
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 139, Number 7, July 2011, Pages 2439–2447
S 0002-9939(2010)10653-6
Article electronically published on November 30, 2010

GENERATORS OF A PICARD MODULAR GROUP

IN TWO COMPLEX DIMENSIONS

ELISHA FALBEL, GÁBOR FRANCSICS, PETER D. LAX, AND JOHN R. PARKER

(Communicated by Mei-Chi Shaw)

Abstract. The goal of the article is to prove that four explicitly given trans-
formations, two Heisenberg translations, a rotation and an involution generate
the Picard modular group with Gaussian integers acting on the two dimen-
sional complex hyperbolic space. The result answers positively a question
raised by A. Kleinschmidt and D. Persson.

1. Introduction

Our main goal in this article is to give a simple, self-contained proof that four
explicitly given transformations, two Heisenberg translations, a rotation and an
involution generate the two dimensional Picard modular group with Gaussian inte-
gers acting on the two dimensional complex hyperbolic space. The result answers
positively a question raised by A. Kleinschmidt and D. Persson [KP], and it is used
in the work [BKNPP] on string compactifications. The method used in the paper
gives a simple algorithm to decompose any transformation in the Picard group as
a product of the generators.

The complex hyperbolic space CH2 is the rank one Hermitian symmetric space
of noncompact type, SU(2, 1)/S(U(2) × U(1)). A standard model of the com-
plex hyperbolic space is the complex unit ball of C2, B2 = {z ∈ C2; |z| < 1}
equipped with the Bergman metric g =

∑2
j,k=1 gj,k(z)dzj ⊗ dz̄k, where gj,k =

const · ∂j∂k log(1 − |z|2). This model is the bounded realization of the Hermitian

symmetric space CH2. We shall use the unbounded hyperquadric model of the
complex hyperbolic space, that is, D2 = {z ∈ C2; �ez2 > 1

2 |z1|2}.
The holomorphic automorphism group of CH2, Aut(CH2), consists of rational

functions G = (g1, g2) : D
2 �→ D2,

(1.1) gj(z) =
gj+1,1 + gj+1,2z1 + gj+1,3z2

g1,1 + g1,2z1 + g1,3z2
,

j = 1, 2. These automorphisms act linearly in homogeneous coordinates (ζ0, ζ1, ζ2),

zj =
ζj
ζ0
, j = 1, 2. The corresponding matrix G = (gjk)

3
j,k=1 satisfies the condition

(1.2) G∗CG = C,
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where

C ≡

⎛

⎝
0 0 −1
0 1 0
−1 0 0

⎞

⎠ .

The determinant of the matrix G is normalized to be equal to 1. The matrix C is the
matrix of the quadratic form of a defining function of D2 written in homogeneous
coordinates. More precisely,

D2 = {[ζ] ∈ CP2; r(ζ) ≡ 〈Cζ, ζ〉 = −ζ2ζ̄0 − ζ0ζ̄2 + |ζ1|2 < 0}.
The Picard modular groups are

SU(2, 1;Od),

where Od is the ring of algebraic integers of the imaginary quadratic extension
Q(i

√
d) for any positive squarefree integer d (see Holzapfel [H1]). The elements of

the ring Od can be described easily (Hardy-Wright [HW]):

Od =

{
Z[i

√
d] if d ≡ 1, 2 (mod 4),

Z[ 1+i
√
d

2 ] if d ≡ 3 (mod 4).

It is well known that the ring Od is Euclidean for positive square free integer d if and
only if d = 1, 2, 3, 7, 11; see [ST], page 92. The Picard modular groups SU(2, 1;Od)
are discrete holomorphic automorphism subgroups of CH2.

Geometric and spectral properties of discrete lattices acting on complex hyper-
bolic spaces has recently attracted a lot of attention. See, for example, the work
of Goldman and Parker [GP], Francsics and Lax [FL1], [FL2], [FL3], Falbel and
Parker [FP], Deraux, Falbel and Paupert [DFP], Schwartz [Sch], or the survey paper
of Parker [P] on the geometric properties of complex hyperbolic lattices. Spectral
properties of the automorphic complex hyperbolic Laplace-Beltrami operator were
investigated by Epstein, Melrose and Mendoza [EMM], Reznikov [R], and Linden-
strauss and Venkatesh [LV]. Despite the remarkable progress, several important
algebraic, geometric and analytic problems are still open. To name a few, we men-
tion the existence of nonarithmetic lattices or the existence of embedded eigenvalues
in the continuous spectrum of the automorphic Laplace-Beltrami operator. A gen-
eral construction of a fundamental domain was obtained in [GR] for Lie groups.
However, the exact algebraic and geometric structure is known explicitly only for
very few lattices and fundamental domains in higher dimensions. This is in sharp
contrast to the case of the real hyperbolic spaces H2 and H3. Since the influen-
tial work of Mostow [M], it is well known that discrete holomorphic automorphism
subgroups acting on the complex hyperbolic space CHn are particularly hard to
analyze.

