
ERF5 and ERF6 Play Redundant Roles as Positive
Regulators of JA/Et-Mediated Defense against Botrytis
cinerea in Arabidopsis
Caroline S. Moffat1,2, Robert A. Ingle3, Deepthi L. Wathugala1,4, Nigel J. Saunders5, Heather Knight1,

Marc R. Knight1*

1 School of Biological and Biomedical Sciences, Durham Centre for Crop Improvement Technology, Durham University, Durham, United Kingdom, 2 Department of

Environment and Agriculture, Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth, Australia, 3 Department of Molecular and Cell Biology,

University of Cape Town, Rondebosch, South Africa, 4 Department of Crop Science, University of Ruhuna, Kamburupitiya, Sri Lanka, 5 Sir William Dunn School of

Pathology, University of Oxford, Oxford, United Kingdom

Abstract

The ethylene response factor (ERF) family in Arabidopsis thaliana comprises 122 members in 12 groups, yet the biological
functions of the majority remain unknown. Of the group IX ERFs, the IXc subgroup has been studied the most, and includes
ERF1, ERF14 and ORA59, which play roles in plant innate immunity. Here we investigate the biological functions of two
members of the less studied IXb subgroup: ERF5 and ERF6. In order to identify potential targets of these transcription
factors, microarray analyses were performed on plants constitutively expressing either ERF5 or ERF6. Expression of defense
genes, JA/Et-responsive genes and genes containing the GCC box promoter motif were significantly upregulated in both
ERF5 and ERF6 transgenic plants, suggesting that ERF5 and ERF6 may act as positive regulators of JA-mediated defense and
potentially overlap in their function. Since defense against necrotrophic pathogens is generally mediated through JA/Et-
signalling, resistance against the fungal necrotroph Botrytis cinerea was examined. Constitutive expression of ERF5 or ERF6
resulted in significantly increased resistance. Although no significant difference in susceptibility to B. cinerea was observed
in either erf5 or erf6 mutants, the erf5 erf6 double mutant showed a significant increase in susceptibility, which was likely
due to compromised JA-mediated gene expression, since JA-induced gene expression was reduced in the double mutant.
Taken together these data suggest that ERF5 and ERF6 play positive but redundant roles in defense against B. cinerea. Since
mutual antagonism between JA/Et and salicylic acid (SA) signalling is well known, the UV-C inducibility of an SA-inducible
gene, PR-1, was examined. Reduced inducibilty in both ERF5 and ERF6 constitutive overexepressors was consistent with
suppression of SA-mediated signalling, as was an increased susceptibility to avirulent Pseudomonas syringae. These data
suggest that ERF5 and ERF6 may also play a role in the antagonistic crosstalk between the JA/Et and SA signalling pathways.
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Introduction

Ethylene response factors (ERFs) are members of the AP2/ERF

superfamily, one of the largest families of plant transcription

factors. The AP2/ERF superfamily is defined by the presence of

the highly conserved AP2/ERF DNA-binding domain, consisting

of approximately 60 to 70 amino acids [1]. In Arabidopsis, the

AP2/ERF superfamily consists of 147 genes, of which 122 are

members of the ERF family which contain a single AP2/ERF

domain [2]. The ERF family members can be further divided into

12 groups based on the amino acid alignments of the AP2/ERF

domains. ERF proteins are able to bind the GCC box

(AGCCGCC), a short cis-acting element found in the promoters

of many jasmonic acid (JA)/ethylene (Et)-inducible and patho-

genesis-related (PR) genes [3], and can positively or negatively

regulate transcription. For example, transient expression analyses

in Arabidopsis leaves revealed that AtERF1, ERF2 and ERF5

function as activators of GCC box-mediated transcription, whilst

ERF3, ERF4 and ERF7 act as repressors [4,5].

A wide range of biological functions have been described for

ERF family proteins. ERF proteins are involved in the

transcriptional regulation of various responses to environmental

stimuli. Several ERF transcriptional activators confer enhanced

disease resistance when overexpressed and compromised resis-

tance when disrupted. Overexpression of the transcriptional

activators, ERF1 and ERF2, up-regulated defense gene transcript

levels (PDF1.2 and b-CHI) and increased resistance to the

necrotrophic pathogen Fusarium oxysporum [6–8], whilst a T-DNA

insertion mutant of the transcriptional activator ERF14 displayed

impaired induction of defense gene expression (PDF1.2 and b-CHI)
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and increased susceptibility to infection by F. oxysporum [9].

Conversely, mutant plants of the transcriptional repressor ERF4

exhibited increased PDF1.2 levels and enhanced resistance to F.

oxysporum, whilst ERF4-overexpressors were more susceptible to

infection by this pathogen [8,9]. ERF proteins also play a role in a

variety of developmental processes such as cell expansion, leaf

petiole development and some are able to mediate the response to

cytokinin [10–12].

Presumably reflecting their roles in stress tolerance, expression

of many ERF genes is regulated in response to environmental

stress, although their patterns vary. Regulation by disease-related

stimuli and by components of stress signal transduction pathways,

such as the plant hormones jasmonic acid (JA), ethylene (Et) and

salicylic acid (SA), as well as by pathogen infection has been

demonstrated for a number of ERF genes [13–16].

The key roles of SA, JA and Et as signals mediating pathogen

defense responses have been widely documented [17,18].

Although exceptions have been reported, in general resistance to

biotrophic and hemibiotrophic pathogens such as Pseudomonas

syringae and Hyaloperonospora parasitica is mediated through SA-

signalling, while resistance against necrotrophic pathogens such as

Botrytis cinerea is mediated through JA/Et-signalling [18,19]. It is

apparent that extensive crosstalk exists between these two

signalling pathways, with the majority of studies reporting a

mutually antagonistic interaction [17,20]. For example, applica-

tion of exogenous SA suppresses the induction of JA-responsive

genes such as PDF1.2 [21], while the induction of SA-mediated

defense responses in Arabidopsis following infection with P. syringae

renders the plant more susceptible to infection by the necrotrophic

pathogen Alternaria brassicicola by suppression of JA signalling [22].

Conversely, JA-signalling mutants such as coi1 display elevated

expression of the SA marker gene PR-1 [23]. Plant pathogens have

evolved mechanisms that exploit this mutual antagonism to

subvert the host immune response. The phyototoxin coronatine

produced by P. syringae is a jasmonoyl-isoleucine (JA-Ile) structural

analogue and binds to the JA receptor COI1, resulting in the

suppression of SA-mediated signalling [24,25].

