1), as

�α ∝ 1√
Vsurvey

(
1 + 1

n̄ P

)
. (15)

The constant of proportionality can be set for a particular galaxy

sample using the results given in Table 2.

The WiggleZ survey is currently underway and will measure red-

shifts for 400 000 blue galaxies over 1000 deg2 in the redshift in-

terval z = 0.5–1.0 (Glazebrook et al. 2007). For the cosmological

parameters adopted in this paper, this gives a comoving volume of

1.13 h−3 Gpc3. Using the blue colour selected sample or the large

equivalent width sample from Table 2, and assuming n̄ P ∼ 1 for

WiggleZ galaxies, somewhat higher than we find in our simulation,

we estimate that this survey will measure the distance scale to an

accuracy of �α ∼ 2 per cent, which is similar to that claimed by

Glazebrook et al. using linear perturbation theory.

The WFMOS survey has been proposed to motivate the

construction of a new spectrograph for the Subaru telescope

(Glazebrook et al. 2005). This will target galaxies with a space den-

sity of n̄ = 5 × 10−4 h3 Mpc−3 in the redshift interval z = 0.5–1.3

over 2000 deg2, covering a volume of 4.4 h−3 Gpc3. (There is also

a WFMOS survey which will target z = 3 galaxies but over a much

smaller solid angle.) Using sample A from Table 2, and adopting

n̄ P = 1, we obtain an estimated error of �α = 0.83 per cent, again

in good agreement with Glazebrook et al.

Photometric surveys can generally cover a larger solid angle than

spectroscopic surveys down to a fainter magnitude limit. The fainter

magnitude limit results in a higher median redshift and a broader

redshift distribution for the survey galaxies, which means that a

larger volume is covered. However, the limited accuracy of photo-

metric redshift estimates means that in practice Fourier modes are

lost and the effective volume of the survey is greatly reduced. Blake

& Bridle (2005) estimate that the factor by which the survey volume

is reduced is ≈12(δz/(1 + z)/0.03), where δz/(1 + z) is the error

in the photometric redshifts.

The Panoramic Survey Telescope and Rapid Response Sys-

tem (Pan-STARRS) survey will map 3π sr of the sky (http://pan-

starrs.ifa.hawaii.edu/public/home.html). Cai et al. (in preparation)

show that the median redshift of the 3π survey will be z ≈ 0.5,

with a tail extending to z ≈ 1.2. The volume of the survey, assum-

ing that 20 000 deg2 cover low-extinction parts of the sky and give

high-quality clustering measurements, is around 41 h−3 Gpc3. Talk-

ing sample A from Table 2, and setting n̄ P 	 1, as appropriate for

the relatively high space density of galaxies in a photometric sample,

and allowing for the reduction in the effective volume caused by a

photometric redshift error of δz/(1 + z) = 0.03, gives a forecast er-

ror on the oscillation scale of �α ∼ 0.5 per cent. In the more likely

event that the photometric redshift errors are twice as large, δz/
(1 + z) ∼ 0.06, this figure increases to �α ∼ 0.7 per cent.

Remembering the crude conversion �w ≈ 4 �α from Section 4,

this means that the next generation of galaxy surveys is unlikely

to deliver 1 per cent errors on a constant equation of state from

BAO measurements used in isolation from other cosmological data.

A survey with almost an order of magnitude more effective vol-

ume than Pan-STARRS will be needed to achieve this target. This

will require an all-sky, spectroscopic galaxy redshift survey, such as

the SPACE mission being proposed to ESA’s Cosmic Vision call.

SPACE will measure redshifts for galaxies in the interval 0.5 < z <

2, covering around 150 h−3 Gpc3. Extrapolating from Sample A, we

forecast that an error in the oscillation scale of �α ∼ 0.15 per cent

could be achieved with SPACE. In the case of the pessimistic trans-

lation to an error on w considered in Section 4, this corresponds to

�w ∼ 0.6 per cent; in the optimistic scenario, we expect a constraint

of �w ∼ 0.23 per cent.

6 C O N C L U S I O N S

In the next 5–10 yr, several proposed galaxy surveys will allow

high-precision measurements of the clustering of galaxies on the

scale of the acoustic oscillations at intermediate and high redshifts.