2. Preliminaries

Three important classes of holomorphic automorphisms are Heisenberg transla-
tions, dilations, and rotations.

The Heisenberg translation by a ∈ ∂D2, Na ∈ Aut(CH2) is defined as

Na(z1, z2) = (z1 + a1, z2 + a2 + z1ā1).

If we write a = (a1, a2) = (γ, 12 |γ|2 + ir) with γ ∈ C, r ∈ R, then the Heisenberg

translation is given by N(γ, 12 |γ|2+ir)(z1, z2) = (z1 + γ, z2 +
1
2 |γ|2 + ir + z1γ̄). The
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corresponding matrix representation is

Na ≡

⎛

⎝
1 0 0
a1 1 0
a2 ā1 1

⎞

⎠ =

⎛

⎝
1 0 0
γ 1 0

1
2 |γ|2 + ir γ̄ 1

⎞

⎠ .

The product of the Heisenberg translations Na, Nb is the Heisenberg translation

(2.1) Na ◦Nb = N(a1+b1,a2+b2+ā1b1)

with the parameter (a1 + b1, a2 + b2 + ā1b1) ∈ ∂D2. Moreover, the inverse of Na is
the Heisenberg translation

(2.2) N−1
a = N(−a1,−a2+|a1|2).

The holomorphic automorphism of D2,

Aδ(z) = (δz1, δ
2z2),

is called a dilation with parameter δ > 0. Its matrix representation is

A ≡

⎛

⎝

1
δ 0 0
0 1 0
0 0 δ

⎞

⎠ .

Rotation in the first variable by eiϕ,

Meiϕ(z1, z2) = (eiϕz1, z2),

is a holomorphic automorphism of D2 with ϕ ∈ R. There are three matrices,

M ≡

⎛

⎝
β 0 0
0 β−2 0
0 0 β

⎞

⎠ ,

β = e−iϕ/3+2πik/3, k = 0, 1, 2, corresponding to the same rotation.
The holomorphic involution

J(z1, z2) = (z1/z2, 1/z2)

will also play a significant role. A matrix representation of J is

J ≡

⎛

⎝
0 0 −1
0 −1 0
−1 0 0

⎞

⎠ .

Notice that J2 = I and J maps ∞ into (0, 0).
Let z be a boundary point of D2, i.e. z ∈ ∂D2 ∪ {∞}. The stabilizer subgroup

(isotropy subgroup) Γz of z contains all the holomorphic automorphisms that leave
z fixed, that is Γz ≡ {g ∈ SU(2, 1); g(z) = z}. The stabilizer subgroup of ∞
consists of lower triangular matrices, that is

P ≡ Γ∞ = {P ∈ SL(3,C);P ∗CP = C, p12 = p13 = p23 = 0}.
The Langlands decomposition of the stabilizer subgroup of ∞, P ≡ Γ∞, will play
an important role in our method. Any element of the stabilizer subgroup P ∈ P can
be decomposed as a product of a Heisenberg translation, dilation, and a rotation:

P =

⎛

⎝
p11 0 0
p21 p22 0
p31 p32 p33

⎞

⎠ = NAM =

⎛

⎜
⎜
⎝

β
δ 0 0

βγ
δ β−2 0

β
δ (

1
2 |γ|2 + ir) γ̄β−2 βδ

⎞

⎟
⎟
⎠ .
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The parameters β, γ ∈ C and δ, r ∈ R satisfy the restrictions |β| = 1 and δ > 0.
We recall from [FL1], [FL2] that the Langlands decomposition can also be used

to parametrize a holomorphic automorphism G = (gjk)
3
j,k=1 not in the stabilizer

subgroup of the ideal point ∞. Let NG(∞) be the Heisenberg translation mapping

(0, 0) into G(∞). Then the transformation P ≡ JN−1
G(∞)G belongs to the stabilizer

subgroup of ∞, so

(2.3) G = NG(∞)JP = NG(∞)JNAM.