Despite the evidence that ERFs play important roles in many

plant physiological processes, many of the 122 Arabidopsis ERFs

have yet to be assigned a biological role. Of the group IX ERFs,

the IXc subgroup has been the most studied and includes

members such as ERF1, ERF14 and ORA59 with demonstrated

roles in defense against microbial pathogens [26,27]. In contrast,

very little is known about the biological functions or downstream

targets of members of the IXb subgroup.

We therefore investigated ERF5 (At5g47230) and its closest

relative in the IXb subgroup, ERF6 (At4g17490), which shares

58% identity at the amino acid level [2]. To identify putative

downstream targets of these transcription factors we carried out

microarray analyses on transgenic Arabidopsis constitutively-

expressing either ERF5 or ERF6. These data suggested a

redundant role for these two transcription factors as positive

regulators of a subset of jasmonic acid/ethylene-responsive defense

genes. Accordingly, a double erf5 erf6 mutant displayed reduced

expression of PDF1.1 and PDF1.2a and increased susceptibility to

the necrotrophic pathogen B. cinerea, while the single erf5 and erf6

mutants did not. Constitutive expression of either transcription

factor resulted in enhanced resistance to B. cinerea, but increased

susceptibility to avirulent P. syringae. Analysis of PR-1 expression

indicated that SA-mediated signalling may be repressed in these

plants, providing further evidence for antagonism between JA/Et

and SA-mediated signalling in plants.

Results

Plants constitutively expressing ERF5 or ERF6 display
upregulation of pathogen defense genes

In order to identify potential downstream targets of ERF5 and

ERF6, we generated transgenic plants constitutively expressing

each of these transcription factors under the control of the CaMV

35S promoter. RNA gel blot analysis was initially used to identify

overexpressing lines (data not shown), and mRNA levels in the

three highest overexpressors (35S:ERF5 lines 1, 2 and 4; 35S

AtERF6 lines 6, 9 and 12) were quantified by real-time PCR

(Figure 1). These transgenic plants were subsequently used in

expression profiling experiments to identify putative downstream

targets of ERF5 and ERF6. Microarray analyses were performed

as three biological repeats, using cDNA prepared from ten-day old

seedlings for three independent transgenic lines of 35S:ERF5 and

35S:ERF6.

Figure 1. Analysis of transgene expression in 35S:ERF5 and
35S:ERF6 plants. Relative accumulation of (A) ERF5 or (B) ERF6 mRNA in
ten-day old seedlings was measured by qRT-PCR in three constitutive-
expressing lines (35S:ERF5 lines 1, 2, 4 and 35S:ERF6 lines 6, 9, 12) and in
three empty vector control lines (A, B and C). Relative Quantitation (RQ)
values were calculated after normalization to PEX4 expression levels.
Each value is the mean of three technical replicates and the data are
representative of three independent experiments. The RQ values of
ERF5 and ERF6 in the empty vector lines are too low to be detected in
the graph.
doi:10.1371/journal.pone.0035995.g001

ERF5 and ERF6 Regulate JA/Et-Mediated Defense
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In total, we identified 46 genes that showed significant (.2-fold)

upregulation in the transgenic plants; 18 of these were upregulated

in both 35S:ERF5 and 35S:ERF6 plants, while 15 were

upregulated only in 35S:ERF5 plants, and 13 only in 35S:ERF6

plants (Table 1). Functional enrichment analysis of this set of 46

genes using FatiGO (http://babelomics.bioinfo.cipf.es) revealed a

highly significant enrichment (Fisher exact test, two-tailed,

p = 2.24e-11) for genes annotated with gene ontology (GO) term

GO:0006952 (defense response), with 39.1% (18/46) of the

upregulated genes associated with this term, compared to 2.61%

in the whole Arabidopsis genome. Other significantly over-

represented GO terms included response to fungus, response to

bacterium and response to ethylene (Figure S1). Notably, 13 of the

18 (72.2%) genes significantly upregulated in both 35S:ERF5 and

35S:ERF6 plants were associated with the GO term defense

response, including 6 plant defensin genes.

To confirm the validity of the microarray data, we performed

real-time PCR analysis on PDF1.1 (At1g75830) and PDF1.2a

(At5g44420) expression levels. Both genes were, according to our

microarray data, highly up-regulated in plants constitutively

expressing ERF5 or ERF6. As shown in Figure 2, the expression

levels of both genes were higher in the 35S:ERF5 and 35S:ERF6

plants, as compared to the empty vector control, showing good

agreement with the microarray data. Furthermore, the RQ values

for both PDF1.1 and PDF1.2a correlated with the level of ERF

transgene expression in these plants for both 35S:ERF5 and

35S:ERF6 plants (Figures 1 and 2).

Promoter analysis suggests that ERF5 and ERF6 play a
role in JA/Et-mediated gene expression

The upstream promoter sequences of the 46 upregulated genes

were analysed in order to identify over-represented oligonucleotide

motifs that may represent transcription factor binding sites or

regulatory sites. The GCC box (AGCCGCC) and GCC core

(GCCGCC) were found to be significantly over-represented in the

promoters of both the 35S:ERF5 and 35S:ERF6 upregulated genes

(Tables S1 and S2). Furthermore, the observed/expected ratios for

the GCC box were the highest of any 7-mer motif, at 13.9 in

35S:ERF5 and 14.2 in 35S:ERF6 plants respectively.

The GCC box can confer JA/Et-mediated regulation of

promoter activity, and previous studies have identified a number

of ERFs that can bind to this motif and either induce or repress

gene expression [8,22,28]. Given the over-representation of the

GCC box in the upstream regions of the 35S:ERF5- and

35S:ERF6-upregulated genes, we examined their JA/Et-respon-

siveness by comparison to microarray data previously generated

by Pré et al. (2008). In this study, two-week old wild-type

Arabidopsis plants were treated with either 50 mM JA or a

combination of 50 mM JA and 1 mM ethephon (an ethylene

releasing agent) for 8 or 24 h [27]. In total, 16 of the 46 genes

upregulated in either 35S:ERF5 or 35S:ERF6 plants were also

identified as JA/Et responsive by Pré and colleagues, including 12

of the 18 (80%) genes upregulated in both 35S:ERF5 and

35S:ERF6 plants (Table 2). These 16 genes are also upregulated

by overexpression of ORA59 [27], a member of the ERF IXc

subgroup (Table 2). The over-representation of JA/Et-responsive

genes in the lists of transcripts regulated by ERF5 and ERF6 is

highly significant as determined by Chi-squared test (p,0.001).

