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Abstract

The inhomogeneous Groshev type theory for dual Diophantine approximation on
manifolds is developed. In particular, the notion of nice manifolds is introduced
and the divergence part of the theory is established for all such manifolds. Our
results naturally incorporate and generalize the homogeneous measure and dimen-
sion theorems for non-degenerate manifolds established to date. The generality of
the inhomogeneous aspect considered within enables us to make a new contribution
even to the classical theory in Rn. Furthermore, the multivariable aspect considered
within has natural applications beyond the standard inhomogeneous theory such as
to Diophantine problems related to approximation by algebraic integers.
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1 Introduction

1.1 Motivation and main results

Throughout R+ = (0, +∞), | · | denotes the supremum norm, ‖ · ‖ is the distance to the
nearest integer and a · b := a1b1 + · · · + anbn is the standard inner product of vectors
a = (a1, . . . , an) and b = (b1, . . . , bn) in Rn. Furthermore, Ψ : Rn → R+ will denote a
function such that

Ψ(a1, . . . , an) > Ψ(b1, . . . , bn) if |ai| 6 |bi| for all i = 1, . . . , n , (1)
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and will be referred to as a multivariable approximating function. In the special case
when Ψ(a) = ψ(|a|) for a monotonic function ψ : R+ → R+ we simply refer to ψ as an
approximating function.

Given a multivariable approximating function Ψ and a function θ : Rn → R, define the
set

Wθ
n(Ψ) :=

{
y ∈ Rn :

‖a · y + θ(y)‖ < Ψ(a)

for infinitely many a ∈ Zn \ {0}
}

. (2)

For obvious reasons points y in Wθ
n(Ψ) are referred to as (Ψ, θ)-approximable and when

Ψ(a) = ψ(|a|) we naturally write Wθ
n(ψ) for Wθ

n(Ψ). In the case the function θ is constant,
the setWθ

n(Ψ) corresponds to the familiar inhomogeneous setting within the general theory
of dual Diophantine approximation. In turn, with θ ≡ 0 the corresponding set reduces to
the homogeneous setting and is denoted by Wn(Ψ). Note that within the homogeneous
setting, points in Rn are approximated by (n−1)–dimensional rational planes and Groshev’s
fundamental theorem [23, §2.3] in the theory of metric Diophantine approximation provides
a beautiful and simple criterion for the ‘size’ of Wn(ψ) expressed in terms of n-dimensional
Lebesgue measure | . |n. Essentially, for any approximating function ψ

∣∣Wn(ψ)
∣∣
n

=

{
ZERO if

∑∞
t=1 tn−1ψ(t) < ∞,

FULL if
∑∞

t=1 tn−1ψ(t) = ∞.

Here ‘full’ simply means that the complement of the set under consideration is of measure
zero. Many years later, and building upon the work of Jarńık, this criterion was gener-
alized to incorporate Hausdorff measures [33]. For background, precise statements and
generalizations to the inhomogeneous and multivariable aspects the reader is refereed to
[9, 11, 14, 18] and references within.

Let M be a manifold in Rn. In short, our primary goal is to develop a metric theory
for the sets M∩Wθ

n(Ψ) akin to Groshev’s theorem. The fact that the points y ∈ Rn of
interest are restricted to M and therefore are of dependent variables, introduces major
difficulties in attempting to describe the measure theoretic structure of M∩Wθ

n(Ψ) – even
with θ ≡ 0 and Ψ = ψ. Trivially, if the dimension of the manifold is strictly less than n
then |M|n = 0. Thus, in attempting to develop a Lebesgue theory for M∩Wθ

n(Ψ) it is
natural to use the induced Lebesgue measure | . |M on M. Trivially, the measure of the
complement of M with respect to | . |M is zero and so by definition |M|M := FULL.

In 1998, Kleinbock & Margulis [39] established the fundamental Baker-Sprindzuk con-
jecture concerning homogeneous Diophantine approximation on manifolds. As a conse-
quence, for non-degenerate manifolds |M ∩ Wn(Ψε)|M = 0 where Ψε(a) := |a|−n−ε and
ε > 0. Essentially, non-degenerate manifolds are smooth sub-manifolds of Rn which
are sufficiently curved so as to deviate from any hyperplane. Formally, a manifold M
of dimension m embedded in Rn is said to be non-degenerate if it arises from a non-
degenerate map f : U → Rn where U is an open subset of Rm and M := f(U). The map
f : U → Rn : u 7→ f(u) = (f1(u), . . . , fn(u)) is said to be l-non-degenerate at u ∈ U if f
is l times continuously differentiable on some sufficiently small ball centred at u and the
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partial derivatives of f at u of orders up to l span Rn. The map f is l-non-degenerate
if it is l-non-degenerate at almost every (in terms of m-dimensional Lebesgue measure)
point in U ; in turn the manifold M = f(U) is also said to be l-non-degenerate. Finally,
we say that f is non-degenerate if it is l-non-degenerate for some l; in turn the manifold
M = f(U) is also said to be non-degenerate. Any real connected analytic manifold which
is not contained in any hyperplane of Rn is non-degenerate.

Without a doubt, the proof of the Baker-Sprindzuk conjecture has acted as the catalyst
for the subsequent development of the homogeneous theory of Diophantine approximation
on manifolds. In particular, the significantly stronger Groshev type theorem forM∩Wn(ψ)
has been established – see [4, 24] for the zero measure criterion and [10] for the full measure
criterion. Staying strictly within the homogeneous setting, for recent developments regard-
ing the ‘deeper’ Hausdorff measure theory and the simultaneous approximation theory we
referee the reader to [2, 6, 11, 12, 15, 19, 32, 45] and references within.

Until the recent proof of the inhomogeneous Baker-Sprindzuk conjecture [16, 17], the
theory of inhomogeneous Diophantine approximation on manifolds had remained essen-
tially non-existent and ad-hoc – see [22, 25, 46, 47]. As a consequence of the measure
results in [17] we now know that for any non-degenerate manifold M and θ ≡ constant,

|M ∩Wθ
n(Ψε)|M = 0 ∀ ε > 0 . (3)

Clearly, this statement is far from the desirable Groshev type theorem even forM∩Wθ
n(ψ).

As mentioned above, such a statement exists within the homogeneous setting. This paper
constitutes part of an ongoing programme to develop a coherent inhomogeneous theory
of Diophantine approximation on manifolds in line with the homogeneous theory. In the
case of simultaneous approximation on planar curves, the programme has successfully been
carried out in [13]. Here we deal with the dual approximation aspect of the programme.

Our first result provides a zero Lebesgue measure criterion for M∩Wθ
n(Ψ). It rep-

resents the complete inhomogeneous version of the main result of [24] and it implies (3)
without imposing the condition that the ‘inhomogeneous’ function θ : Rn → R is constant.
Throughout, θ|M will denote the restriction of the inhomogeneous function θ to M and as
usual, C(n) will denote the set of n-times continuously differentiable functions.

Theorem 1 Let M be an l-non-degenerate manifold in Rn (n > 2) and θ : Rn → R be a
function such that θ|M ∈ C(l). Let Ψ be a multivariable approximating function. Then

∣∣Wθ
n(Ψ) ∩M

∣∣
M = 0 if

∑

a∈Zn\{0}
Ψ(a) < ∞. (4)

For the divergence counterpart, we are able to prove the more general statement in
terms of s-dimensional Hausdorff measure Hs. However, there is a downside in that we
impose a ‘convexity’ condition on Ψ which we refer to as property P. For an n-tuple
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v = (v1, . . . , vn) of positive numbers satisfying v1 + · · · + vn = n, define the v-quasinorm
| · |v on Rn by setting

|y|v := max
16i6n

|yi|1/vi .

A multivariable approximating function Ψ is said to satisfy property P if Ψ(a) = ψ(|a|v)
for some approximating function ψ and v as above. Trivially, with v = (1, . . . , 1) we have
that |a|v = |a| and we see that any approximating function ψ satisfies property P.

Theorem 2 Let M be a non-degenerate manifold in Rn (n > 2) of dimension m and let
s > m − 1. Let θ : Rn → R be a function such that θ|M ∈ C(2) and Ψ be a multivariable
approximating function satisfying property P. Then

Hs(Wθ
n(Ψ) ∩M) = Hs(M) if

∑

a∈Zn\{0}
|a|

(
Ψ(a)

|a|
)s+1−m

= ∞.

The above theorem will be derived from a general statement which significantly broad-
ens the scope of potential applications and is of independent interest. Given a manifold
M ⊂ Rn, an n-tuple v = (v1, . . . , vn) of positive numbers satisfying v1 + · · · + vn = n,
δ > 0 and Q > 1, let

Φv(Q, δ) =
{
y ∈M : ∃ a ∈ Zn \ {0} such that ‖a · y‖ < δQ−n and |a|v 6 Q

}
.

As a consequence of Dirichlet’s theorem, Φv(Q, δ) = M if δ ≥ 1. We say that the manifold
M is v-nice at y0 ∈M if there is a neighborhood Ω ⊂M of y0 and constants 0 < δ, ω < 1
such that for any ball B ⊂ Ω we have that

lim sup
Q→∞

|Φv(Q, δ) ∩B|M 6 ω|B|M .

The manifold is said to be v-nice if it is v-nice at almost every point in M. Furthermore,
the manifold is said to be nice if it is v-nice for all choices of v.

Theorem 3 Let M be a v-nice C(2) manifold in Rn of dimension m and let s > m−1. Let
θ : Rn → R be a function such that θ|M ∈ C(2) and Ψ(a) = ψ(|a|v) for some approximating
function ψ. Then

Hs(Wθ
n(Ψ) ∩M) = Hs(M) if

∑

a∈Zn\{0}
|a|

(
Ψ(a)

|a|
)s+1−m

= ∞.