The transformations N and P in the decomposition of G are not necessarily in
the Picard modular group Γ ≡ SU(2, 1;Od), even if G ∈ Γ. The entries of N , P
are not necessarily integers in the ring Od. However,

(2.4) g1j = −p3j , j = 1, 2, 3,

and so p3j , j = 1, 2, 3, are integers in the ring Od.

3. Statement of the results

It is well known that the modular group PSL(2,Z) ≡ SL(2,Z)/{±I} is gen-
erated by the transformations z �→ z + 1 and z �→ − 1

z . A. Kleinschmidt and
D. Persson [KP] raised the question of an analogous statement for the Picard mod-
ular group SU(2, 1;Z[i]), namely if there is a simple description of SU(2, 1;Z[i]) in
terms of generators. Our main result is to give an elementary proof that the four
transformations, N(0,1), N(1+i,1), Mi and J , are sufficient to generate SU(2, 1;Z[i]).
An application of this description to instanton corrections in string theory can be
found in [BKNPP]. From now on, we restrict ourselves to the case d = 1.

Theorem 3.1. The Picard modular group SU(2, 1;Z[i]) is generated by the Heisen-
berg translations

(3.1) N(0,i) ≡

⎛

⎝
1 0 0
0 1 0
i 0 1

⎞

⎠ , N(1+i,1) ≡

⎛

⎝
1 0 0

1 + i 1 0
1 1− i 1

⎞

⎠ ,

the rotation by i in the first coordinate

(3.2) Mi ≡

⎛

⎝
i 0 0
0 −1 0
0 0 i

⎞

⎠ ,

and the involution

(3.3) J ≡

⎛

⎝
0 0 −1
0 −1 0
−1 0 0

⎞

⎠ .

Remark 3.2. The method used in the paper is constructive. It gives an algorithm to
decompose any transformation in SU(2, 1;Z[i]) as a product of the four generators
in (3.1), (3.2), and (3.3). The main ingredients are the decomposition (2.3) and the
Euclidean algorithm.

Remark 3.3. It would be interesting to know if our method can be extended
to the other Euclidean rings Od, more precisely, to the Picard modular groups
SU(2, 1;Od), d = 2, 3, 7, 11. Little is known about the geometric and algebraic
properties, e.g., explicit fundamental domains, generators, and presentations of
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these Picard modular groups, except in the case d = 3 (see Falbel-Parker [FP]).
We also mention a related result on quaternionic hyperbolic space: Woodward [W]
obtained generators for the Picard modular group PU(2, 1;H), where H is the ring
of Hurwitz integral quaternions.

In [FL1], [FL2] an explicit fundamental domain was constructed for the Picard
modular group SU(2, 1;Z[i]). The symmetry of this fundamental domain under
a nonholomorphic isometry was used to obtain information about the embedded
eigenvalues (Maass cusp forms) of the automorphic Laplace-Beltrami operator of
the group SU(2, 1;Z[i]) in [FL3]. In [FFP] the authors construct a different fun-
damental domain; determine the geometric, combinatorial structure of this funda-
mental domain; and obtain a presentation of the group. See also the work [Y].

Remark 3.4. We mention that very little is known about the fundamental do-
mains and combinatorial structure of the higher dimensional Picard modular groups
SU(n, 1;Od). More generally, it is a major challenge in complex hyperbolic geome-
try to understand the geometric structure of discrete lattices in higher dimensions.

4. Proof

We start by characterizing the stabilizer subgroup of infinity, P, and describing
the arithmetic properties of the entries of a transformation in P.

Lemma 4.1. Let G = (gjk) ∈ SU(2, 1). Then G ∈ P if and only if g13 = 0.
Moreover, if d = 1, then P ∈ P ≡ Γ∞(2, 1;Z[i]) if and only if the parameters in
the Langlands decomposition of P satisfy the conditions

(4.1) δ = 1, β = 1, i,−1,−i, r ∈ Z, γ ∈ Z[i], |γ|2 ∈ 2Z.

Proof of Lemma 4.1. It is well known that if G ∈ P, then G is lower triangular, so
it is enough to prove the converse. Computing and comparing the entries in the
lower right corner of (1.2) we obtain

−ḡ33g13 + |g23|2 − ḡ13g33 = 0.