ERF5 and ERF6 play positive but redundant roles in
defense against Botrytis cinerea

Both the significant over-representation of defense-related and

JA/Et-responsive genes in the 46 genes upregulated in the

35S:ERF5 and 35S:ERF6 plants, and the prevalence of the GCC

box in their upstream sequences suggests that ERF5 and ERF6

may act as positive regulators of JA-mediated defense against

necrotrophic pathogens. Accordingly, we found that constitutive

expression of either transcription factor was sufficient to result in

significantly increased resistance against the fungal necrotroph B.

cinerea in comparison to that observed in wild-type plants or the

empty vector control plants (Figure 3).

However, an enhanced disease resistance phenotype in an

overexpressor line does not necessarily indicate that this gene

performs a corresponding role in wild-type plants. In order to test

whether ERF5 and ERF6 are indeed required for resistance

against B. cinerea we isolated homozygous T-DNA insertion

mutants (Figure 4A) from segregating populations (erf5: GA-

BI_681E07 [29], erf6: SALK_087356 [30]) by PCR genotyping.

RNA gel blot analysis of the homozygous lines revealed the

production of an aberrant truncated ERF5 transcript in the erf5

mutant, while no ERF6 transcript could be detected in the erf6

mutant (Figure 4B). It is theoretically possible, though unlikely,

that the truncated transcript of the efr5 mutant has residual

activity, thus this mutant might be a reduced, rather than loss of,

function, mutant. The observations that 72% of the differentially

expressed genes annotated with the GO term defense response

(Table 1) and 12 of the 16 genes identified as JA/Et-responsive

(Table 2) were upregulated in both 35S:ERF5 and 35S:ERF6

plants, suggests that any role played by ERF5 and ERF6 in JA-

mediated defense against B. cinerea may be redundant. In order to

test this, we generated a homozygous erf5 erf6 double mutant,

which showed greatly reduced expression of ERF5 and ERF6 as

determined by qRT-PCR (Figure S2). While no significant

difference in susceptibility to B. cinerea was observed in either the

erf5 or erf6 mutants in comparison to wild-type plants, the erf5 erf6

double mutant showed a significant increase in susceptibility to this

pathogen (Figure 3). Together these data suggest that ERF5 and

ERF6 play positive but redundant roles in defense against B. cinerea

in Arabidopsis.

To determine whether the increased susceptibility of the erf5 erf6

double mutant to B. cinerea might result from impairment of JA-

mediated signalling, we analysed PDF1.1 and PDF1.2a expression

in these plants following treatment with 100 mM MeJA for 24 h.

Expression levels of both of these genes were significantly lower in

the erf5 erf6 plants following JA treatment in comparison to those

observed in wild-type plants (Figure 5), suggesting that JA-

mediated gene expression is compromised in the double mutant.

Constitutive expression of ERF5 or ERF6 reduces UV-C-
induced SA-mediated PR-1 expression and increases
susceptibility to avirulent Pseudomonas syringae

The mutual antagonism between JA/Et and SA signalling is

well known [18]. Given the constitutive upregulation of JA-

responsive genes in the 35S:ERF5 and 35S:ERF6 plants we

examined whether SA signalling was repressed in these plants by

performing real-time PCR analysis on PR-1, a SA-inducible gene.

Seedlings were exposed to UV-C, a treatment which has

previously been shown to upregulate PR-1 expression via SA

signalling [31]. The 35S:ERF5 and 35S:ERF6 plants exhibited

significantly reduced UV-C-induced PR-1 expression in compar-

ison to plants transformed with the empty vector (Figure 6). Since

resistance against many biotrophic and hemibiotrophic pathogens

is SA-dependent, we examined the response of the transgenic lines

to an avirulent strain of the hemibiotroph bacterium P. syringae (Pst)

DC3000 harbouring the avrB gene. Leaves of four-week old plants

were infiltrated with a Pst DC3000 avrB suspension. Transgenic

plants constitutively expressing either ERF5 or ERF6 were more

ERF5 and ERF6 Regulate JA/Et-Mediated Defense
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Table 1. Genes upregulated by constitutive expression of ERF5 and ERF6.

AGI number Gene annotation 35S::ERF5 35S::ERF6

Fold change p-value Fold change p-value

35S:ERF5 only

At1g02030 Zinc finger (C2H2 type) family protein 3.7 0.002 - -

At1g09415 NIM1-interacting protein 3 (NIMIN-3) 2.8 0.004 - -

At1g33780 Unknown protein 2.6 0.007 - -

At2g02930 Glutathione S-transferase (GST16) 2.8 0.006 - -

At2g41640 Glycosyltransferase 2.7 0.007 - -

At3g04960 Unknown protein 3.0 0.008 - -

At3g16530 Lectin-like protein 6.6 ,0.001 - -

At3g49620 Dark inducible 11 (DIN11) 3.3 0.002 - -

At3g53260 Phenylalanine ammonia-lyase 2 (PAL2) 6.4 ,0.001 - -

At3g55850 Long after far-red 3 (LAF3) 4.1 0.001 - -

At5g17960 DC1 domain-containing protein 3.6 0.006 - -

At5g18980 Unknown protein 3.0 0.01 - -

At5g39100 Germin-like protein 6 (GLP6) 3.7 0.002 - -

At5g47230 Ethylene-responsive element binding factor 5 (ERF5) 24.6 0.001 - -

At5g57785 Unknown protein 2.5 0.01 - -

35S:ERF5 and 35S:ERF6

At1g02920 Glutathione S-transferase (GST11) 6.7 ,0.001 6.3 ,0.001

At1g02930 Glutathione S-transferase (GST1) 7.8 ,0.001 5.1 ,0.001

At1g55010 Plant defensin (PDF1.5) 24.4 ,0.001 9.8 ,0.001

At1g75830 Plant defensin (PDF1.1) 15.8 ,0.001 21.5 ,0.001

At1g78850 Curculin-like (mannose-binding) lectin family protein3.7 0.002 2.4 0.005

At1g78860 Curculin-like (mannose-binding) lectin family protein4.1 0.002 2.7 0.003

