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Abstract. Arising in the context of biodiversity conservation, the Bud-
geted Nature Reserve Selection (BNRS) problem is to select, subject to
budgetary constraints, a set of regions to conserve so that the phyloge-
netic diversity (PD) of the set of species contained within those regions
is maximized. Here PD is measured across either a single rooted tree
or a single unrooted tree. Nevertheless, in both settings, this prob-
lem is NP-hard. However, it was recently shown that, for each setting,
there is a polynomial-time

(
1 − 1

e

)
-approximation algorithm for it and

that this algorithm is tight. In the first part of the paper, we consider
two extensions of BNRS. In the rooted setting we additionally allow for
the disappearance of features, for varying survival probabilities across
species, and for PD to be measured across multiple trees. In the un-
rooted setting, we extend to arbitrary split systems. We show that,
despite these additional allowances, there remains a polynomial-time(
1− 1

e

)
-approximation algorithm for each extension. In the second part

of the paper, we resolve a complexity problem on computing PD across
an arbitrary split system left open by Spillner et al.

1. Introduction

In conservation biology, measures such as phylogenetic diversity are used
to quantify the biological diversity of a collection of species. These measures
are used to select which species should be conserved and, in this regard,
individual species are often the focus of attention. However, as pointed out
by Rodrigues et al. [15], this is not necessarily the best way to conserve
diversity:

Although conservation action is frequently targeted toward
single species, the most effective way of preserving overall
species diversity is by conserving viable populations in their
natural habitats, often by designating networks of protected
areas.
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Motivated by this quote and applications of using phylogenetic diversity
across areas to make assessments in conservation planning (for example, see
[9, 14, 16]), Bordewich and Semple [2] considered a natural computational
problem in the context of conserving whole habitats instead of individual
species. In this paper, we consider two extensions of this problem.

Dating back to Faith [4], phylogenetic diversity (PD) has emerged as a
leading measure in quantifying the biodiversity of a collection of species.
This measure is based on the evolutionary distance among the species in
the collection. A formal definition of PD is given in the next section but,
for the purposes of the introduction, let T be either a rooted or unrooted
phylogenetic tree whose leaf set X represents a set of species and whose
edges have real-valued lengths (weights). The PD score of a subset Y of X
is the sum of the weights of the edges of the minimal subtree of T connecting
the species in Y . If T is rooted, the minimal subtree additionally includes
the root. In its most straightforward application to conservation, the task is
to find a subset of X of a given size k which maximizes the PD score among
all subsets of X of size k. It is now well-known that a greedy algorithm
solves this task exactly [4, 12, 18].

The problem considered in [2] is the following: In an addition to T , we
have a collection R of regions or areas containing species in X. Each region
in R has an associated cost of preservation. Given a fixed budget B, the
task is to find a subset of regions in R to be preserved which maximizes
the PD score of the species contained within at least one preserved region
while keeping within budget. This problem is called the Budgeted Nature
Reserve Selection (BNRS) and generalizes the analogous unit cost problems
described in [10, 13, 14, 15]. The applications to conservation planning
mentioned above are BNRS with unit costs.

Regardless of the setting (whether T is rooted or unrooted), it follows
from a result in [10] that BNRS is NP-hard. Nevertheless, it is shown in [2]
that, for each setting, there is a polynomial-time

(
1 − 1

e

)
-approximation

algorithm for it and that this algorithm is tight. In this paper, we consider,
for each setting, an extension of BNRS. Formal details are given in the next
section, but the extensions include the following:

(i) It is unrealistic to expect that because a species is not contained in
at least one of the selected regions for preservation, its probability
of survival is zero, or that its probability of survival is one if it is
contained in one of the selected regions. The extension in the rooted
setting additionally allows for arbitrary survival probabilities with
the probability of survival of a species increasing if it is contained in
a region selected for preservation.

(ii) In many instances, evolutionary relationships cannot be accurately
represented by a single tree. In the rooted setting, the relationships
may be better represented by a collection of gene-trees (each rep-
resenting the tree-like evolution of a gene or group of genes) rather
than a single species tree. In the unrooted setting, relationships may
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Figure 1. A phylogenetic X-tree with edge lengths, where
X = {a, b, c, d, e, f, g}.

be better represented by an arbitrary network rather than a tree. We
extend BNRS by replacing T with a collection of weighted trees in
the rooted setting and with a so-called split network in the unrooted
setting.

(iii) The standard usage of PD assumes that elements of biodiversity, ‘fea-
tures’, arise uniformly across a phylogeny and persist to be present
in all descendant species. A recent extension [1] proposes a model
in which PD may be measured which includes the gradual disap-
pearance of features over time, so that the features of an ancestral
species may not all survive to be present in all descendants of that
species. This model only makes sense in the rooted setting, and we
extend BNRS to cover this model in this setting.