So g13 = 0 implies that g23 = 0. Similarly, comparing the entries in the third row,
second column gives the equation

−ḡ33g12 + ḡ23g22 − ḡ13g32 = 0.

Thus ḡ33g12 = 0. However, g13 = g23 = 0 and detG = 1 exclude the fact that
g33 = 0. Therefore g12 = 0 and G is lower triangular. Let P ∈ Γ∞(2, 1;Z[i]).
Since p11 = β/δ and p33 = βδ are nonzero Gaussian integers with |β| = 1 and
δ > 0, it follows immediately that δ = 1 and β = ±1,±i. Moreover, p31/β =
1
2 |γ|2 + ir and p21/β = γ are also Gaussian integers. This proves the second part
of Lemma 4.1. �

Proposition 4.2. The stabilizer subgroup of infinity, P, in the Picard modular
group SU(2, 1;Z[i]) is generated by the Heisenberg translations N(0,i) and N(1+i,1)

and by the rotation Mi.

Proof of Proposition 4.2. Let P be an element in the stabilizer subgroup P. We
know that P is lower triangular. According to Lemma 4.1 there is no dilation
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component in its Langlands decomposition; that is,

P = NM =

⎛

⎝
1 0 0
γ 1 0

1
2 |γ|2 + ir γ̄ 1

⎞

⎠

⎛

⎝
β 0 0
0 β−2 0
0 0 β

⎞

⎠ .

Since β4 = 1, the rotation in P is Mi, M−1 = M2
i , M−i = M3

i , or I = M4
i .

Therefore the rotation component of P in the Langlands decomposition is generated
by Mi.

According to (2.1) the Heisenberg translation part of P splits as

(4.2) N(γ, 12 |γ|2+ir) = N(0,ri) ◦N(γ, 12 |γ|2).

Here N(0,ri) can be written as

(4.3) N(0,ri) = Nr
(0,i), r ∈ Z,

observing that the inverse of N(0,i) is N(0,−i).
The next step is to decompose N(γ, 12 |γ|2) as a product of Heisenberg translations

in the directions (1 + i, 1), (−1 + i, 1), and (0, i). Let γ = m + in ∈ Z[i]. Then
|γ|2 = m2 + n2 ∈ 2Z according to (4.1). This means that m and n have the same
parity. Therefore we can write γ as

γ = k(1 + i) + l(−1 + i)

with k ≡ m+n
2 ∈ Z, l ≡ n−m

2 ∈ Z and |γ|2 = 2(k2 + l2). Since (0,−2kli) ∈ ∂D2,

(k(1 + i), k2) ∈ ∂D2, and (l(−1 + i), l2) ∈ ∂D2, it follows from (2.1) and (4.3) that

N(γ, 12 |γ|2) = N(0,−2kli) ◦N(γ, 12 |γ|2+2kli)

= N(0,−2kli) ◦N(k(1+i)+l(−1+i),k2+l2+2kli)

= N(0,−2kli) ◦N(k(1+i),k2) ◦N(l(−1+i),l2)

= N−2kl
(0,i) ◦N(k(1+i),k2) ◦N(l(−1+i),l2).(4.4)

Here the inverse of N(1+i,1) is N(−1−i,1), and an easy induction argument shows
that

(4.5) N(k(1+i),k2) = Nk
(1+i,1)

for any k ∈ Z. Moreover the third factor in (4.4) can be written as

(4.6) N(l(−1+i),l2) = Mi ◦N(l(1+i),l2) ◦M−1
i = Mi ◦N l

(1+i,1) ◦M−1
i

using (4.5). Combining (4.2), (4.3), (4.4), (4.5), and (4.6) we obtain that

N(γ, 12 |γ|2+ir) = Nr
(0,i) ◦N−2kl

(0,i) ◦Nk
(1+i,1) ◦Mi ◦N l

(1+i,1) ◦M−1
i

= Nr−2kl
(0,i) ◦Nk

(1+i,1) ◦Mi ◦N l
(1+i,1) ◦M−1

i .

This completes the proof of Proposition 4.2. �

Proof of Theorem 3.1. LetG = (gjk)
3
j,k=1 be an element of the group SU(2, 1;Z[i]).

We may assume that G does not belong to the stabilizer subgroup of infinity, P.
Then g13 �= 0 and G maps infinity to (g23/g13, g33/g13). Since G(∞) is in ∂D2,

(4.7) �eg33
g13

=
1

2

∣
∣g23
g13

∣
∣2.
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Consider the Heisenberg translation NG(∞) that maps (0, 0) to G(∞). Note that
the translation NG(∞) is not necessarily in the Picard modular group SU(2, 1;Z[i])
except if |g13| = 1. However, we know from (2.3) that

JN−1
G(∞)G = P.