At2g25735 Unknown protein 2.9 0.005 2.1 0.004

At2g26010 Plant defensin (PDF1.3) 13.0 ,0.001 11.1 ,0.001

At2g26020 Plant defensin (PDF1.2b) 19.5 ,0.001 18.2 ,0.001

At2g26560 Patatin-like protein 2 (PLP2) 2.7 0.006 2.9 0.003

At3g04720 Pathogenesis-related 4 (PR-4) 3.6 0.004 3.5 ,0.001

At3g15356 Legume lectin family protein 4.4 0.002 3.4 ,0.001

At3g49110 Peroxidase (PRX33) 3.7 0.003 3.3 ,0.001

At4g06746 DREB and EAR motif protein 5 (DEAR5/RAP2.9) 3.0 0.007 2.9 0.002

At4g16260 Glycoside hydrolase 4.1 0.001 3.5 ,0.001

At4g33720 Pathogenesis-related protein 25.2 ,0.001 19.0 ,0.001

At5g44420 Plant defensin (PDF1.2a) 43.3 ,0.001 27.4 ,0.001

At5g44430 Plant defensin (PDF1.2c) 11.8 ,0.001 11.8 ,0.001

35S:ERF6 only

At1g03905 ABC transporter family protein - - 3.7 ,0.001

At1g21245 Wall-associated kinase-related - - 3.1 0.009

At1g27020 Unknown protein - - 3.0 ,0.001

At1g49960 Xanthine/uracil permease family protein - - 2.0 0.008

At1g53940 GDSL-motif lipase 2 (GLIP2) - - 2.5 0.009

At2g18980 Peroxidase - - 3.8 ,0.001

At3g45500 Unknown protein - - 3.0 0.001

At3g59930 Defensin-like family protein - - 2.7 0.004

At4g11650 Osmotin-like protein (OSM34) - - 2.7 0.003

At4g13450 Universal stress protein (USP) family protein - - 3.0 0.006

At4g17490 Ethylene-responsive element binding factor 6 (ERF6) - - 2.1 0.004

At4g17615 Calcineurin B-like protein 1 (CBL1) - - 3.1 0.001

At5g06390 Fasciclin-like arabinogalactan protein 17 (FLA17) - - 2.6 0.007
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susceptible to Pst DC3000 avrB, exhibiting significantly higher leaf

bacterial titres 48 h post-infection in comparison to the empty

vector control (Figure 7).

Discussion

The production of plant defensins is a hallmark of the JA/Et-

mediated defense response against necrotrophic pathogens

[32,33]. We identified a subset of defense genes, including six of

the thirteen plant defensin genes in Arabidopsis, as putative

downstream targets of ERF5 and ERF6 through expression

profiling of plants constitutively expressing these transcription

factors (Table 1, Figure 2). Analysis of the upstream regions of all

of the putative target genes revealed an over-representation of the

GCC-box (Tables S1 & S2). A number of ERFs have previously

been shown to bind to this element within the promoters of JA/Et-

responsive genes such as PDF1.2a, and either induce or repress

gene expression [3,4,28]. While ERF5 and ERF6 might be acting

indirectly on these motifs, the most parsimonious, and likely,

explanation is that they also bind directly to these sequences, and

function as GCC-box transcriptional activators. Indeed, a

protoplast transactivation system has shown that ERF5 is able to

activate the promoter of PDF1.2, providing support for a direct

role in GCC-box promoter activation [34]. Constitutive expres-

sion of ERF5 or ERF6 thus leads to activation of JA/Et-dependent

defense genes, and accordingly we found that 35S:ERF5 and

35S:ERF6 plants displayed increased resistance to the necrotrophic

pathogen Botrytis cinerea (Figure 3).

Constitutive expression of several members of the ERF IXc

subgroup such as ORA59 (ERF59) and ERF1 also results in

increased expression of JA/Et-regulated defense genes including

PDF1.2a, and in increased resistance to B. cinerea [26,27]. Indeed,

16 of the 46 genes upregulated in the 35S:ERF5 and 35S:ERF6

plants are also upregulated in plants constitutively expressing

ORA59 (Table 2). However, these gain-of-function phenotypes are

not necessarily indicative of a requirement for a given ERF in

defense against B. cinerea in wild-type plants. For example,

constitutive expression of an ERF gene may result in inappropriate

binding to promoters that are not normally regulated by the

transcription factor. Analysis of null mutants or RNAi lines is thus

required to demonstrate that a given ERF is required for resistance

to B. cinerea. While ORA59-silenced plants do indeed display

increased susceptibility to B. cinerea [27], no such studies have been

reported for ERF1 to date. To determine whether ERF5 and

ERF6 are required for resistance to B. cinerea in wild-type plants,

we analysed the susceptibility of single erf5 and erf6 T-DNA

insertion mutants, and a double erf5 erf6 knockout to this pathogen.

While neither of the single mutants displayed altered resistance to

B. cinerea, the erf5 erf6 double mutant showed a significant increase

in susceptibility in comparison to wild-type plants (Figure 3). These

data suggest that ERF5 and ERF6 play redundant roles in JA/Et-

mediated defense against B. cinerea in Arabidopsis. This hypothesis

is supported by the overlap in potential downstream targets of

these two transcription factors (Table 1). Similar to ORA59 and

ERF1, the transcripts of ERF5 and ERF6 increase in abundance in

response to treatment with either JA or Et, although fold induction

is less (Table S3). However, unlike ORA59 and ERF1, the

transcripts of ERF5 and ERF6 do not increase in response to

Botrytis infection (Table S4).

Notably, the erf5 erf6 double mutant displayed reduced

induction of PDF1.1 and PDF1.2a expression in response to JA

treatment (Figure 5), suggesting that the increased susceptibility of

the mutant to B. cinerea may be explained in part by the abrogation

of JA-mediated gene expression. The redundant roles of ERF5

and ERF6 in defense against B. cinerea are in contrast to that of

ORA59; ORA59-silenced plants are not able to induce PDF1.2a in

response to JA, and show increased susceptibility to B. cinerea

infection [27]. Similarly, ERF14 plays a non-redundant role

against Fusarium oxysporum [9]. In contrast to the severe growth

retardation that was reported for constitutive expression of ERF1,

Fold change in transcript levels from plants constitutively expressing ERF5 or ERF6 compared to control plants transformed with the empty pK2GW7 vector. Fold change
values are the average of the three independently transformed lines. All genes listed had a p-value of #0.01 and displayed expression ratios .2 in all three transgenic
lines analysed. Genes in bold are annotated with the Gene Ontology term GO:0006952 (defense response). Gene annotations are from TAIR (www.arabidopsis.org).
doi:10.1371/journal.pone.0035995.t001

Table 1. Cont.