Despite the additional freedom which comes with such inclusions, there re-
mains (for each extension) a polynomial-time

(
1 − 1

e

)
-approximation algo-

rithm for solving it. That is, a polynomial-time algorithm that returns a
feasible solution whose associated score is at least

(
1 − 1

e

)
(approx. 0.63)

times the optimal score. The next section formally describes the two exten-
sions and the main results of the paper—including the solution of a related
problem left open by Spillner et al. [17].

2. Main Results

Throughout the paper, X denotes a finite set and represents, for example,
a collection of species. A phylogenetic X-tree T is an unrooted tree with no
degree-two vertices and whose leaf set is X. A rooted phylogenetic X-tree
is a rooted tree with no degree-two vertices except the root that may have
degree two and whose leaf set is X. For the purposes of this paper, we will
assume that all the edges of a rooted and unrooted phylogenetic tree are
assigned non-negative real-valued lengths. To illustrate, Figure 1 shows an
(unrooted) phylogenetic X-tree, where X = {a, b, c, d, e, f, g}.

Let Y be a subset of X. If T is an (unrooted) phylogenetic X-tree, then
the phylogenetic diversity of Y on T is the sum of the edge lengths of the
minimal subtree of T that connects the elements in Y . If T is a rooted
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phylogenetic X-tree, then the phylogenetic diversity of Y on T is the sum of
the edge lengths of the minimal subtree of T that connects the elements in Y
and the root of T . For example, referring to Figure 1, if Y = {a, b, f}, then
PD(Y ) is equal to the sum of the weights of the minimal subtree (dashed
edges) that connects a, b, and f ; in particular, PD(Y ) = 12.

Now let T be a rooted or unrooted phylogenetic X-tree and let R be a
collection of regions or areas containing species in X. Each R ∈ R is a subset
of X and has an associated cost c(R) of preservation. Overriding these costs
is a fixed budget B, where we may assume, without loss of generality, that
c(R) ≤ B for all R ∈ R. The Budgeted Nature Reserve Selection (BNRS)
problem is to find a subset R′ of the regions in R which maximizes the PD
score of ∪R∈R′R on T such that

∑
R∈R′ c(R) ≤ B. To illustrate, take T to

be the phylogenetic X-tree shown in Figure 1 and R to be{
{b}, {c, f}, {c, d}, {a, b}, {a, g}, {e}, {e, g}

}
.

Set c as the cost function on R defined by c({b}) = 4, c({c, f}) = 8,
c({c, d}) = 6, c({a, b}) = 10, c({a, g}) = 4, c({e}) = 4, and c({e, g}) = 5,
and set B = 24. A feasible solution of this instance is

{
{c, d}, {a, b}

}
as

c({c, d}) + c({a, b}) = 6 + 10 = 16. The PD score of
{
{c, d}, {a, b}

}
is

PD ({c, d} ∪ {a, b}) = 15. However, an optimal solution is{
{b}, {c, f}, {c, d}, {e, g}

}
,

where

c({b}) + c({c, f}) + c({c, d}) + c({e, g}) = 4 + 8 + 6 + 5 = 23

and

PD ({b} ∪ {c, f} ∪ {c, d} ∪ {e, g}) = 21.

For both the rooted and unrooted settings, it is established in [2] that there
is a polynomial-time

(
1 − 1

e

)
-approximation algorithm for BNRS but, for

any δ > 0, BNRS cannot be approximated with an approximation ratio of(
1− 1

e + δ
)

unless P=NP.

We next describe the two extensions of BNRS and the associated results.

2.1. Extension of BNRS in the rooted setting. In the rooted setting
we incorporate all three extensions described in Section 1. The first is to
allow varying probabilities of survival. Each taxa x ∈ X has some proba-
bility a(x,R) of surviving in reserve R without conservation efforts. This
probability is boosted to b(x,R) ≥ a(x,R) if R is selected for conservation.
If x is not present in R, then a(x,R) = b(x,R) = 0. For a set of selected
reserves R′ ⊆ R, we denote by pR′(x) the probability that x survives in at
least one reserve, where survival in each reserve R is independent and has
probability a(x,R) if R 6∈ R′ and b(x,R) if R ∈ R′.

The second extension is measure PD in relation not to a single tree, but to
a set of weighted trees for the same set of species, each arising, for example,
from the analysis of a different gene or section of genome. Thus we extend
T to a collection P = {T1, T2, . . . , Tk} of rooted phylogenetic X-trees, where
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each Tj ∈ P is assigned a non-negative real-valued weight w(Tj). Then the
phylogenetic diversity of X on P is the weighted sum of the PD measured
against each tree.