A consequence of Lemma 4 in §3.1 is that non-degenerate manifolds are nice. Thus

Theorem 3 =⇒ Theorem 2.
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1.2 Remarks and Corollaries

Remark 1. For s < m, the non-degeneracy of M in Theorem 2 can be relaxed to
the condition that there exists at least one non-degeneracy point on M. Also, note that
Hs(M) = ∞ when s < m.

Remark 2. It follows from the definition of Hausdorff measure that Hs(Wθ
n(ψ) ∩M) ≤

Hs(M) = 0 for any s > m irrespective of Ψ. Thus the meat of Theorem 2 is when s ≤ m.

Remark 3. To the best of our knowledge, Theorem 2 with M = Rn and θ 6≡ constant is
new. In other words, the theorem makes a new contribution even to the classical theory of
Diophantine approximation of independent variables.

Remark 4. We suspect that Property P imposed in the statement of Theorem 2 can be
safely removed. This constitutes a challenging problem even in the homogeneous case.

Remark 5. Consider the problem of Diophantine approximation on the Veronese curves
M := {(x, x2, . . . , xn) : x ∈ R}, where n > 2. Take θ(x, . . . , xn) = xn+1. Then the
inequality in (2) becomes

|xn+1 + anxn + · · ·+ a1x + a0| < Ψ(a) .

Clearly the function θ as defined above is C(∞). In the case when Ψ(a) = ψ(|a|) the
corresponding divergence results have been proved by Bugeaud [30] and the corresponding
convergence results by Bernik & Shamukova [26, 44]. Theorems 1 and 2 naturally extend
their results to the case of multivariable approximating functions Ψ.

We now discuss various corollaries of our main theorems which are of independent
interest. The following statement is a direct consequence of Theorem 2 and the fact that
any approximating function ψ satisfies property P.

Corollary 1 Let M be a non-degenerate manifold in Rn of dimension m and s > m− 1.
Let θ : Rn → R be a function such that θ|M ∈ C(2) and ψ be an approximating function.
Then

Hs(Wθ
n(ψ) ∩M) = Hs(M) if

∞∑
t=1

tn
(

ψ(t)

t

)s+1−m

= ∞.

In the case of curves this corollary was first established in [1]. In the case s = m, the
Hausdorff measure Hs is comparable to the induced m-dimensional Lebesgue measure
| . |M on M and Corollary 1 represents the complete inhomogeneous version of the main
result of [10]. Furthermore, Theorem 1 together with Corollary 1 provides a simple criterion
for the ‘size’ of Wθ

n(ψ) ∩M expressed in terms of the induced measure; i.e. the desired
inhomogeneous Groshev type theorem for manifolds. More precisely and more generally,
under the hypotheses of Theorem 1 we have that for any Ψ satisfying property P

∣∣Wθ
n(Ψ) ∩M

∣∣
M =





0 if
∑

a∈Zn\{0} Ψ(a) < ∞

|M|M if
∑

a∈Zn\{0} Ψ(a) = ∞ .
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In the case s < m, Corollary 1 naturally generalizes the homogeneous result of [11, Theorem
18]. It is worth stressing that even with θ ≡ 0, Theorem 2 can be regarded as develop-
ing the homogenous theory of Diophantine approximation on manifolds by incorporating
multivariable approximating functions.

Given an approximating function ψ, the lower order τψ of 1/ψ is defined by

τψ := lim inf
t→∞

− log ψ(t)

log t

and indicates the growth of the function 1/ψ ‘near’ infinity. With this definition at hand,
it is relatively easy to verify that the divergent sum condition of Corollary 1 is satisfied
whenever s < m− 1+ (n+1)/(τψ +1). It follows from the definition of Hausdorff measure
and dimension that dim(Wθ

n(ψ) ∩ M) > s if Hs(Wθ
n(ψ) ∩ M) > 0 and Hs(M) > 0 if

s ≤ dimM. Thus, Corollary 1 readily yields the following inhomogeneous version of the
dimension result of [32].

Corollary 2 Let M be a non-degenerate manifold in Rn of dimension m and θ : Rn → R
be a function such that θ|M ∈ C(2). Let ψ be an approximating function such that n ≤
τψ < ∞. Then

dimWθ
n(ψ) ∩M > m− 1 +

n + 1

τψ + 1
. (5)

In the case that θ ≡ constant and ψ(t) := t−τ with τ > n, this dimension statement
corresponds to the main result of [27]. However, Corollary 1 implies the stronger measure
statement that Hs(Wθ

n(ψ) ∩ M) = ∞ at s = m − 1 + (n + 1)/(τ + 1) which in all
likelihood is the critical exponent. In a wider context, it would not be unreasonable to
expect that the above lower bound for dimWθ

n(ψ) ∩ M is in fact sharp. Even within
the homogenous setting, establishing equality in (5) represents a key open problem. To
date the homogeneous problem has been settled by Bernik [20] for Veronese curves and
by R.C. Baker [3] for non-degenerate planar curves. For non-degenerate curves in Rn the
current results are limited to situation that τψ ≤ n + 1

4n
– see [8]. Most recently, the

inhomogeneous version of Baker’s result has been established in [1]. In other words, if M
is a non-degenerate planar curve then in (5) we have equality.

1.3 Possible developments

Affine subspaces. The homogeneous Groshev type theorems are established for lines passing
through the origin in [7] and for hyperplanes in [37]. It is likely that the techniques
developed in this paper can be used to extend these results to the inhomogeneous setting.
Note that affine subspaces are degenerate everywhere and so Theorems 1 & 2 are not
applicable. It is worth mentioning that the general case, in which the dimension of planes
is arbitrary, is unresolved even in the homogeneous setting – see [38] for further details.
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Manifolds in affine subspaces. By definition, any manifold contained in a proper affine sub-
space of Rn is degenerate. Nevertheless the ‘extremal’ theory of homogeneous Diophantine
approximation for such manifolds has been developed in [38]. A natural problem is to
develop the analogous inhomogeneous theory and more generally obtain a Groshev type
theory. For the same reason as above, Theorems 1 & 2 are not applicable in this setting.

The p-adic setting. The homogeneous Groshev type theorems have recently been estab-
lished in [41, 42] for the ‘S-arithmetic’ setting. This builds upon the ‘extremality’ results
of Kleinbock and Tomanov [40] and includes the more familiar p-adic case. In all like-
lihood the techniques developed in this paper can be used to extend the homogeneous
S-arithmetic results to the inhomogeneous setting. For inhomogeneous p-adic results re-
stricted to Veronese curves see [22, 29, 46].

The non-monotonic setting. By definition, any approximating function ψ is monotonic.
Thus, monotonicity is implicitly assumed within the context of the classical Groshev theo-
rem as stated in §1.1. Recently in [18], this classical result has been freed from all unneces-
sary monotonicity constraints. Naturally, it would be highly desirable to obtain analogous
statements for Diophantine approximation on manifolds. This in full generality is a difficult
problem. Even in the case Ψ(a) = ψ(|a|), to remove the implicit monotonicity assumption
from Theorems 1 & 2 is believed to be currently out of reach. For homogeneous convergent
Groshev type results without monotonicity but restricted to non-degenerate curves in Rn

see [5, 28]. In the first instance it would be interesting to extend these homogeneous results
for curves to the inhomogeneous setting.

1.4 Global assumptions and useful conventions

In the course of proving our results we will conveniently and without loss of generality
assume that the manifold M under consideration is immersed in Rn via a smooth map
f = (f1, . . . , fn) : U → Rn defined on a ball U ⊂ Rm. Thus, M =

{
f(x) : x ∈ U

}
.

Furthermore, in view of the Implicit Function Theorem we can assume that

fi(x) = xi for i = 1, . . . ,m .

In other words, f is a Monge parameterisation of M. Note that this implies that f is locally
bi-Lipschitz.

Let Af (Ψ, θ) denote the projection of Wθ
n(Ψ) ∩M onto U ; that is

Af (Ψ, θ) :=
{
x ∈ U : f(x) ∈ Wθ

n(Ψ)
}

.

Thus, a point x ∈ Af (Ψ, θ) if and only if the point f(x) ∈ M is (Ψ, θf (x))-approximable
with θf (x) := θ(f(x)). For convenience and clarity we will drop the subscript from θf .
In the case when Ψ(a) = ψ(|a|) for some approximating function ψ we write Af (ψ, θ) for
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Af (Ψ, θ). A consequence of the fact that f is locally bi-Lipschitz is that Theorems 1–3 can
be equally stated in terms of Af (Ψ, θ). Indeed the proof of the theorems will make use of
this alternative formulation.

In the case of Theorem 1 the functions f and θ are C(l). Thus we can assume without
loss of generality that there is a constant C0 > 0 depending only on U , f and θ such that

max
06i6l

sup
x∈U

|f (i)(x)| 6 C0 and max
06i6l

sup
x∈U

|θ(i)(x)| 6 C0. (6)

In the case of Theorems 2 & 3 the functions f and θ are C(2) and therefore without loss of
generality we can assume (6) with l = 2.

Notation. The Vinogradov symbols ¿ and À will be used to indicate an inequality with
an unspecified positive multiplicative constant. If a ¿ b and a À b we write a ³ b, and
say that the quantities a and b are comparable. We denote by B = B(x, r) the ball centred
at x ∈ Rm with radius r. For any real number λ > 0, we let λB denote the ball B scaled
by a factor λ; i.e. λB(x, r) := B(x, λr).

2 The convergence theory

The goal is to prove Theorem 1. Thus, throughout Ψ is a multivariable approximating
function satisfying the convergent sum condition

∑

a∈Zn\{0}
Ψ(a) < ∞ . (7)

In view of the discussion of §1.4 the goal is equivalent to establishing |Af (Ψ, θ)|m = 0.
Note that the set Af (Ψ, θ) can be written as

Af (Ψ, θ) = lim sup
|a|→∞

Af (a, Ψ, θ) :=
∞⋂

h=1

⋃

|a|>h

Af (a, Ψ, θ), (8)

where
Af (a, Ψ, θ) :=

{
x ∈ U : ‖a · f(x) + θ(x)‖ < Ψ(a)

}
.