Figure 2. Validation of microarray data by qRT-PCR. Relative
accumulation of (A) PDF1.1 (At1g75830) and (B) PDF1.2a (At5g44420)
mRNA in ten-day old seedlings of the three 35S:ERF5 and three 35S:ERF6
lines was measured by qRT-PCR. Relative Quantitation (RQ) values were
calculated after normalization to PEX4 expression levels. Each value is
the mean of three technical replicates and the data are representative
of three independent experiments. The RQ values of ERF5 and ERF6 in
the empty vector lines are too low to be detected in the graph.
doi:10.1371/journal.pone.0035995.g002
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ERF14 and ORA59 [9,26,27] 35S:ERF6 plants displayed no visible

phenotype under normal growth conditions, while 35S:ERF5

plants were only slightly smaller than wild-type plants (data not

shown). No difference in time to flowering was observed, and both

lines produced viable seed.

ERF5 and ERF6 have recently been shown to interact in planta,

and have been proposed to form part of a signalling network

activated following the perception of the fungal PAMP chitin [35].

Plants constitutively expressing ERF5 displayed increased suscep-

tibility to the fungal necrotroph Alternaria brassicicola while a erf5 erf6

double mutant displayed a modest reduction in spore production,

Table 2. Genes upregulated in 35S:ERF5 or 35S:ERF6 plants that are responsive to jasmonic acid and ethylene treatment and
overexpression of ORA59.

AGI number Gene description JA 8 h JA 24 h JA+E 8 h JA+E 24 h ORA59 OE

At1g02920 Glutathione S-transferase (GST11) - 4.2 3.8 - 3.5

At1g02930 Glutathione S-transferase (GST1) - 4.8 4.0 - 4.5

At1g75830 Plant defensin (PDF1.1) - 4.4 - - 10.8

At2g02930 Glutathione S-transferase (GST16)a - - - - 4.5

At2g26010 Plant defensin (PDF1.3) - 5.4 16.9 22.8 11.6

At2g26020 Plant defensin (PDF1.2b) - 6.7 34.2 25.7 11.1

At2g26560 Patatin-like protein 2 (PLP2) - 6.0 28.8 12.5 14.5

At3g04720 Pathogenesis-related 4 (PR-4) - - 3.5 5.1 5.0

At3g15356 Legume lectin family protein - 5.5 11.8 10.2 21.2

At3g16530 Lectin-like proteina - 5.1 9.1 7.8 16.6

At3g49620 Dark inducible 11 (DIN11)a - 56.1 36.5 35.3 12.5

At4g06746 DREB and EAR motif protein 5 3.0 5.0 10.8 7.7 11.5

At4g11650 Osmotin-like protein (OSM34)b - - 3.4 8.2 8.5

At4g16260 Glycoside hydrolase - - 5.2 7.0 10.4

At5g44420 Plant defensin (PDF1.2a) - 7.4 31.7 16.9 7.9

At5g44430 Plant defensin (PDF1.2c) - 6.6 21.1 21.7 10.6

Fold change in transcript level observed in 14-d old wild-type Col-0 plants treated with 50 mM JA 61 mM ethephon (E) for 8 or 24 h, or in plants overexpressing the ERF
ORA59 (data from Pré et al. 2008).
aupregulated in 35S:ERF5 plants only,
bupregulated in 35S:ERF6 plants only. All other genes are upregulated in both 35S:ERF5 and 35S:ERF6 plants.
doi:10.1371/journal.pone.0035995.t002

Figure 3. ERF5 and ERF6 play redundant roles as positive regulators of resistance against Botrytis cinerea in Arabidopsis. Detached
leaves from four week-old plants were inoculated with B. cinerea spores, and lesion size (mm22) measured after 5 days. ANOVA revealed a significant
effect of host genotype (p,0.001) on lesion size 5 dpi. Mean lesion sizes with different letters are significantly different (p,0.05) as determined by
Fisher LSD post-hoc analysis. Data shown are mean values +SD from three independent experiments. The 35S lines analysed were 35S:ERF5 line 1 and
35S:ERF6 line 6.
doi:10.1371/journal.pone.0035995.g003
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but exhibited no apparent difference in lesion size in comparison

to wild-type plants [35]. These results are in apparent contradic-

tion to our results, where the 35S:ERF5 and 35S:ERF6 plants

displayed increased resistance, and the erf5 erf6 double mutant

increased susceptibility to B. cinerea. This discrepancy might be

attributable to the fact that these two plant-pathogen interactions

differ somewhat. Wild-type Arabidopsis plants are resistant to A.

brassicicola, developing small necrotic lesions that do not spread

beyond the initial inoculation droplet [36], and the interaction is

thus incompatible. In contrast, spreading necrotic lesions are

observed during the compatible Arabidopsis-B. cinerea interaction.

There are undoubtedly commonalities in the defense mechanisms

employed against the necrotrophs e.g. JA levels increase in

Arabidopsis following infection with either pathogen, and the JA-

insensitive coi1 mutant displays increased susceptibility to both

pathogens [37]. However, a recent hierarchical cluster analysis of

the expression profiles induced in Arabidopsis 24 h after infection

by different plant pathogens revealed an unexpected and distinct

lack of similarity between the profiles observed in response to B.

cinerea and A. brassicicola [38]. Notably, several clusters of genes up-

regulated in response to B. cinerea were down-regulated by A.

brassicicola, and vice versa. Clearly then the host response to these

pathogens is not identical, and it is thus possible that a given

protein could play opposing roles against these two pathogens.

Interestingly the ERF ORA59 also plays differential roles in

defense against these pathogens; while ORA59 is required for

PDF1.2a expression following infection with both pathogens,

ORA59-silenced plants showed increased susceptibility only to B.

cinerea and not to A. brassicicola [27].

The mutual antagonism between the JA/Et and SA signalling

pathways is well-established [17,20], and allows plants to mount

an appropriate defense response against the attacking pathogen.