Both photometric and spectroscopic surveys are planned, which

will cover volumes up to tens of cubic gigaparsecs and will contain

hundreds of thousands to hundreds of millions of galaxies. There

is a clear need to ensure that theoretical predictions develop apace

with sufficient accuracy and realism to allow such data sets to be

fully exploited and to uncover any possible systematic errors in this

cosmological test to uncover the nature of the dark energy.

Early theoretical work in this area used linear perturbation the-

ory (Blake & Glazebrook 2003; Hu & Haiman 2003; Glazebrook &

Blake 2005). Recently, more physical calculations have been carried

out using N-body simulations with cubes of side 500–1100 h−1 Mpc

(Seo & Eisenstein 2003, 2005; Schulz & White 2006; Huff et al.

2007; Seo & Eisenstein 2007). In this paper, we have improved

upon previous modelling work in three ways. First, we have used a

simulation volume comparable to the largest of the currently pro-

posed spectroscopic surveys. This allows us to accurately follow

the growth of density fluctuations on an ultralarge scales in ex-

cess 100 h−1 Mpc, the scales of interest for the acoustic oscillations,

which can only be followed approximately in smaller computational

volumes. In particular, a large volume is necessary to obtain accurate

predictions for bulk flows, which are sensitive to the power spectrum

at low wavenumbers. The only published work with a larger sim-

ulation volume used the Hubble Volume Simulation (Angulo et al.

2005; Koehler et al. 2007). The Hubble Volume has a larger particle

mass than the BASICC, which restricted these studies to consider

either cluster mass dark matter haloes (Angulo et al. 2005) or a sim-

ple biasing scheme to add galaxies (Koehler et al. 2007). Secondly,

through the use of a large number of particles, we are able to re-

solve the majority of the haloes which are likely to host the galaxies

which will be observed in the forthcoming surveys. Thirdly, we use

a semi-analytic galaxy formation model to populate the simulation

with galaxies. Unlike other studies which use phenomenological

biasing schemes or the halo occupation model to add galaxies, this
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allows us to predict the shape and amplitude of the galaxy power

spectrum and the signal-to-noise ratio of the clustering expected for

different galaxy selections.

We use our N-body simulation in combination with a galaxy for-

mation model to make the connection between the linear perturba-

tion theory prediction for the matter power spectrum and the power

spectrum of galaxies. We do this in a series of steps, starting with

power spectrum of the dark matter, looking at the impact of the non-

linear growth of fluctuations and peculiar motions or redshift-space

distortions, before examining the power spectrum of dark matter

haloes and, finally, galaxies. A number of conclusions are reached

from this study. (i) The non-linear evolution of the dark matter power

spectrum is apparent even on scales larger than the sound horizon

scale. Although the deviation from linear theory is only a few per

cent, the coupled evolution of different Fourier modes means that

these scales need to be followed accurately to get the correct be-

haviour at higher wavenumbers. (ii) The form of the distortion of

the power spectrum due to peculiar motions is extremely sensitive

to the type of object under consideration, being quite different for

the cases of dark matter, dark haloes and galaxies. Moreover, differ-

ent galaxy selections give different redshift-space distortions. (iii)

Galaxy bias is scale dependent and sensitive to the selection ap-

plied for wavenumbers k > 0.15 h Mpc−1. Eisenstein et al. (2007)

discuss a technique which attempts to reconstruct the linear density

field from an observed distribution of objects. The reconstruction

can reduce the damping of the higher harmonic oscillations in the

power spectrum, thereby increasing the statistical significance of the

acoustic scale measurement and diminishing any systematic effects

caused by departures from linearity. It will be interesting to apply

this method to the galaxy samples presented in this paper, to see if

this approach still works at the required level in the case of biased

tracers of the linear density field.