For each a ∈ Zn \ {0} it is convenient to decompose the set Af (a, Ψ, θ) into the following
two subsets

A1
f (a, Ψ, θ) :=

{
x ∈ A(a, Ψ, θ) : |∇(f · a + θ)(x)| > C1 |a|1/2

}
(9)

and
A2

f (a, Ψ, θ) :=
{
x ∈ A(a, Ψ, θ) : |∇(f · a + θ)(x)| < C1 |a|1/2

}
. (10)
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Here ∇ as usual denotes the gradient operator and

C1 :=
√

(n + 1)mC0 (11)

where C0 is as in (6). Obviously

Af (Ψ, θ) = A1
f (Ψ, θ) ∪ A2

f (Ψ, θ),

where

Ai
f (Ψ, θ) = lim sup

|a|→∞
Ai

f (a, Ψ, θ) :=
∞⋂

h=1

⋃

|a|>h

Ai
f (a, Ψ, θ) (i = 1, 2) .

The desired statement that |Af (Ψ, θ)|m = 0 will follow by establishing the separate cases:

Case A |A1
f (Ψ, θ)|m = 0

Case B |A2
f (Ψ, θ)|m = 0.

2.1 Establishing Case A

The aim is to show that |A1
f (Ψ, θ)|m = 0. This will follow as a consequence of Theorem 1.3

from [24] which is now explicitly stated using slightly different notation.

Theorem 4 (Bernik, Kleinbock & Margulis) Let B ⊂ Rm be a ball of radius r > 0
and let g = (g1, g2, . . . , gn+1) ∈ C(2)(2B). Fix δ > 0 and suppose that

L := max
16i,j6m

max
x∈2B

∣∣∣∣
∂2g(x)

∂xi∂xj

∣∣∣∣ < ∞ . (12)

Then for every q ∈ Zn+1 such that

|q| > 1

4(n + 1)Lr2
(13)

the set of x ∈ B satisfying the system of inequalities





‖g(x) · q‖ < δ

|∇g(x) · q| >
(
(n + 1)mL |q|)1/2

(14)

has measure at most K δ|B|m, where K is a constant depending only on m.
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With the above theorem at our disposal, consider any non-empty open ball B such that
2B ⊂ U . Let g = (f1, f2, . . . , fn, θ) and q = (a1, . . . an, 1) where a = (a1, . . . , an) ∈ Zn\{0}.
Then, in view of (6), we have that (12) is automatically satisfied. Furthermore, (13) holds
for all except finitely many a ∈ Zn\{0}. In view of (6) and (11), the lower bound inequality
of (14) is implied by the inequality associated with (9). Therefore, A1

f (a, Ψ, θ) ∩ B is
contained in the set defined by (14) with δ := Ψ(a). It now follows via Theorem 4, that

|A1
f (a, Ψ, θ) ∩B|m ¿ Ψ(a)

where the implied constant is independent of a. This together with (7) and the Borel-
Cantelli lemma readily implies that |A1

f (Ψ, θ) ∩ B|m = 0. Now simply observe that the
open balls B such that 2B ⊂ U cover the whole of U . The upshot is that |A1

f (Ψ, θ)|m = 0
as required.

2.2 Preliminaries for establishing Case B

Establishing Case B relies upon the recent transference technique introduced in [17] and
the properties of (C,α)-good functions introduced by Kleinbock & Margulis in [39].

2.2.1 Good functions

The following formal definition can be found in [39].

Definition 1 Let C and α be positive numbers and f : V → R be a function defined on
an open subset V of Rm. Then f is called (C,α)-good on V if for any open ball B ⊂ V
and any ε > 0 one has that

∣∣∣∣
{

x ∈ B : |f(x)| < ε sup
x∈B

|f(x)|
}∣∣∣∣

m

6 Cεα|B|m. (15)

We now recall various useful properties of (C, α)-good functions.

Lemma 1 ([24, Lemma 3.1])

(a) If f is (C,α)-good on V then so is γf for any γ ∈ R.

(b) If f and g are (C, α)-good on V then so is max{|f |, |g|}.
(c) If f is (C, α)-good on V then f is (C ′, α′)-good on V ′ for every C ′ > C, α′ 6 α and

V ′ ⊆ V .

(d) If f is (C, α)-good on V and c1 ≤ |f(x)|
|g(x)| ≤ c2 for all x ∈ V , then g is (C(c2/c1)

α, α)-
good on V .
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The next lemma is the key tool for establishing that a given function is (C,α)-good. The
following notation is needed to state the lemma. An m-tuple β = (β1, . . . , βm) of non-
negative integers will be referred to as a multiindex and we let |β| := β1 + · · ·+ βm. Given
a multiindex β, let

∂β :=
∂|β|

∂xβ1
m · · · ∂xβm

m

and ∂k
i :=

∂k

∂xk
i

.

Lemma 2 ([24, Lemma 3.3]) Let U be an open subset of Rm and let g ∈ C(k)(U) be
such that for some constants A1, A2 > 0

|∂βg(x)| 6 A1 ∀ β with |β| 6 k, (16)

and
|∂k

i g(x)| > A2 ∀ i = 1, . . . , m (17)

for all x ∈ U . Also let V be a subset of U such that whenever a ball B lies in V any cube
circumscribed around B is contained in U . Then g is (C, 1

mk
)-good on V for some explicit

positive constant C depending on A1, A2, m and k only.

The following proposition1 is a generalization of Proposition 3.4 from [24].

Proposition 1 Let U be an open subset of Rm, x0 ∈ U and let F ⊂ C(l)(U) be a compact
family of functions f : U → R for some l > 2 . Assume also that

inf
f∈F

max
0<|β|6l

| ∂βf(x0)| > 0 . (18)

Then there exists a neighborhood V ⊂ U of x0 and positive constants C and δ satisfying
the following property. For any Θ ∈ C(l)(U) such that

sup
x∈U

max
|β|6l

|∂βΘ(x)| 6 δ (19)

and any f ∈ F we have that

(a) f + Θ is
(
C, 1

ml

)
-good on V ,

(b) |∇(f + Θ)| is
(
C, 1

m(l−1)

)
-good on V .

1In Proposition 1 we assume that F is compact. This assumption is not made in Proposition 3.4 of
[24] although it is used in its proof. Note that the compactness of F does not follow from the assumption
that {∇f : f ∈ F} is compact. In fact, the family F defined in Corollary 3.5 of [24], which is the main
application of [24, Proposition 3.4], is not compact. The proof of the corollary as given in [24] is therefore
incomplete. Nevertheless, the corollary as stated is correct. These issues are carried over unaddressed into
Theorem 4.5 of [41]. In this paper the issues are addressed by our Proposition 1 and Corollary 3.
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Proof. The proof is a modification of the ideas used to establish Proposition 3.4 in [24].
First of all note that in view of (18), there exists a constant C1 > 0 such that for any
f ∈ F one can find a multiindex β with 0 < |β| = k 6 l, where k = k(f), such that

|∂βf(x0)| > C1. (20)

Since the number of different β’s is finite, without loss of generality we can assume that β
appearing in (20) is the same for all f ∈ F . By an appropriate rotation of the coordinate
system one can ensure that

|∂̃k
i f(x0)| > C2 (21)

for all i = 1, . . . , m and some positive C2 independent of f . Here ∂̃ denotes differentiation
with respect to the rotated coordinate system. Also, by (19) there exists a constant c =
c(l) > 1 such that

sup
x∈U

max
|β|6l

|∂̃βΘ(x)| 6 cδ. (22)

Now take δ := C2/(2c). Then, by (21) and (22), for any f ∈ F we have that

|∂̃k
i (f + Θ)(x0)| > δ for all i = 1, . . . , m.

Then, by the continuity of derivatives of f + Θ and the compactness of F , we can choose
a neighborhood V ′ ⊂ U of x0 and positive constants A1, A2 independent of f such that
(16) and (17) with ∂ replaced by ∂̃ hold for all x ∈ V ′ and all g = f + Θ. Finally,
let V be a smaller neighborhood of x0 such that whenever a ball B lies in V , the cube
B̃ circumscribed around B is contained in V ′. Then, on applying Lemma 2 establishes
part (a) of Proposition 1.

Regarding part (b), first assume that k appearing in (21) is at least 2. Since F is
compact and differentiation is a continuous map from C(l)(U) to C(l−1)(U), we have that
for every i = 1, . . . , m

Fi :=
{
∂̃if : f ∈ F}

is compact in C(l−1)(U). (23)

In view of the definition of F condition (18) holds when l is replaced by l − 1 and F
is replaced by Fi. Therefore, the arguments used to prove part (a) apply to Fi and
we conclude that for every f ∈ Fi the function ∂̃i(f + Θ) is

(
Ci,

1
m(l−1)

)
-good on some

neighborhood Vi of x0. It follows via Lemma 1, that |∇̃(f + Θ)| is
(
C̃, 1

m(l−1)

)
-good with

C̃ = maxi Ci, V = ∩iVi and f ∈ F . Naturally, ∇̃ denotes the gradient operator with
respect to the rotated coordinate system. Now simply notice that the quantity

|∇(f + Θ)(x)|
|∇̃(f + Θ)(x)|

for all x ∈ V is bounded between two positive constants. Hence, by making use of part
(d) of Lemma 1 we obtain the statement of part (b) of Proposition 1.
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It remains to consider the case when k appearing in (21) is equal to 1. Let A1, A2 and V
be defined as in the proof of part (a) above. Then,

A2 6 |∇̃(f + Θ)(x)| 6 A1 for all x ∈ V . (24)

In view of part (d) of Lemma 1 and the definition of (C,α)-good functions, to complete
the proof it suffices to verify that

∣∣∣∣{x ∈ B : |∇̃(f(x) + Θ(x))| < ε sup
y∈B

|∇̃(f(y) + Θ(y))|}
∣∣∣∣
m

6
(

A1

A2

) 1
l−1

ε
1

l−1 |B|m (25)

for any positive ε and any B ⊂ V . Firstly, note that if ε > A2/A1 then the r.h.s. of (25)
is at least |B|m and so (25) is obviously true. Thus, suppose that ε < A2/A1, Then in
view of (24), the set on the l.h.s. of (25) is empty and again (25) is trivially satisfied. This
thereby completes the proof of the proposition. ¤

Corollary 3 Let U be an open subset of Rm, x0 ∈ U and let f = (f1, . . . , fn) : U → Rn

be l-nondegenerate at x0 for some l > 2. Let θ ∈ C(l)(U). Then there exists a neighborhood
V ⊂ U of x0 and positive constants C and H0 such that for any a ∈ Rn satisfying |a| > H0

(a) a0 + a · f + θ is (C, 1
ml

)-good on V for every a0 ∈ R, and

(b) |∇(a · f + θ)| is (C, 1
m(l−1)

)-good on V .