The third extension is to use a model of biodiversity which allows dis-
appearing features when calculating PD. Let T be a rooted phylogenetic
X-tree. Under PD, one assumes that features arise during evolution at a
constant rate—for two points u and v on T with u an ancestor of v, the
distance from u to v is proportional to the number of new features that
arose along the evolutionary path from u to v. Rescaling we assume that for
every unit of distance a new feature arises. Furthermore, any feature arising
at a point u on T is present at all points descendant from u.

We extend this model so that, in addition to features arising in this way,
features have a constant probability of disappearing on every evolutionary
path in T on which they are present. Mathematically, once a feature is
present, it has a constant and memoryless probability e−λ of surviving in
each time step. The disappearance of features in the context of phylogenetic
diversity is considered in [1] and [5].

For each x ∈ X, let the probability of survival be denoted by p(x). Un-
der this extended model, the phylogenetic diversity of X on T , denoted
PD(λ,T )(X, p), is the expected number of features present amongst the sur-
viving taxa. That is,

PD(λ,T )(X, p) =

∫
t∈T

P(t→ X)dt,

where (t → X) denotes the event that a feature arising at point t on T
survives to be present in a taxa in X which itself survives. For a collection
P = {T1, T2, . . . , Tk} of rooted phylogenetic X-trees, where each Tj ∈ P is
assigned a non-negative real-valued weight w(Tj), the phylogenetic diversity
of X on P, denoted PD(λ,P)(X, p), is

PD(λ,P) =

k∑
j=1

w(Tj)
∫
t∈Tj

P(t→ X)dt.

Thus the full extension of BNRS in the rooted setting, called BNRS(λ,P),
is the following:

Problem: Budgeted Nature Reserve Selection (BNRS(λ,P))
Instance: A collection P of weighted rooted phylogenetic X-trees, a col-
lection R of subsets of X, a cost function c on the sets in R, a budget
B and, for all (x,R) ∈ X × R, probabilities a(x,R) and b(x,R), where
b(x,R) ≥ a(x,R).
Question: Find a subset R′ of R which maximizes PD(λ,P)(X, pR′) such
that

∑
R∈R′ c(R) ≤ B.

The problem BNRS(λ,P) extends the rooted setting of BNRS. In partic-
ular, by setting λ = 0, and a(x,R) = 0 and b(x,R) = 1 for each reserve
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R in R, and considering a single rooted phylogenetic tree whose weight is
1. Thus, it follows by Bordewich and Semple [2] that there is no δ > 0
such that BNRS(λ,P) can be approximated with an approximation ratio of(
1 − 1

e + δ
)

unless P=NP. However, we show in Section 4 that there is a

polynomial-time
(
1− 1

e

)
-approximation algorithm for BNRS(λ,P).

2.2. Extension of BNRS in the unrooted setting. We begin with some
preliminary definitions. A bipartition {A,B} of X, where |A|, |B| ≥ 1, is
a split of X. For simplicity, we write such a bipartition {A,B} as A|B. A
split system Σ of X is a collection of splits of X. In addition, Σ is weighted
if there is a map w : Σ→ R≥0.

Let Σ be a weighted split system of X, and let Z be a subset of X. The
phylogenetic diversity of Z on Σ, denoted PDΣ(Z), is

PDΣ(Z) =
∑

A|B∈Σ;A∩Z,B∩Z 6=∅

w(A|B).

This definition of PD on a split system generalizes the definition of PD on
an (unrooted) phylogenetic tree as follows. Let T be a phylogenetic X-tree.
Each edge e of T induces a unique split A|B of X, where A consists precisely
of the subset of X in which, for all a, a′ ∈ A, the unique path in T from a
to a′ avoids traversing e. For example, in Figure 1, {a, b, g}|{c, d, e, f} is the
split induced by the edge whose length is 5. An arbitrary collection Σ of
X-splits is compatible if there exists a phylogenetic X-tree whose collection
of X-splits arising in this way equates to Σ. Let Y be a subset of X. As-
signing, for each edge e of T , the weight of e with the X-split induced by e,
it is easily checked that the PD of Y on the resulting collection of weighted
X-splits induced by the edges of T is equivalent to the PD of Y on T . Fur-
thermore, there is a canonical one-to-one correspondence between weighted
split systems and split networks analogous to the one-to-one correspondence
between weighted compatible split systems and phylogenetic trees. Under
this correspondence, computing PD on a splits network equates to comput-
ing PD on the corresponding weighted splits system. For details of splits
network and this correspondence, see [3] and [17], respectively.

The extension of BNRS in the unrooted setting, called BNRSΣ, is the
following:

Problem: Budgeted Nature Reserve Selection (BNRSΣ)
Instance: A weighted split system Σ of X, a collection R of subsets of X,
a cost function c on the sets in R, and a budget B.
Question: Find a subsetR′ ofR, which maximizes the PD score of

⋃
R∈R′ R

on Σ such that
∑

R∈R′ c(R) ≤ B.