We will successively approximate N−1
G(∞) by Heisenberg translations in the Picard

group to decrease the value |g13|2 ∈ Z until it becomes 0. Then G belongs to the
stabilizer subgroup P according to Lemma 4.1 and can be expressed as a product
of the generators (3.1) and (3.2) according to Proposition 4.2. This approxima-
tion process has finitely many steps and uses the fact that the ring O1 ≡ Z[i] is
Euclidean.

Write

(4.8) −g23
g13

= x(1 + i) + y(−1 + i) = (x− y) + (x+ y)i

with real numbers x, y ∈ R. Select integers m,n ∈ Z such that

(4.9) |x−m| ≤ 1/2, |y − n| ≤ 1/2,

i.e., the nearest integers in R. Let

(4.10) γ = m− n+ i(m+ n),

and select an integer k ∈ Z such that

(4.11)
∣
∣k + �m(γ̄

g23
g13

) + �mg33
g13

∣
∣ ≤ 1

2
.

Then we approximate N−1
G(∞) by the translation

N(γ, 12 |γ|2+ik) ≡ N(m−n+i(m+n),m2+n2+ik).

Notice that N(γ, 12 |γ|2+ik) is in the Picard modular group because

(4.12) |γ|2 = (m− n)2 + (m+ n)2 = 2m2 + 2n2 ∈ 2Z.

Next we calculate the entry in the upper right corner of the product:

G1 ≡ JN(γ, 12 |γ|2+ik)G(4.13)

=

⎛

⎝
0 0 −1
0 −1 0
−1 0 0

⎞

⎠

⎛

⎝
1 0 0
γ 1 0

1
2 |γ|2 + ik γ̄ 1

⎞

⎠G

=

⎛

⎝
− 1

2 |γ|2 − ik −γ̄ −1
−γ −1 0
−1 0 0

⎞

⎠G.
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So g
(1)
13 , the entry in the upper right corner of G1 = (g

(1)
jk ), is equal to

g
(1)
13 ≡ −(

1

2
|γ|2 + ik)g13 − γ̄g23 − g33

= −g13
(1

2
|γ|2 + ik + γ̄

g23
g13

+
g33
g13

)

= −g13
[1

2
|γ|2 + �e(γ̄ g23

g13
) + �eg33

g13

]

−ig13
[
k + �m(γ̄

g23
g13

) + �mg33
g13

]

≡ −g13(I1 + iI2).(4.14)

Using (4.7), (4.8), the definition of γ in (4.10), and (4.12) we can simplify I1:

I1 =
1

2
|γ|2 + �

(

γ
g23
g13

)

+ �g33
g13

=
1

2
|γ|2 + �

(

γ
g23
g13

)

+
1

2

∣
∣
∣
∣
g23
g13

∣
∣
∣
∣

2

=
1

2

∣
∣
∣
∣γ +

g23
g13

∣
∣
∣
∣

2

=
1

2

∣
∣
∣(m− n) + (m+ n)i− (x− y)− (x+ y)i

∣
∣
∣
2

= (x−m)2 + (y − n)2.

Then (4.9) gives the upper bound

(4.15) |I1| ≤
(
1

2

)2

+

(
1

2

)2

=
1

2
.

The selection of k in (4.11) gives the inequality |I2| ≤ 1/2 for the second term in

(4.14). Therefore we can estimate g
(1)
13 by combining (4.14) with (4.11) and (4.15):

|g(1)13 |2 = |g13|2|I1 + iI2|2 = |g13|2(I21 + I22 ) ≤ |g13|2
[(

1

2

)2

+

(
1

2

)2
]

=
1

2
|g13|2.

Repeating this approximation procedure finitely many times we reduce the ma-

trix of the transformation G to the matrix of a transformation Gn with g
(n)
13 = 0.

However, according to Lemma 4.1, this condition implies that the Gn belongs to the
stabilizer subgroup of infinity P. Proposition 4.2 guarantees that Gn is generated
by (3.1) and (3.2). Since the approximation procedure (4.13) uses the transforma-
tion J and transformations in P, Proposition 4.2 implies that G is generated by
(3.1), (3.2), and (3.3). This completes the proof of Theorem 3.1. �
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