Proof. To start with choose the neighborhood V ⊂ U of x0 so that f and θ are bounded
on V . Then there exists a positive constant K such that

sup
x∈V

|f(x)| 6 K/(n + 1) and sup
x∈V

|θ(x)| 6 K/(n + 1). (26)

Let f be the function given by f(x) := a0 + a · f(x) + θ(x). Assume for the moment that
|a0| > 2K|a|. Then, on using (26) we find that

sup
x∈B

|f(x)| 6 3 inf
x∈B

|f(x)| (27)

for any ball B ⊂ V . Therefore, if ε < 1/3 then the set on the l.h.s. of (15) is empty and
(15) is trivially satisfied with any positive C and α. On the other hand, if ε > 1/3, then
(15) is obviously true for any C > 3 and any positive α 6 1. The upshot is that part (a)
of the corollary holds for any C > 3 and 0 < α 6 1 whenever |a0| > 2K|a|. Thus, without
loss of generality we will assume that |a0| 6 2K|a|.

Let F be the collection of functions of the form c · f(x) + c0, where c ∈ Rn such that
|c| = 1 and |c0| 6 2K. Using the compactness of the set

{c ∈ Rn : |c| = 1} × {c0 ∈ R : |c0| 6 2K} ,
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one readily verifies that F is compact in C(l)(U). This together with the fact that f
is non-degenerate at x0 ensures that F satisfies (18). Next note that by shrinking the
neighborhood V of x0 if necessary, we have that

sup
x∈V

max
|β|6l

|∂βθ(x)| 6 M

for some positive constant M . Now let C and δ be the contants associated with Proposi-
tion 1 and let

H0 := M/δ .

Consider an arbitrary vector a ∈ Rn with |a| > H0 and any real number a0 such that
|a0| 6 2K|a|. Then, Θ given by Θ(x) := θ(x)/|a| satisfies (19) and

f : x → f(x) := |a|−1(a0 + f(x) · a)

belongs to the compact family F . In view of Proposition 1, the function f + Θ given by
f(x) + Θ(x) = |a|−1(a0 + f(x) · a + θ(x)) satisfies the desired conclusions of the corollary.
The assertions for the function without the |a|−1 multiplier are a simple consequence of
part (a) of Lemma 1. ¤

Proposition 2 Let U , x0 and F be as in Proposition 1 and suppose that (18) is valid.
Then for any neighborhood V ⊂ U of x0, we have that

inf
f∈F

sup
x∈V

|f(x)| > 0 .

Proof. In view of (18) it follows that ‖f‖V := supx∈V |f(x)| > 0 for every f ∈ F and
any neighborhood V ⊂ U of x0. The map f 7→ ‖f‖V is continuous with respect to the C(0)

norm. By the compactness of F , we have that inff∈F ‖f‖V = ‖f0‖V for some f0 ∈ F . The
claim of the proposition now follows on combining these facts. ¤

Corollary 4 Let U , x0, f and θ be as in Corollary 3. Then for every sufficiently small
neighborhood V ⊂ U of x0, there exists H0 > 1 such that

inf
(a,a0)∈Rn+1

|a|>H0

sup
x∈V

|a0 + a · f(x) + θ(x)| > 0.

Proof. Consider any neighborhood V ⊂ U of x0 for which the inequalities given by (26)
are satisfied for some K > 0. Let f denote the function given by f(x) := a0+a·f(x)+θ(x).
Notice that if |a0| > 2K|a|, then in view of (26) it follows that

sup
x∈V

|f(x)| > K H0 > K > 0

for any (a, a0) ∈ Rn+1 with |a| > H0 > 1 and |a0| > 2K|a|. Thus for the rest of the proof
we may assume that |a0| 6 2K|a|.
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As in the proof of Corollary 3, let F be the collection of functions of the form c · f(x) + c0,
where c ∈ Rn such that |c| = 1 and |c0| 6 2K. Then F is a compact subset of C(l)(U) and
since f is non-degenerate at x0, we have that F satisfies (18). Thus, Proposition 2 implies
that M := inff∈F supx∈V |f(x)| > 0. Therefore, for any (a, a0) ∈ Rn+1 with |a| > H0 > 1
and |a0| 6 2K|a| we have that

sup
x∈V

|a0 + a · f(x)| > MH0. (28)

Now take H0 > max{1, K/M}. Then, by (26) and (28) it follows that

sup
x∈V

|a0 + a · f(x) + θ(x)| > MH0/2

and this completes the proof of the corollary. ¤

2.2.2 Inhomogeneous Transference Principle

In this section we describe a simplified version of the Inhomogeneous Transference Principle
introduced in [17, Section 5]. The simplified version takes into consideration the specific
applications that we have in mind. Throughout, V denotes a finite open ball in Rm and µ
is m-dimensional Lebesgue measure restricted to V . Clearly the support of µ is the closure
V of V . For consistency with the notation used in [17], will be write S for V .

Let T and A be two countable ‘indexing’ sets and let H and I be two maps from
T×A× R+ into the set of open subsets of Rm such that

H : (t, α, ε) 7→ Ht(α, ε) and I : (t, α, ε) 7→ It(α, ε). (29)

Let Φ denote a set of functions φ : T → R+. For φ ∈ Φ, consider the lim sup sets

ΛI(φ) := lim sup
t∈T

⋃
α∈A

It(α, φ(t)) and ΛH(φ) := lim sup
t∈T

⋃
α∈A

Ht(α, φ(t)). (30)

The following two key properties enables us to transfer zero µ-measure statements for the
‘homogenous’ lim sup sets ΛH(φ) to the ‘inhomogenous’ lim sup sets ΛI(φ).

Intersection Property: The triple (H, I, Φ) is said to satisfy the intersection property if
for any φ ∈ Φ there exists φ∗ ∈ Φ such that for all but finitely many t ∈ T and all distinct
α, α′ ∈ A

It(α, φ(t)) ∩ It(α
′, φ(t)) ⊂

⋃

α′′∈A
Ht(α

′′, φ∗(t)). (31)

Contracting Property: We say that µ is contracting with respect to (I, Φ) if for any
φ ∈ Φ there exists φ+ ∈ Φ and a sequence of positive numbers {kt}t∈T such that

∑
t∈T

kt < ∞ (32)
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and for all but finitely many t ∈ T and all α ∈ A there exists a collection Ct,α of balls B
centred in S satisfying the following three conditions:

S ∩ It(α, φ(t)) ⊂
⋃

B∈Ct,α

B, (33)

S ∩
⋃

B∈Ct,α

B ⊂ It(α, φ+(t)) (34)

and
µ(5B ∩ It(α, φ(t))) 6 kt µ(5B). (35)

The following transference theorem is an immediate consequence of [17, Theorem 5].

Theorem 5 Suppose that (H, I, Φ) satisfies the intersection property and µ is contracting
with respect to (I, Φ). Then

∀φ ∈ Φ µ(ΛH(φ)) = 0 =⇒ ∀φ ∈ Φ µ(ΛI(φ)) = 0. (36)

2.3 Establishing Case B

Recall that out aim is to show that |A2
f (Ψ, θ)|m = 0, where Ψ satisfies (1) and (7). Using

(1) and (7) one readily verifies that

Ψ(a) < Ψ0(a) :=
n∏

i=1
ai 6=0

|ai|−1 (37)

for all but finitely many a ∈ Zn. Therefore,

A2
f (Ψ, θ) ⊂ A2

f (Ψ0, θ) (38)

and so it suffices to show that |A2
f (Ψ0, θ)|m = 0. With reference to the inhomogeneous

transference framework of §2.2.2, let T := (Z>0)
n and A := Zn\{0} × Z. Define the

auxiliary function r : T → R+ by setting

r(t) :=
√

2(n + 1)mC0 · 2|t|/2 (39)

where C0 is as in (6). Then, given ε > 0, t ∈ T and α = (a, a0) ∈ A, let

It(α, ε) :=





x ∈ U :

|a0 + a · f(x) + θ(x)| < ε Ψ0(2
t)

|∇(a · f(x) + θ(x))| < ε r(t)

2ti 6 max{1, |ai|} < 2ti+1 (1 6 i 6 n)





(40)
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and

Ht(α, ε) :=





x ∈ U :

|a0 + a · f(x)| < 2 ε Ψ0(2
t)

|∇(a · f(x))| < 2 ε r(t)

|ai| < 2ti+2 (1 6 i 6 n)





(41)

where 2t := (2t1 , . . . , 2tn). This defines the maps H and I – see (29). Furthermore, given
δ ∈ R, let φδ : T → R+ be given by

φδ(t) := 2δ|t| , (42)

and let
Φ :=

{
φδ : 0 6 δ < 1

4

}
.