Given that the JA/Et pathway was up-regulated in plants

constitutively expressing ERF5 or ERF6, we tested whether SA-

mediated signalling was repressed. Consistent with a suppression

of SA signalling, UV-C–induced PR-1 expression was significantly

reduced in 35S:ERF5 and 35S:ERF6 plants (Figure 6). Plants

constitutively expressing ERF5 or ERF6 also showed increased

susceptibility to the hemibiotroph Pst DC3000 avrB in comparison

to empty vector control plants (Figure 7). These data suggest that

ERF transcription factors can also play a role in the suppression of

SA-mediated signalling, in addition to their previously reported

role in the activation of JA/Et mediated responses. Plants

constitutively expressing ERF1 also show increased susceptibility

to virulent Pst DC3000 [26]. While the molecular basis of this

phenotype was not investigated, it is conceivable that ERF1

overexpression also results in the suppression of SA-mediated

defense responses. Further evidence that ERF transcription factors

influence SA-mediated signalling comes from a recent report

suggesting that ERF9 (group VIII) and ERF14 (group IX) suppress

Figure 4. Analysis of erf5 and erf6 T-DNA insertion mutants. (A)
Schematic representation of the ERF5 and ERF6 genes indicating the
position of the T-DNA insertions. LB indicates the position of the left
border of the T-DNA. (B) RNA gel blot analysis of ERF5 and ERF6
expression in the T-DNA mutants. Ten mg of total RNA was loaded per
lane, equal loading is shown by ethidium bromide (EtBr) staining.
doi:10.1371/journal.pone.0035995.g004

Figure 5. The erf5 erf6 double mutant shows reduced JA-
induction of plant defensin genes. Twelve-day old seedlings were
treated with 100 mM MeJA (JA) or water (control) and harvested for RNA
extraction after 24 h. Relative accumulation of (A) PDF1.1 and (B)
PDF1.2a mRNA was measured by qRT-PCR. Relative Quantitation (RQ)
values were calculated after normalization to PEX4 expression levels.
Each value is the mean of three technical replicates and the data are
representative of two independent experiments.
doi:10.1371/journal.pone.0035995.g005
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expression of PR-1 during colonization of the host by the

endophytic fungus Piriformospora indica [39].

The data presented here demonstrate a redundant role for

ERF5 and ERF6 in defense against the necrotrophic pathogen B.

cinerea. We suggest that these transcription factors function in the

activation of JA/Et-responsive gene expression, and perhaps also

in the suppression of SA-mediated signalling to optimize the host

response against necrotrophic pathogens. Whether other members

of the ERF IXb subgroup play a similar role remains to be

determined.

Materials and Methods

Plant growth conditions
Arabidopsis thaliana plants were grown on 16 Murashige and

Skoog (MS) 0.8% (w/v) agar plates or on peat (Jiffy Products,

International AS, Norway) and vermiculite in a 1:1 (v/v) ratio.

Lighting was maintained at 150 mmol m22 s21 with a 16/8 h

photoperiod and a temperature of 20uC.

Generation of 35S:ERF5 and 35S:ERF6 lines
Full-length ERF5 or ERF6 cDNAs were cloned into the

pK2GW7 vector which contains the cauliflower mosaic virus

35S promoter [40]. Control plants were transformed with the

empty pK2GW7 vector. Agrobacterium-mediated floral dip trans-

formation of Col-0 plants was performed using the Agrobacterium

tumefaciens strain C58C1, as described previously [41]. Transfor-

mants were selected on the basis of their ability to grow on MS

medium containing 50 mg mL21 kanamycin.

Identification of erf5 and erf6 mutants and generation of
double mutant

Segregating T-DNA insertion mutants (erf5: GABI_681E07

[29], erf6: SALK_087356 [30]) were obtained from the Notting-

ham Arabidopsis Stock Centre and homozygous lines were

isolated by PCR genotyping. For PCR screening, genomic DNA

was extracted from the unopened flower buds of individual plants

and the following gene specific primers used in conjunction with

the appropriate left border (LB) primer for screening (ERF5 L:

GGAATTTCTATCGATTCCATTTGA; ERF5 R: GAA-

CAACTTCACATAACGCC; GABI LB: ATATTGACCATCA-

TACTCATTGC; ERF6 L: CGACAAAGAAGCGTTTAGAC;

ERF6 R: GTGTTATGTGTTCTCTGTTC; SALK LB:

TGGTTCACGTAGTGGGCCATCG). Homozygous erf5 and

erf6 mutants were crossed, and homozygous erf5 erf6 double

Figure 6. Constitutive expression of ERF5 or ERF6 reduces UVC-induced PR-1 expression. Twelve-day old seedlings were irradiated with
5 kJ m22 of UV-C and harvested for RNA extraction after 24 h. Relative accumulation of PR-1 (At2g14610) mRNA was measured by qRT-PCR. Relative
Quantitation (RQ) values were calculated for PR-1 after normalization to At4g24410 expression levels. Each value is the mean of three technical
replicates and the data are representative of two independent experiments. The 35S lines analysed were 35S:ERF5 line 1 and 35S:ERF6 line 6.
doi:10.1371/journal.pone.0035995.g006

Figure 7. Constitutive expression of ERF5 or ERF6 leads to
increased susceptibility to avirulent Pseudomonas syringae. Four-
week old plants were infected with Pst DC3000 avrB (104 cfu cm22) and
bacterial titres (cfu cm22) determined at 4 and 48 hpi. ANOVA revealed
a significant effect of host genotype (p = 0.004) on bacterial titre at
48 hpi. Mean bacterial titres with different letters are significantly
different (p,0.05) as determined by Fisher LSD post-hoc analysis. Data
shown are mean values +SD from three independent experiments. The
35S lines analysed were 35S:ERF5 line 1 and 35S:ERF6 line 6.
doi:10.1371/journal.pone.0035995.g007
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mutants identified by PCR genotyping using the primers listed

above.

RNA blot analysis
RNA was isolated from whole seedlings by using the RNeasy

Plant Mini Kit (Qiagen) according to the manufacturer’s

instructions. For RNA blot analysis, 10 mg of total RNA extracted

from 10-day old seedlings was loaded on a 1% (v/v) agarose

formaldehyde denaturing gel, transferred onto a nylon membrane,

hybridized and washed as described previously [42]. The blots

were hybridized with either an ERF5 probe (PCR amplified with

the primers CATCGAGAAACATCTACTCG and GTTTAG-

TAACTTCCGGTTTG) or ERF6 probe (amplified using

GTCTCCGTTGCCTACTACTG and CGATTGGATTGAA-

CAGTAAC).

Real-time quantitative PCR
Gene expression levels were analysed by quantitative real-time

PCR using an Applied Biosystems 7300 system. A High Capacity

cDNA reverse transcription kit (Applied Biosystems) was used to

reverse transcribe cDNA from 2 mg of total RNA extracted using

the RNeasy Plant Mini Kit (Qiagen) in conjunction with RNAse-

free DNase (Qiagen) to remove any genomic DNA contamination.