We also present a new method to extract the dark energy equa-

tion of state parameter, based upon an approach put forward by

Percival et al. (2007). The method involves dividing the measured

power spectrum by a smooth reference spectrum and comparing the

resulting ratio to the predictions of linear perturbation theory. The

algorithm has three key advances over earlier work, which can be

credited to Eisenstein et al. (2005) and Percival et al. (2007). (i) The

reference spectrum is derived from the measured spectrum, which

avoids the need to apply major corrections to a linear theory refer-

ence. (ii) The measured ratio is compared to a prediction generated

using CAMB, which is more accurate than assuming a parametric

form for the ratio based on a Taylor expansion. (iii) The linear the-

ory ratio is modified by allowing the higher order oscillations to be

damped, which improves the fit to the measured ratio. Changing the

value of the equation of state parameter is approximately equivalent

to rescaling the wavenumber in the predicted power-spectrum ratio;

at z = 1, a 1 per cent shift in wavenumber is equivalent to a 4 per

cent shift in the recovered value of w.

We explore the constraints on the dark energy equation of state

using different tracers of the density field. By applying our algorithm

for extracting the oscillation scale to the L-BASICC ensemble, we

have provided the most stringent test to date of usefulness of BAO for

measuring the equation of state of the dark energy. For the case of the

dark matter, there is no significant bias in the recovered oscillation

scale, compared with the value expected from linear perturbation

theory. Within a given simulation, we find that 1 per cent deviations

from the underlying length-scale are possible although these are only

at the 1σ level. Such excursions are the result of sampling variance

arising from the finite volume of the computational box, which are

important even in a simulation of the volume of the BASICC. The

error on the scalefactor recovered from galaxy samples is larger than

that found for the dark matter, reflecting the lower signal-to-noise

ratio of the galaxy power-spectrum measurements. Different galaxy

selections lead to variations in the clustering strength and hence in

the error expected in the scalefactor.

Currently, the best constraints on the equation of state parameter

come either from combining data sets, such as the power spectrum of

galaxy clustering and measurements of the microwave background

radiation (e.g. Sánchez et al. 2006) or from the Hubble diagram of

Type Ia, with priors on the flatness of the Universe and the mat-

ter density (Riess et al. 2004). For example, Wood-Vasey et al.

(2007)combine high-redshift SNe Ia from the ESSENCE Supernova

Survey with the measurement of the BAO made by Eisenstein et al.

(2005), and, assuming a flat universe, constrain a constant equa-

tion of state to have w = −1.05+0.13
−0.12(statistical)± 0.11(systematic),

consistent with a cosmological constant. Possible contributions to

the systematic error include the degree of dust extinction in the SNe

host galaxy, evolution in the properties of SNe with redshift and

local calibration effects such as a ‘Hubble bubble’. We have used

our simulation results to forecast the accuracy with which future

galaxy surveys will use the BAO in isolation to constrain the scale

of the acoustic oscillations, and under certain assumptions, w. We

anticipate that Pan-STARRS, with accurate photometric redshifts,

will have an accuracy comparable to that expected for the next gen-

eration of spectroscopic survey (WFMOS) and could potentially

reduce the statistical errors on the value of w by a factor of 2 com-

pared with the current constraints. However, the target of 1 per cent

random errors on w using BAO measurements is beyond the grasp

of any of the surveys likely to be completed or even to start within

the next decade.

The predictions we have presented here are idealized in a number

of respects. The accuracy with which we expect the dark energy

equation of state parameter will be measured assumes that the val-

ues of the other cosmological parameters are known with infinite

accuracy. We have also neglected the impact of the survey window

function on the power-spectrum measurement; this will be partic-

ularly important in the case of surveys which rely on photomet-

ric redshifts. In future work, we plan a number of improvements.

(i) Use of an even larger simulation volume, to exceed that pro-

posed in forthcoming surveys. One caveat on our quoted error on

w is that some of the planned surveys will be larger than the vol-

ume of the BASICC, and will consequently have smaller sampling

fluctuations. (ii) The inclusion of the evolution of clustering along

the line of sight. Although we have focused on z = 1, proposed

surveys will span a broad redshift interval centred on this value.

(iii) The inclusion of a survey window function, mimicking the an-

gular and radial selections, and including the impact of errors on

photometric redshifts. Such calculations represent huge challenges

in computational cosmology, due to the volume coverage and mass

resolution required in the N-body simulations used, and the post-

processing needed to include galaxies. However, such calculations

are essential if the BAO approach is to be used to its full potential.
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