For any δ ∈ [0, 1/4), it follows that

A2
f (Ψ0, θ) ⊂ ΛI(φδ)

where ΛI(φδ) is the ‘inhomogenous’ lim sup set as defined by (30). Therefore, in view of
(38), to establish Case B it suffices to show that

|ΛI(φδ)|m = 0 for some δ ∈ [0, 1
4
). (43)

With this in mind, let x0 be any point in U at which f is l-non-degenerate and let V be a
sufficiently small open ball centred at x0 such that Corollary 3 and the following statement
are valid on V .

Theorem 6 ([24, Theorem 1.4]) Let x0 ∈ U and f : U → Rn be l-nondegenerate at
x0. Then there exists a neighborhood V ⊂ U , of x0 satisfying the following property. For
any ball B ⊂ V there exist E > 0 such that for any choice of real numbers ω, K, T1, . . . , Tn

satisfying the inequalities

0 < ω 6 1, T1, . . . , Tn > 1, K > 0 and
ωKT1 · · ·Tn

maxi Ti

6 1

the set

S(ω, K, T1, . . . , Tn) :=



x ∈ B : ∃ q ∈ Zn\{0} such that

‖f(x) · q‖ < ω

|∇f(x) · q| < K

|qi| < Ti (1 6 i 6 n)





has m-dimensional Lebesgue measure at most E ε
1

m(2l−1) |B|m, where

ε := max

(
ω,

(
ωKT1 · · ·Tn

maxi Ti

) 1
n+1

)
. (44)
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Furthermore, let µ be m-dimensional Lebesgue measure restricted to V . Since f is l-non-
degenerate almost everywhere, the desired statement (43) follows on showing that

µ(ΛI(φδ)) = 0 for some δ ∈ [0, 1
4
) . (45)

For this, we make us of the Inhomogeneous Transference Principle. Indeed, suppose for the
moment that (H, I, Φ) satisfies the intersection property and µ is contracting with respect
to (I, Φ). Then, in view of Theorem 5, to establish (45) it suffices to show that

µ(ΛH(φδ)) = 0 ∀ δ ∈ [0, 1
4
) . (46)

Armed with Theorem 6, it is relatively painless to establish (46). Fix any δ ∈ [0, 1/4) and
notice that in view of (41) it follows that

⋃
α∈A

Ht(α, φδ(t)) = S(ω, K, T1, . . . , Tn)

with
ω = 2 φδ(t) Ψ0(2

t) , K = 2 φδ(t) r(t) and Ti = 2ti+2 (1 6 i 6 n).

Using the explicit values of Ψ0(2
t), r(t) and φδ(t) given by (37), (39) and (42) respectively,

we find that the quantity ε defined by (44) satisfies

ε ¿ 2−
(1/2−2δ)

n+1
|t|.

Therefore, Theorem 6 implies that

∣∣∣∣∣
⋃
α∈A

Ht(α, φδ(t))

∣∣∣∣∣
m

¿ 2−γ|t| (47)

where γ := (1/2−2δ)
m(n+1)(2l−1)

is a positive constant. The upshot is that

∑
t∈T

| ∪α∈A Ht(α, φδ(t)) |m ¿
∑

t∈Zn

2−γ|t| < ∞ ,

which together with the Borel-Cantelli lemma implies the desired zero measure statement

µ(ΛH(φδ)) = 0 .

It remains to verify the intersection and contracting properties.
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2.3.1 Verifying the intersection property

Let t ∈ T with |t| ≥ 2 and suppose that

x ∈ It(α, φδ(t)) ∩ It(α
′, φδ(t))

for some distinct α = (a, a0) and α′ = (a′, a′0) in A. Then, by (40) and (41) we have that

{ |a0 + a · f(x) + θ(x)| < φδ(t) Ψ0(2
t)

|a′0 + a′ · f(x) + θ(x)| < φδ(t) Ψ0(2
t)

{ |∇(a · f(x) + θ(x))| < φδ(t) r(t)

|∇(a′ · f(x) + θ(x))| < φδ(t) r(t)

and { |ai| < 2ti+1 (1 6 i 6 n)

|a′i| < 2ti+1 (1 6 i 6 n) ,

where (a1, . . . , an) = a and (a′1, . . . , a
′
n) = a′. Subtracting the first inequality from the

second within each of the above three systems gives





|a′′0 + a′′ · f(x)| < 2φδ(t) Ψ0(2
t)

|∇(a′′ · f(x))| < 2φδ(t) r(t)

|a′′i | < 2ti+2 (1 6 i 6 n) ,

(48)

where a′′ = (a′′1, . . . , a
′′
n) := a′ − a and a′′0 := a′0 − a0. Regarding the first of the above

inequalities, by (37) and the definition of Φ, we have that φδ(t) Ψ0(2
t) < 2−

3
4
|t|. Suppose

for the moment that a′′ = 0. Since α, α′ ∈ A are distinct, we must have that a′0 6= a0 and
so

|a′′0 + a′′ · f(x)| = |a′′0| > 1 .

However, for any t with |t| ≥ 2, this contradicts the first inequality of (48). Hence a′′ 6= 0
and it follows that α′′ ∈ A. The upshot is that x ∈ Ht(α

′′, φδ(t)) and therefore (31) is
satisfied with φ∗ = φδ. This verifies the intersection property.

2.3.2 Verifying the contracting property

To start with recall that V is a sufficiently small open ball such that Corollary 3 is valid
on V . Thus, there exist positive numbers H0 and C such that for any t ∈ T and α =
(a, a0) ∈ A satisfying |a| > H0 both a0 + a · f + θ and |∇(a · f + θ| are (C, 1

ml
)-good on 5V .

In turn, by Lemma 1, for any t ∈ T and α = (a, a0) ∈ A satisfying |a| > H0 we have that

Ft,α is (C, 1
ml

)-good on 5V , (49)
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where Ft,α : U → R is the function given by

Ft,α(x) := max
{

Ψ−1
0 (2t)r(t)|a0 + a · f(x) + θ(x)|, |∇(a · f(x) + θ(x))|

}
.

Notice that the first two inequalities of (40) are equivalent to the single inequality

Ft,α(x) < ε r(t) .

Therefore, by definition

It(α, ε) = {x ∈ U : Ft,α(x) < ε r(t)} (50)

if
2ti 6 max{1, |ai|} < 2ti+1 (1 6 i 6 n). (51)

Obviously, if (51) is not fulfilled then It(α, ε) = ∅ irrespective of ε.

Next, given φδ ∈ Φ let
φ+

δ := φ 1
2
(δ+ 1

4
).

Clearly, φ+
δ also lies in Φ. It is easily seen that φδ(t) 6 φ+

δ (t) for all t ∈ T and therefore

It(α, φδ(t)) ⊂ It(α, φ+
δ (t)). (52)

We now construct the collection Ct,α of balls centred in V that satisfy the conditions
(33)–(35) for an appropriate sequence kt. If It(α, φδ(t)) = ∅, the collection Ct,α = ∅
obviously suffices. Thus, we can assume that (51) is satisfied and so It(α, ε) is defined by
(50). By (37) and the definition of Φ, it follows that

It(α, φ+
δ (t)) ⊂ {x ∈ U : |a0 + a · f(x) + θ(x)| < 2−

3
4
|t|}.

As already pointed out above, a0 + a · f + θ is (C, 1
ml

)-good on 5V for all sufficiently large
|a|. Therefore, by the definition of (C,α)-good (Definition 1) and Corollary 4 we have that

|It(α, φ+
δ (t)) ∩ V |m 6 |{x ∈ V : |a0 + a · f(x) + θ(x)| < 2−

3
4
|t|}|m

¿ 2−
3|t|
4ml |V |m ,

whenever |t| is sufficiently large. Hence,

It(α, φ+
δ (t)) 6⊂ V for all sufficiently large |t|. (53)

By (52) and the fact that It(α, φ+
δ (t)) is open, for every x ∈ S∩ It(α, φδ(t)) there is a ball

B′(x) centred at x such that
B′(x) ⊂ It(α, φ+

δ (t)). (54)
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On combining (53), (54) and the fact that V is bounded, we find that there exists a scaling
factor τ > 1 such that the ball B = B(x) := τB′(x) satisfies

S ∩B(x) ⊂ It(α, φ+
δ (t)) 6⊂ S ∩ 5B(x) (55)

and
5B(x) ⊂ 5V. (56)

We now let
Ct,α := {B(x) : x ∈ S ∩ It(α, φδ(t))} .

Then, by construction and the l.h.s. of (55), conditions (33) and (34) are automatically
satisfied. Regarding condition (35), consider any ball B ∈ Ct,α. By (50) and the r.h.s. of
(55), we have that

sup
x∈5B

Ft,α(x) > sup
x∈5B∩S

Ft,α(x) > φ+
δ (t) r(t). (57)

On the other hand,
sup

x∈5B∩It(α,φδ(t))

Ft,α(x) 6 φδ(t) r(t). (58)

Then, in view of the definitions of φδ, φ+
δ and r(t), we obtain via (57) and (58) that

sup
x∈5B∩It(α,φδ(t))

Ft,α(x) 6 2−
1
2
( 1
4
−δ)|t| sup

x∈5B
Ft,α(x). (59)

Now notice that since (51) holds, we have that |a| > H0 for all t ∈ T with |t| sufficiently
large. Thus, whenever |t| is sufficiently large, (49) is valid which together with (56) and
(59) implies that

∣∣∣5B ∩ It(α, φδ(t))
∣∣∣
m

6
∣∣∣
{
x ∈ 5B : |Ft,α(x)| 6 2−

1
2
( 1
4
−δ)|t| supx∈5B Ft,α(x)

}∣∣∣
m

6 C2−δ∗|t||5B|m (60)

where δ∗ := 1
2
(1

4
− δ) 1

lm
> 0. On using the fact that B is centred in V ⊂ S, we have that

|5B|m 6 cmµ(5B) for some constant cm depending on m only. Hence (60) implies that for
all but finitely many t ∈ T

µ(5B ∩ It(α, φδ(t))) 6 |5B ∩ It(α, φδ(t))|m 6 cmC2−δ∗|t|µ(5B).