Quantitative real-time PCR (qRt-PCR) was used to detect relative

transcript levels using either gene-specific TaqMan probes or

gene-specific primers with SYBR green. Gene-specific primer

pairs were designed using Primer Express software (Applied

Biosystems) for ERF5 (At5g47230), ERF6 (At4g17490), PDF1.1

(At1g75830) and PDF1.2a (At5g44420). Primers were ERF5

forward TCTTCGGATCATCGTCCTCTTC; ERF5 reverse

GGTTTGCATACGGATTCAGAGAA; ERF6 forward GAAA-

ACCGCCGTTGAAGATC; ERF6 reverse CGGTTGCGAATT-

GAATCCA; PDF1.1 forward taaacaatagtcATGGCTAAGT-

CTGC; PDF1.1 reverse ACTTGGCCTCTCGCACAACT;

PDF1.2a forward AATCTTTGGTGCTAAATCGTGTGTAT;

PDF1.2a reverse CAACGGGAAAATAAACATTAAAACAG).

Expression levels were normalized to the expression of PEX4

(At5g25760), an endogenous control gene used previously [40]

(primers were forward: TCATAGCATTGATGGCTCATCCT

and reverse: ACCCTCTCACATCACCAGATCTTAG). Five mL

of a 1:50 dilution of cDNA was amplified in a 15 mL reaction with

Roche Faststart Universal SYBR Green Mastermix (ROX)

(Roche) in an optical 96-well plate with three technical replicates

for each sample. PR-1 (At2g14610) transcripts were detected using

a gene-specific TaqMan probe (Applied Biosystems probe

identifier At02170748_s1) and expression levels were normalized

to the expression of an endogenous control gene. We discovered

that several commonly used endogenous control genes were

strongly induced by UV-C irradiation (data not shown), therefore,

in these experiments, we normalized to the expression of

At4g24410 (probe identifier At02239002_g1), a gene whose

expression does not alter under such conditions (Genevestigator;

https://www.genevestigator.com). For qRT-PCR reactions using

Taqman probes, 6 mL of a 1:50 dilution of cDNA was amplified in

a 15 mL reaction with TaqMan Universal PCR Mix (Applied

Biosystems) in an optical 96-well plate with three technical

replicates for each sample. In all cases, relative quantitation was

performed by the DDCT (comparative CT) method [43]. Relative

Quantitation (RQ) values and estimates of statistical variation (SV)

for each sample were calculated as previously [44]. The algorithm

used is described in Relative Quantitation (RQ) algorithms,

Applied Biosystems Real-Time PCR Systems Software, July 2007.

Error bars represent RQMIN and RQ MAX and constitute the

acceptable error level for a 95% confidence level according to

Student’s t-test.

Microarray analysis
Microarray experiments were conducted using Arabidopsis 70-

mer oligonucleotide microarrays printed with the Operon

Arabidopsis version 3.0 AROS oligo set (University of Arizona;

http //www.arizona.edu/microarray/). Experiments were per-

formed as three biological repeats using cDNAs prepared

independently from three individual lines. Total RNA was

extracted from 10-day old plants using the RNeasy Plant Mini

kit (Qiagen) and quantified using a Nanodrop ND-1000

spectrophotometer (Labtech). Integrity was checked using a 2100

Bioanalyzer and RNA Nano Chips (Agilent), according to

manufacturer’s instructions.

Reagents and enzymes for the preparation of materials for

microarray hybridizations were sourced from the 3DNA 900

indirect labelling kit (Genisphere) unless otherwise stated. Two

micrograms of total RNA was reverse-transcribed into unlabelled

cDNA using SuperScript III reverse transcriptase (Invitrogen).

Microarray slides were baked at 80uC for 30 min and then UV

cross-linked at 300 MJ. Slides were then pre-hybridized in 3.56
SSC, 0.1% (w/v) SDS and 10 mg mL21 bovine serum albumin

(BSA) at 65uC for 20 min. Following pre-hybridization, slides were

washed with distilled water, then isopropanol, dried with an

airbrush and pre-scanned to check for any array defects. The

capture sequence-tagged cDNAs were hybridized onto the

microarray slide for 16 h at 55uC in a SlideBooster SB400

(Advalytix) with the power setting at 27 and a pulse:pause ratio of

3:7. Following the first hybridization, the slides were washed in 26
SSC, 0.2% (w/v) SDS for 10 min at 55uC, followed by washes

with 26 SSC and 0.26 SSC for 10 min, at room temperature.

The slides were dried with an airbrush and hybridized with the

Cy3 and Cy5 3DNA dendrimer capture reagents (Genisphere) at

55uC for 4 h, and washed as before. Dried slides were scanned

using a ScanArray Express HT (Perkin Elmer) using autocalibra-

tion to obtain optimized non-saturating images for each

fluorophore.

Scanned microarray images were straightened, if necessary,

with ImageViewer (BlueGnome; http://www.cambridgeblue

gnome.com/) and analysed using BlueFuse for Microarrays

(BlueGnome). Spot data were extracted from images and manually

flagged to remove hybridization artefacts before fusion. Fused data

were filtered according to the pON value. Spots with pON values

,0.5 in both channels were excluded to eliminate the bias

generated by the inclusion of unhybridized spots in the statistical

interpretation of the data, and the data were globally adjusted such

that the mean rRNA ratio was 1.0. The data were then analysed

using a locally prepared implementation of the Cyber-T algorithm

within BASE [45] maintained by the Computational Biology

Research Group at the University of Oxford as described

previously [46]. A cut off p-value of 0.01 was used to identify

differentially expressed genes. Genes whose transcript levels did

not change consistently (i.e. with an expression ratio greater than

or less than one in all three replicate experiments) were discarded.

Total microarray data have been deposited in the ArrayExpress

database (www.ebi.ac.uk/arrayexpress) under the accession num-

bers E-MTAB-436 (35S:ERF5) and E-MTAB-435 (35S:ERF6)

(www.ebi.ac.uk/aerep/login; username: Reviewer_E-MTAB-436,

password 1289219822065 and username: Reviewer_E-MTAB-

435, password: 1289228646825).
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Promoter motif analysis
Promoter sequences (1000 bp upstream) were downloaded from

the TAIR database (http://www.arabidopsis.org/tools/bulk/

sequences/index.jsp), and analysed for over-represented promoter

motifs using the ‘‘oligo-analysis’’ tool (default settings, Markov

chain order 2) available online at the Regulatory Sequence

Analysis Tools (RSAT) website (http://rsat.ulb.ac.be/rsat) [47].

Sequences were searched for oligomers between 4 and 8 bp in

length. Only motifs with a p-value ,0.001 were considered

significant. All over-represented motifs were then compared to

those listed in the PLACE database of plant cis-acting regulatory

DNA elements (http://www.dna.affrc.go.jp/PLACE/) to deter-

mine whether they had been previously characterized.