This verifies (35) with
kt := cmC2−δ∗|t| .

Furthermore, it is easily seen that the convergence condition (32) is fulfilled. The upshot
is that all the conditions of the contracting property are satisfied for the collection Ct,α as
defined above.
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3 The divergence theory

The goal is to prove Theorems 2 & 3. Thus, throughout s > m−1 and Ψ is a multivariable
approximating function satisfying property P and the divergent sum condition

∑

a∈Zn\{0}
|a|

(
Ψ(a)

|a|
)s+1−m

= ∞. (61)

Without loss of generality, we will assume that the vector v = (v1, . . . , vn) appearing in
the definition of property P satisfies

v1 = |v| = max
16i6n

|vi| . (62)

3.1 Theorem 3 ⇒ Theorem 2

We will need the following technical lemma.

Lemma 3 Let µ be a finite doubling Borel regular measure on a metric space (X, d) such
that X can be covered by a countable collection of arbitrarily small balls. Let f : X → R+

be a uniformly continuous bounded function and let ν be a measure on X given by

ν(A) :=

∫

A

f(x)dµ(x) (63)

for every measurable set A ⊂ X. Let {SQ}Q∈N be a sequence of measurable subsets of X
and 0 < ω < 1 be a constant. Suppose that for every sufficiently small closed ball B ⊂ X

lim sup
Q→∞

µ(SQ ∩B) 6 ω µ(B) . (64)

Then for every measurable set W ⊂ X

lim sup
Q→∞

ν(SQ ∩W ) 6 ω ν(W ) . (65)

Proof. Let W be any measurable set in X. For every ε > 0 and δ > 0 there is a finite
collection Cε,δ of disjoint closed balls with radii < δ such that

µ(W4Wε,δ) < ε, (66)

where A4B = (A\B)∪ (B \A) and Wε,δ :=
⋃

B∈Cε,δ
B. The latter is a consequence of [36,

Theorem 2.2.2] and the discussion of [11, p.28]. Since f is bounded, there is a constant
C > 0 such that ν(A) 6 Cµ(A) for every measurable set A. Therefore, (66) implies that

ν(W4Wε,δ) < Cε. (67)
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For every B ∈ Cε,δ let sB := supx∈B f(x). Since f is bounded, sB < ∞. Next, since f
is uniformly continuous, for every ε > 0 there is a δ > 0 such that for every B ∈ Cε,δ

0 6 sB − f(x) < ε for all x ∈ B . (68)

Since Cε,δ is finite, property (64) implies that there is a sufficiently large Q0 such that for
all Q > Q0 and any B ∈ Cε,δ we have that

µ(SQ ∩B) 6 (ω + ε) µ(B) . (69)

Then for Q > Q0 we have

ν(SQ ∩W )
(66)

6 ε +
∑

B∈Cε,δ
ν(SQ ∩B)

(63)
= ε +

∑
B∈Cε,δ

∫
SQ∩B

f(x)dµ(x)

(68)

6 ε +
∑

B∈Cε,δ
sB

∫
SQ∩B

dµ(x)

= ε +
∑

B∈Cε,δ
sB µ(SQ ∩B)

(69)

6 ε + (ω + ε)
∑

B∈Cε,δ
sBµ(B)

(68)

6 ε + (ω + ε)
∑

B∈Cε,δ

∫
B
(f(x) + ε)dµ(x)

= ε + (ω + ε)
∫

Wδ,ε
(f(x) + ε)dµ(x)

= ε + (ω + ε)
(
ν(Wδ,ε) + εµ(Wδ,ε)

)

(66)&(67)

6 ε + (ω + ε)
(
ν(W ) + Cε + ε(µ(W ) + ε)

)
.

The latter expression tends to ων(W ) as ε → 0. Since ν(SQ ∩W ) is independent of ε, we
obtain (65) and complete the proof.

Let f : U → Rn be a map defined on an open set U ⊂ Rm. Given an n-tuple v =
(v1, . . . , vn) of positive numbers satisfying v1 + · · ·+ vn = n, δ > 0 and Q > 1, let

Φf
v(Q, δ) =

{
x ∈ U : ∃ a ∈ Zn \ {0} such that ‖a · f(x)‖ < δQ−n and |a|v 6 Q

}
.

Definition 2 We will say that f is v-nice at x0 ∈ U if there is a neighborhood U0 ⊂ U
of x0 and constants 0 < δ, ω < 1 such that for any sufficiently small ball B ⊂ U0 we have
that

lim sup
Q→∞

|Φf
v(Q, δ) ∩B|m 6 ω|B|m .

The map f is said to be v-nice if it is v-nice at almost every point in U . Furthermore, f
is said to be nice if it is v-nice for all choices of v.
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Let A ⊂ U be any Lebesgue measurable set. Define the measure

ν(A) =

∫

f−1(S)

| det G(x)|1/2dx,

where G(x) =
(
gi,j(x)

)
16i,j6m

with gi,j = ∂f/∂xi · ∂f/∂xj. G(x) is called the first funda-

mental form. It is well known that the induced measure of a set S on M is given by ν(A)
with A = f−1(S). Clearly

|A|m =

∫

A

| det G(x)|−1/2dν(x).

Since f is Monge, | det G(x)| bounded away from both zero and infinity on a sufficiently
small neighborhood of any point. Then, by Lemma 3, we obtain the following

Proposition 3 Let f : U → Rn be a C2 parameterisation of a C2 manifold M⊂ Rn. Let
x0 ∈ U and y0 = f(x0). Then f is v-nice at x0 if and only if M is v-nice at y0.

In view of this proposition the following lemma easily implies that non-degenerate
manifolds are nice and so Theorem 3 ⇒ Theorem 2.

Lemma 4 Let f be non-degenerate at x0 ∈ U . Then there is a ball B0 ⊂ U centred at x0

and a constant C > 0 such that for any ball B ⊂ B0 we have |Φf
v(Q, δ) ∩ B|m 6 Cδ|B|m

for all sufficiently large Q.

This lemma is a consequence of Theorems 1.3 and 1.4 appearing in [24] also stated
as Theorems 4 and 6 in §2. In the case v = (1, . . . , 1) the proof of Lemma 4 is given in
[10, Theorem 2.1]. For arbitrary v the arguments remain quite the same with the obvious
change that the supremum norm is replaced by v-quasinorm. Since the details are easily
recovered from [10, Theorem 2.1], they are left to the reader.

3.2 Ubiquitous systems in Rm

The proof of Theorem 3 will make use of the ubiquity framework developed in [11]. The
framework introduced below is a much simplified version of that in [11] and takes into
consideration the specific application that we have in mind.

Throughout, balls in Rm are assumed to be defined in terms of the supremum norm
| · |. Let U be a ball in Rm and R = (Rα)α∈J be a family of subsets Rα ⊂ Rm indexed by a
countable set J . The sets Rα are referred to as resonant sets. Throughout, ρ : R+ → R+

will denote a function such that ρ(r) → 0 as r →∞. Given a set A ⊂ U , let

∆(A, r) := {x ∈ U : dist(x, A) < r}
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where dist(x, A) := inf{|x − a| : a ∈ A}. Next, let β : J → R+ : α 7→ βα be a positive
function on J . Thus the function β attaches a ‘weight’ βα to the set Rα. We will assume
that for every t ∈ N the set Jt = {α ∈ J : βα 6 2t} is finite.

The intersection conditions: There exists a constant γ with 0 ≤ γ ≤ m such that
for any sufficiently large t and for any α ∈ Jt, c ∈ Rα and 0 < λ 6 ρ(2t) the following
conditions are satisfied:

∣∣B(c, 1
2ρ(2t)) ∩∆(Rα, λ)

∣∣
m
≥ c1 |B(c, λ)|m

(
ρ(2t)

λ

)γ

(70)

∣∣B ∩B(c, 3ρ(2t)) ∩∆(Rα, 3λ)
∣∣
m
≤ c2 |B(c, λ)|m

(
r(B)

λ

)γ

(71)

where B is an arbitrary ball centred on a resonant set with radius r(B) 6 3 ρ(2t). The
constants c1 and c2 are positive and absolute. The constant γ is referred to as the common
dimension of R.

Definition 3 Suppose that there exists a ubiquitous function ρ and an absolute constant
k > 0 such that for any ball B ⊆ U

lim inf
t→∞

∣∣∣∣∣
⋃

α∈Jt

∆(Rα, ρ(2t)) ∩B

∣∣∣∣∣
m

> k |B|m . (72)

Furthermore, suppose the intersection conditions (70) and 71 are satisfied. Then the system
(R, β) is called locally ubiquitous in U relative to ρ.

Let (R, β) be a ubiquitous system in U relative to ρ and φ be an approximating function.
Let Λ(φ) be the set of points x ∈ U such that the inequality

dist(x, Rα) < φ(βα) (73)

holds for infinitely many α ∈ J .

Lemma 5 (Ubiquity Lemma) Let φ be an approximating function and (R, β) be a lo-
cally ubiquitous system in U relative to ρ. Suppose that there is a λ ∈ R, 0 < λ < 1 such
that ρ(2t+1) < λρ(2t) for all t ∈ N. Then for any s > γ

Hs(Λ(φ)) = Hs(U) if
∞∑

t=1

φ(2t)s−γ

ρ(2t)m−γ
= ∞. (74)

Remark. When s > m, we have that Hs(Λ(φ)) = Hs(U) = 0 and the lemma is trivial.
In the case s = m it is a consequence of [11, Corollary 2] and in the case s < m it is a
consequence of [11, Corollary 4 ].
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3.3 The appropriate ubiquitous system for Theorem 3

Recall from §1 that f = (f1, . . . , fn) : U → Rn is a non-degenerate map satisfying (6),
where U is a ball in Rm. Also recall that θ : U → R is a C(2) function. Let Fn denote the
set of all functions F : U → R given by

F (x) = a0 + a1f1(x) + a2f2(x) + . . . + anfn(x) ,

where a0, . . . , an are integer coefficients not all zero. Given F ∈ Fn, let

R̃F := {x ∈ U : F (x) + θ(x) = 0} and Hv(F ) := max
16i6n

|ai|1/vi . (75)

The key to establishing Theorem 3 is the following ubiquity statement. With reference to
the abstract setup of §3.2, the indexing set J = Fn and so F plays the role of α ∈ J .

Proposition 4 Let x0 ∈ U be such that f is non-degenerate at x0. Then there is a
neighborhood U0 of x0, constants κ0 > 0 and κ1 > 1 and a collection R :=

(
RF

)
F∈Fn

of

sets RF ⊂ R̃F ∩ U0 such that the system (R, β), where

β : Fn → R+ : F 7→ βF := κ0Hv(F ),

is locally ubiquitous in U0 relative to ρ(r) := κ1r
−n−v1 with common dimension γ := m−1.

The sets R̃F are essentially the appropriate resonant sets. However, to ensure that
the intersection conditions associated with ubiquity are satisfied, in particular, the lower
bound condition (70), we cannot in general work with the sets R̃F directly. In the following
two examples R̃F does not meet the intersection conditions.

Example 1. m = 2, n = 3, γ = 1, U = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1}, f(x1, x2) =√
1− x2

1 − x2
2, a = (−1, 0, 0, 1) so that F = f − 1. In this case R̃F = {(0, 0)}. Then the

l.h.s. of (70) is comparable to λ2, while the r.h.s. of (70) is comparable to λρ(2t).

Example 2. m = 2, n = 3, γ = 1, U = (α, 1)2, where α < 1 is a Liouville number,
f(x1, x2) = x2

1 +x2
2. Suppose that 0 < α−p/q < q−v for infinitely many p/q ∈ Q. Consider

a = (q, q, 0,−p). It is a simple matter to verify that R̃F will be the line segment of positive
length

√
2(p/q − α) <

√
2q−v. For large v this will be too short to meet (70).

The upshot is that the sets R̃F need to be modified in an appropriate manner to yield the
resonant sets RF – namely via the ‘trimming’ procedure of §3.4.
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3.3.1 Proof of Theorem 3 modulo Proposition 4

Fix x0 ∈ U such that f is non-degenerate at x0 and let U0 be as in Proposition 4. Since f
is non-degenerate (i.e. f is non-degenerate at almost every point in U), it suffices to prove
that

Hs(Af (Ψ, θ) ∩ U0) = Hs(U0) . (76)

With reference to §3.2, let U = U0 and

φ(r) := (2nC0)
−1(κ−1

0 r)−v1 ψ(κ−1
0 r) .

Here the approximating function ψ and the vector v = (v1, . . . , vn) are associated with the
fact that Ψ is a multivariable approximation function satisfiing property P. Our first goal
is to show that

Λ(φ) ⊂ Af (Ψ, θ). (77)

Let x = (x1, . . . , xm) ∈ Λ(φ). By definition, Λ(φ) is a subset of U0 and inequality (73) is
satisfied for infinitely many F = a0 +a1f1 + · · ·+anfn ∈ Fn – recall that we have identified
α with F and J with Fn. Now fix such a function F . Then, by the definition of β and the
properties of RF within Proposition 4, there exists a point z = (z1, . . . , zm) ∈ U0 such that
F (z) + θ(z) = 0 and

|x− z| < φ(κ0Hv(F )). (78)

Thus, by the Mean Value Theorem it follows that there exists some x̃ ∈ U0 such that

|F (x) + θ(x)| =
∣∣∣ ∑m

i=1
∂

∂xi
(F + θ)(x̃)(xi − zi)

∣∣∣

6 |x− z| ∑m
i=1

∣∣∣ ∂
∂xi

( ∑n
j=1 ajfj + θ

)
(x̃)

∣∣∣
(6)

6 2nC0 |x− z| max16j6n |aj|
(78)

6 2nC0 φ(κ0Hv(F )) max16j6n |aj|
(62)+(75)

6 2nC0 φ(κ0Hv(F )) Hv(F )v1

6 ψ(Hv(F )) = Ψ(a) .

The upshot is that there are infinitely many F ∈ Fn satisfying the above inequalities. This
verifies (77) and together with Lemma 5 implies (76) as long as the sum in (74) diverges.
We now verify this divergent condition. Recall that γ := m− 1 and so

∞∑
t=1

φ(2t)s−m+1

ρ(2t)
³

∞∑
t=1

(2−v1tψ(κ−1
0 2t))s−m+1

2−(n+v1)t
. (79)
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On using the fact that v1 + · · ·+vn = n, it follows that for any t ∈ N the number of a ∈ Zn

such that κ02
t < |a|v 6 κ02

t+1 is comparable to 2nt. Also, by (62) we have that |a| ³ 2v1t

whenever κ02
t < |a|v 6 κ02

t+1. Therefore,

r.h.s. of (79) ³
∞∑

t=1

∑

κ02t<|a|v6κ02t+1

|a|
(

ψ(κ−1
0 2t)

|a|
)s−m+1

. (80)

Next, since ψ is decreasing, it follows that ψ(κ−1
0 2t) > ψ(|a|v) = Ψ(a) whenever κ02

t <
|a|v 6 κ02

t+1. Therefore,

r.h.s. of (80) À
∞∑

t=1

∑

κ02t<|a|v6κ02t+1

|a|
(

Ψ(a)

|a|
)s−m+1

³
∑

a∈Z\{0}
|a|

(
Ψ(a)

|a|
)s−m+1

(61)
= ∞.

This completes the proof of Theorem 3 modulo Proposition 4.

3.4 The resonant sets

The sets R̃F given by (75) are essentially the appropriate resonant sets. However, to
ensure that the intersection properties associated with ubiquity are satisfied, these sets are
required to be modified. In what follows the projection map π : Rm → Rm−1 will be given
by

π(x1, x2, . . . , xm) = (x2, . . . , xm) . (81)

Proposition 5 Let ρ and β be the same as in Proposition 4. Let U0 ⊂ U be any open
subset. For F ∈ Fn let

Ṽ := π(R̃F ∩ U0), V :=
⋃

3ρ(βF )-balls B⊂ Ṽ

1
2
B and RF = π−1(W ) ∩ R̃F , (82)

where 3ρ(βF )-balls are simply open balls in Rm−1 of radius 3ρ(βF ). Let p ∈ (0, 1) and
suppose that

| ∂
∂x1

(F + θ)(x)| > p|∇(F + θ)(x)| for all x ∈ U0. (83)

Then, RF satisfies the intersection conditions (70) and (71) with

c1 = 2−2m+3v−1
m and c2 = 3m2m(p vm)−1 ,

where vm is the volume of an m-dimensional ball of radius 1.

Proof. Let t ∈ N, F ∈ Fn and βF 6 2t. In view of (83) the gradient of F + θ never

vanishes on U0 and therefore the set R̃F ∩ U0 = {x ∈ U0 : F (x) + θ(x) = 0} is a regular
C(2) (m − 1)-dimensional submanifold of U0. This is a well known fact in differential
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geometry – see, for example, [43, Theorem 1.13]. Furthermore, (83) together with the

Implicit Function Theorem imply that this set can be defined as the graph Gf (Ṽ ) of a C(2)

function f : Ṽ → R, where

Gf (S) := {(f(x2, . . . , xm), x2, . . . , xm) : (x2, . . . , xm) ∈ S}
for S ⊂ Ṽ . Then, by the definition of RF , we have that RF = Gf (V ). If RF happens
to be empty, the intersection conditions are trivially satisfied. Otherwise, RF 6= ∅ and we
proceed as follows.

Given λ > 0 and a set A ⊂ Rm, let

∆1(A, λ) := {θe1 + x : |θ| 6 λ, x ∈ A},
where e1 = (1, 0, . . . , 0) ∈ Rm. By (83), we have that

|∇f(x2, . . . , xm)| 6 p−1 for all (x2, . . . , xm) ∈ Ṽ . (84)

We claim that

∆1(RF , η) ⊂ ∆(RF , η) ⊂ ∆1(R̃F ∩ U0, ηmp−1) for any η 6 3ρ(βF ). (85)

Indeed, the l.h.s. of (85) is a straightforward consequence of the definitions of ∆( · ) and
∆1( · ). To prove the r.h.s. of (85) take any z ∈ ∆(RF , η). Then there exists x ∈ RF such
that dist(z,x) < η. By the definition of RF and V , we have that πx ∈ 1

2
B for some 3ρ(βF )-

ball B ⊂ Ṽ . Then, B(πx, 3ρ(βF )) ⊂ B ⊂ Ṽ . Since dist(πz, πx) 6 dist(z,x) < η 6 3ρ(βF ),

we have that πz ∈ Ṽ . Then, using the Triangle Inequality and the Mean Value Theorem
gives that

|z1 − f(πz)| = |z1 − x1 + f(πx)− f(πz)| 6 η + |f(πx)− f(πz)| 6 mp−1η

and shows the r.h.s. of (85).

Upper bound condition. Take any c ∈ RF , any positive λ 6 ρ(2t) and any ball B with
radius r(B) 6 3ρ(2t). Since ρ is decreasing, we also have that ρ(2t) 6 ρ(βF ). Then, by
(85),

B ∩B(c, 3ρ(2t)) ∩∆(RF , 3λ) ⊂ B ∩B(c, 3ρ(2t)) ∩∆1(R̃F ∩ U0, 3λmp−1)

⊂ ∆1(Gf (W ), 3λmp−1),
(86)

where W = π(B ∩ B(c, 3ρ(2t)) ∩ R̃F ∩ U0). Clearly, diam W 6 2r(B). Therefore, using
(86) and Fubini’s theorem gives

∣∣B ∩B(c, 3ρ(2t)) ∩∆(RF , 3λ)
∣∣
m

6
∣∣W

∣∣
m−1

· 6λmp−1 6 (2r(B))m−1 · 6λmp−1

= c2 |B(c, λ)|m
(

r(B)

λ

)m−1
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and this verifies (71).