Pathogen assays
Botrytis cinerea (pepper isolate) was maintained on apricot halves

at 22uC, and spores collected in 3 mL water 12 days after initial

inoculation. Spore number was determined using a haemocytom-

eter and adjusted to 5,000 spores mL21 in 50% (v/v) grape juice.

Single leaves were excised from ten four-week old plants per plant

line and placed on 1% (w/v) agar on large petri dishes. Leaves

were inoculated with 10 mL of the spore suspension, and the plates

were sealed with parafilm to maintain humidity. Photographs were

taken five days after inoculation, and the area of the necrotic lesion

determined using ImageJ software (http://rsbweb.nih.gov/ij/).

Avirulent Pseudomonas syringae pv. tomato (Pst) DC3000 carrying

the AvrB gene was grown in King’s broth (KB) supplemented with

50 mg mL21 rifampicin and 10 mg mL21 tetracycline. Four-week

old plants were infected with a Pst suspension at an OD600 nm of

0.002 (corresponding to 104 colony forming units cm2) in 10 mM

MgCl2 by infiltration of the leaf using a needleless 1 mL syringe.

Three leaves were harvested per plant from a total of three plants

at 4 h post-infection (hpi) and from a further three plants at

48 hpi. Single leaf discs of 0.5 cm2 were obtained from each leaf

sample and pooled per plant, giving three biological replicates per

time point. The disks were ground in 1 mL 10 mM MgCl2 and

serial dilutions made from the resulting suspensions. Ten mL of

each dilution was spotted onto KB agar plates containing 50 mg

mL21 rifampicin, and colonies were counted after 2 d growth at

30uC.

ANOVA was used to determine whether host genotype had a

significant effect on susceptibility to B. cinerea or P. syringae, followed

by Fisher LSD post-hoc analysis to identify mean values

significantly different at p = 0.05. Prior to ANOVA, Raw data

were transformed, using square root transformation for lesion sizes

and natural logs for bacterial titres to ensure homogeneity of

variance and normality of error.

JA treatment
Seeds were sown individually and evenly on horizontal 16MS

agar plates. After 12 days seedlings were transferred to water and

left overnight. The following day, methyl jasmonic acid was added

to a final concentration of 100 mM, and seedlings harvested after

24 h for RNA extraction.

UV treatment
Seeds were sown individually and evenly on horizontal 16MS

agar plates. After 12 days lids were removed from the plates and

the seedlings were irradiated with 5 kJ m22 of UV-C, (wavelength

254 nm) in a UV cross-linker (Uvitec). Immediately after

irradiation all plates, including control plates, were resealed with

micropore tape and returned to the growth chamber. After 24 h

samples were harvested for RNA extraction.
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Figure S1 Significantly over-represented GO terms in
the genes upregulated in 35S:ERF5 or 35S:ERF6 plants.
Directed acyclic hierarchical graph (DAG) of significantly over-

represented gene ontology (GO) terms in the genes upregulated in

35S:ERF5 or 35S:ERF6 plants. The DAG was generated using

FatiGO (http://babelomics.bioinfo.cipf.es). GO terms in red are

significantly over-represented in the dataset.
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Figure S2 The erf5 erf6 double mutant shows reduced
expression of ERF5 and ERF6. Relative accumulation of

ERF5 or ERF6 mRNA was measured by qRT-PCR in ten-day old

seedlings. Relative Quantitation (RQ) values were calculated after

normalization to PEX4 expression levels. Each value is the mean of

three technical replicates and the data are representative of three

independent experiments.
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Table S1 Promoter motif enrichment analysis of genes
significantly upregulated in 35S:ERF5 plants.
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Table S2 Promoter motif enrichment analysis of genes
significantly upregulated in 35S:ERF6 plants.
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Table S3 Fold induction values of ERF5, ERF6, ERF1
and ORA59 in response to ethylene and jasmonic acid
treatment. Fold change in transcript level observed in 7-d old

wild-type Col-0 plants treated with 10 mM ACC or 10 mM MeJA

for 0.5, 1 or 3 h. Microarray data from the AtGenExpress project

with the TAIR submission number ME00334 (ACC) and

ME00337 (MeJA) [48]. Values obtained from the eFP Browser

on the Botany Array Resource (BAR) [49].

(PDF)

Table S4 Fold induction values of ERF5, ERF6, ERF1
and ORA59 in response to Botrytis cinerea infection. Fold

change in transcript level observed in 4-week old wild-type Col-0

plants inoculated with B. cinerea spores at 18 or 48 h post-

inoculation. Microarray data from the AtGenExpress project with

the TAIR submission number ME00341. Values obtained from

the eFP Browser on the Botany Array Resource (BAR) [49].

(PDF)

Acknowledgments

We thank Dr Barbara Kunkel (Washington University in St Louis) for Pst

DC3000 avrB, and Dr Richard Capper and Rebecca Lamb for technical

assistance.

Author Contributions

Conceived and designed the experiments: CSM RAI HK MRK.

Performed the experiments: CSM RAI DLW HK. Analyzed the data:

CSM RAI HK. Contributed reagents/materials/analysis tools: RAI NJS

MRK. Wrote the paper: CSM.

References

1. Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The

AP2 domain of APETALA2 defines a large new family of DNA binding proteins

in Arabidopsis. Proceedings of the National Academy of Sciences of the United

States of America 94: 7076–7081.

ERF5 and ERF6 Regulate JA/Et-Mediated Defense

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e35995



2. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of

the ERF gene family in Arabidopsis and rice. Plant Physiology 140: 411–432.
3. Ohme-Takagi M, Shinshi H (1995) Ethylene-Inducible DNA-Binding Proteins

That Interact with an Ethylene-Responsive Element. Plant Cell 7: 173–182.

4. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis
ethylene-responsive element binding factors act as transcriptional activators or

repressors of GCC box-mediated gene expression. Plant Cell 12: 393–404.
5. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, et al. (2005) Role of an

Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and

drought stress responses. Plant Cell 17: 2384–2396.
6. Berrocal-Lobo M, Molina A (2004) Ethylene Response Factor 1 mediates

Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant
Microbe Interact 17: 763–770.

7. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene
signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3

and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703–3714.

8. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, et al. (2005)
Repressor- and activator-type ethylene response factors functioning in jasmonate

signaling and disease resistance identified via a genome-wide screen of
Arabidopsis transcription factor gene expression. Plant Physiology 139:

949–959.
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