Lower bound condition. Let c ∈ RF and 0 < λ 6 ρ(2t). Again since ρ is decreasing, we
have that ρ(2t) 6 ρ(βF ). Then, by (85),

B(c, 1
2
ρ(2t)) ∩∆(RF , λ) ⊃ B(c, 1

2
ρ(2t)) ∩∆1(RF , λ) ⊃ ∆1(Gf (W

′), λ), (87)

where W ′ = π(B(c, 1
2
ρ(2t))) ∩ V . Since c ∈ RF , we have that πc ∈ V and therefore

there exists a 3ρ(βF )-ball B ⊂ Ṽ such that πc ∈ 1
2
B. Then, since 3ρ(βF ) > ρ(2t) and

πc ∈ 1
2
B ⊂ V , the set π(B(c, 1

2
ρ(2t))) ∩ 1

2
B contains a ball of radius 1

4
ρ(2t) and therefore

|π(B(c, 1
2
ρ(2t))) ∩ 1

2
B|m−1 > (1

4
ρ(2t))m−1vm−1 > (1

4
ρ(2t))m−1.

Consequently, |W ′|m−1 > (1
4
ρ(2t))m−1.

Finally using (87) and Fubini’s theorem gives

∣∣B(c, 1
2
ρ(2t)) ∩∆(RF , λ)

∣∣
m

>
∣∣W ′∣∣

m−1
· 2λ > (1

4
ρ(2t))m−1 · 2λ

= c1 |B(c, λ)|m
(

ρ(2t)

λ

)m−1

and this verifies (70).

3.5 Proof of Proposition 4

Let x0 ∈ U be such that f is v-nice at x0 and let U0 be the neighborhood of x0 that arises
from Definition 2. Without loss of generality we will assume that U0 is a ball satisfying

diam U0 6
(
2nm(n + 1)(2C)n

)−1
. (88)

We shall show that there are constants κ0 > 0 and κ1 > 1 and a value of parameter
p ∈ (0, 1) appearing in Proposition 5 such that the collection (RF )F∈Fn given by

RF =

{
same as in (82) if F satisfies (83)

∅ otherwise

satisfies the statement of Proposition 4. By Proposition 5, the intersection conditions (70)
and (71) are satisfied. Therefore we only need to prove the covering property (72). Let
B ⊂ U0 be an arbitrary ball and t be a sufficiently large integer. Let Q = 2t.

By Definition 2, for some fixed δ, ω ∈ (0, 1)

lim sup
Q→∞

|Φf
v(Q, δ) ∩ 1

2
B|m 6 ω|1

2
B|m .

30



Therefore, for sufficiently large Q we have that

|1
2
B \ Φf

v(Q, δ)|m > 1
2
(1− ω)|1

2
B|m = 2−m−1(1− ω)|B|m. (89)

Let x ∈ 1
2
B \ Φf

v(Q, δ) and consider the system of inequalities

{
|anfn(x) + . . . + a1f1(x) + a0| < Q−n,

|ai| 6 Qvi (1 6 i 6 n).
(90)

The set of (a0, . . . , an) ∈ Rn+1 satisfying (90) is a convex body, say D, in Rn+1 symmetric
about the origin. Let τ0, . . . , τn+1 be the successive minima of this body. By definition,
τ1 6 τ2 6 . . . 6 τn+1. Since x 6∈ Φf

v(Q, δ), we have that τ1 > δ. By Minkowski’s theorem on
successive minima [31], τ1 · · · τn+1 Vol(D) 6 2n+1. In view of the fact that v1 + · · ·+ vn = n
we find that Vol(D) = 2n+1. Therefore, τ1 · · · τn+1 6 1, whence

τn+1 6 (τ1 · τ2 · · · τn)−1 < δ−n =: C2

where
C2 = δ−n = (2C)n. (91)

By the definition of τn+1, there are linearly independent vectors aj = (aj,0, . . . , aj,n) ∈ Zn+1

(0 6 j 6 n) such that the functions Fj(x) = aj,nfn(x) + . . . + aj,1f1(x) + aj,0 satisfy

{ |Fj(x)| 6 C2Q
−n,

|aj,i| 6 C2Q
vi (1 6 i 6 n).

(92)

Our next step is to construct a linear combination of Fj which will produce the set RF

such that x lies in a small neighborhood of RF . With this in mind, consider the following
system of linear equations





η0F0(x) + . . . + ηnFn(x) + θ(x) = 0,

η0
∂

∂x1
F0(x) + . . . + ηn

∂
∂x1

Fn(x) + ∂
∂x1

θ(x) = Qv1 +
∑n

i=0 | ∂
∂x1

Fi(x)|,
η0a0,j + . . . + ηnan,j = 0 (2 6 j 6 n).

(93)

It is readily verified that the determinant of this system equals det(a
(j)
i )06i,j6n. The latter

is non-zero since a0, . . . , an are linearly independent. Therefore, system (93) has a unique
solution η0, . . . , ηn. Define integers ti = bηic, thus

|ti − ηi| < 1 (0 6 i 6 n). (94)

Let
F (x) := t0F0(x) + . . . + tnFn(x) = anfn(x) + . . . + a1f1(x) + a0,

where ai = t0a0,i + . . . + tnan,i.
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The height of F : Using (94), (92) and (93), we obtain

|aj| 6 (n + 1)C2Q
vi (2 6 j 6 n) (95)

and
|F (x) + θ(x)| 6 (n + 1)C2Q

−n. (96)

Using the second equation of (93), we find that
∣∣∣ ∂
∂x1

(
F + θ

)
(x)

∣∣∣ > Qv1 . (97)

In particular, this means that F is not identically zero and so F ∈ Fn.

Using (6), (92) and the assumption that v1 = |v| we find that | ∂
∂x1

Fi(x)| 6 nC0Q
v1 for

all i = 0, . . . , n. Subsequently, together with (93) and (94) this implies that
∣∣∣ ∂
∂x1

(
F + θ

)
(x)

∣∣∣ 6 (2nC0 + 1)Qv1 . (98)

Further, since f is of the Monge form, a1 = ∂
∂x1

F (x) − ∂
∂x1

θ(x) −∑n
j=2 aj

∂
∂x1

fj(x). Then,
using (6), (95) and (98) we obtain that

|a1| 6 (3nC0 + 2)Qv1 . (99)

This together with (95) and (97) gives

κ∗0 Q 6 βα := κ0Hv(F ) 6 Q (100)

for some explicitly computable constant κ0, κ
∗
0 > 0 depending only on v, n, C0 and C2.

Verifying condition (83): Using Taylor’s formula for any y ∈ U0 we get

∣∣∣ ∂
∂x1

(F + θ)(y)
∣∣∣ >

∣∣∣ ∂
∂x1

(F + θ)(x)
∣∣∣−

m∑
i=1

∣∣∣ ∂2

∂x1∂xi
(F + θ)(ỹ)(yi − xi)

∣∣∣ . (101)

Using (6), (95) and (99) we find that the second term of the r.h.s. of (101) is bounded
above by mnC0(n + 1)C2 diam U0 Qv1 . In view of (88) and (91) the latter is 6 1

2
Qv1 . On

the other hand, by (97), the first term in the r.h.s. of (101) is > Qv1 . Thus, (101) implies
that ∣∣∣ ∂

∂x1
(F + θ)(y)

∣∣∣ > 1
2
Qv1 .

On the other hand using (6), (95) and (99) we get
∣∣∣ ∂
∂xi

(F + θ)(y)
∣∣∣ 6 (n + 1)C0 max{3nC0 + 2, (n + 1)C2}Qv1

for any i = 1, . . . , m and y ∈ U0. This together with the above lower bound implies (83).

Verifying that x ∈ ∆(RF , ρ(2t)). This relies on the following easy consequence of the
Mean Value Theorem.
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Lemma 6 Let f : I → R be a C1 function on an interval I such that |f ′(x)| > d > 0
for all x ∈ I. Let x1 ∈ I and suppose that B(x1, |f(x1)|d−1) ⊂ I. Then, there is an
x0 ∈ B(x1, |f(x1)|d−1) such that f(x0) = 0.

Let x = (x1, . . . , xm). Consider the interval

I = {x ∈ R : (x, x2, . . . , xm) ∈ B}
and the function f : I → R given by f(x) = (F + θ)(x, x2, . . . , xm). In view of inequalities
(96) and (97) and the fact that x ∈ 1

2
B, Lemma 6 is applicable and gives that there is x0 ∈ I

such that f(x0) = 0 and |x1 − x0| 6 (n + 1)C2Q
−n−v1 . Then x′ := (x0, x2, . . . , xm) ∈ B

satisfies F (x′) + θ(x′) = 0 and

|x− x′| 6 (n + 1)C2Q
−n−v1 . (102)

As before π is defined by (81) and Ṽ is defined by (82). Using (6) and the Mean Value
Theorem we verify that |(F + θ)(y)| ¿ Q−n when |y− x′| ¿ Q−n−v1 . Then, applying the
same argument as above for finding x′ we verify that for sufficiently large Q the ball of
radius 3ρ(βF ) centred at πx′ is contained in Ṽ . The details are straightforward and left to
the reader. This ensures that x′ ∈ RF and via (102) implies that x ∈ ∆(RF , ρ(Q)).

The finale. Since x ∈ ∆(RF , ρ(Q)) and x is an arbitrary point in 1
2
B \Φf

v(Q, δ), we have

1
2
B \ Φf

v(Q, δ) ⊂
⋃

α∈Jt

∆(Rα, ρ(2t)) ∩B.

Combining this with (89) gives (72) for our choice of R, β and ρ and thus completes the
proof of the Proposition 4.
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