Clearly, BNRSΣ extends the unrooted setting of BNRS and so, for any
δ > 0, BNRSΣ cannot be approximated with an approximation ratio of(
1 − 1

e + δ
)

unless P=NP. However, we show in Section 5 that there is a

polynomial-time
(
1− 1

e

)
-approximation algorithm for BNRSΣ.
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It may have been observed by the reader that of the three possible exten-
sions described in Section 1, we have only made the extension to multiple
trees or networks in the unrooted setting. As noted earlier, the extended
model of biodiversity in which features both appear and disappear during
evolution inherently requires a direction to time, and thus a rooted setting.
However we could consider extending the unrooted setting to include varying
probabilities of survival. Since this would generalise the existing problem,
we could not hope to find a better approximation than

(
1− 1

e

)
in this case.

It remains an open problem to determine if such an approximation is pos-
sible. The approach we have taken for the other problems discussed in this
paper, i.e. demonstrating submodularity of the core function, does not go
through.

2.3. Maximising PD on a split system. In the second part of the paper,
we resolve a problem left open by Spillner et al. [17]. In particular, consider
the following computational problem:

Problem: Maximum PD on Σ (SplitsPD)
Instance: A weighted split system Σ of X, and a positive integer k.
Question: Find a subset Z of X of size k that maximizes PD(Z).

If Σ is compatible, that is, can be realized by a phylogenetic tree, then
the (polynomial-time) greedy algorithms in [12, 18] solve SplitsPD. In-
deed, there are polynomial-time algorithms for SplitsPD if Σ is a so-
called circular split system or, more generally, an affine split system [8, 17].
However, in general SplitsPD is NP-hard [17]. Nevertheless, Spillner et.
al. [17] observed that a greedy algorithm provides a polynomial-time

(
1− 1

e

)
-

approximation algorithm for SplitsPD, and that there is some constant
α > 0 such that, in general, SplitsPD cannot be approximated with an ap-
proximation ratio of (1− α) unless P=NP. In the last section of the paper,
we show that in fact

(
1− 1

e

)
is the best possible.

A brief outline of the paper is as follows. The approximation results
for the two extensions of BNRS in Sections 4 and 5 rely on establishing
that the function being optimized (or one closely-related) is a submodular
function. The next section describes submodular functions and a particular
approximation result for such functions. The hardness result for SplitsPD
is given in Section 6, the last section.

3. Submodular Functions

For a set I, a function f : 2I → R is submodular if, for all subsets
I ′, I ′′ ⊆ I,

f(I ′) + f(I ′′) ≥ f(I ′ ∪ I ′′) + f(I ′ ∩ I ′′).

Furthermore, such a function is non-decreasing if f(I ′) ≤ f(I ′′) whenever
I ′ ⊆ I ′′.
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Now suppose that f is a non-negative, non-decreasing, submodular func-
tion on 2I which is computable in polynomial time. Let c be a function on
I into the non-negative integers, and let B be a non-negative integer. Here,
view c as a cost function on I and B as a budget. For a subset I ′ of I,
denote

∑
I∈I′ c(I) by c(I ′). The problem we are interested in is to find a

subset I ′ of I which maximizes f such that c(I ′) ≤ B, that is,

max
I′⊆I

{
f(I ′) : c(I ′) ≤ B

}
(1)

Sviridenko [19] showed that the following greedy algorithm (and its sub-
routine) is a (1− 1/e)-approximation algorithm for (1).

ApproxFunction(I, f, c, B)
Find I ′ in {I ′′ : I ′′ ⊆ I, c(I ′′) ≤ B, |I ′′| ≤ 2} that maximizes f
H1 ← I ′
H2 ← ∅
For all I0 ⊆ I, such that |I0| = 3 and c(I0) ≤ B do

U ← I\I0

I ′ ←Greedy(I0, U)
if f(I ′) > f(H2) then H2 ← I ′

If f(H1) > f(H2), then Return H1, otherwise Return H2

Greedy(I0, U)
I ′ ← I0

Repeat

select I ∈ U that maximizes f(I′∪I)−f(I′)
c(I)

if c(I ′) + c(I) ≤ B then
I ′ ← I ′ ∪ {I}

U ← U\I
Until U = ∅
Return I ′

4. A (1− 1/e)-Approximation Algorithm for BNRS(λ,P)

In this section, we show that there is a polynomial-time
(
1 − 1

e

)
-

approximation algorithm for BNRS(λ,P). Throughout the section, we assume
that all rooted phylogenetic trees in P are binary. (A rooted phylogenetic
tree is binary if its root has degree two and all other internal vertices have
degree three.) By allowing edges to have length zero, it is easily checked
that no generality is lost by this assumption.

Lemma 4.1. Let P be a collection of weighted rooted phylogenetic X-trees
and let R be a collection of subsets of X. For all (x,R) ∈ X × R, let
a(x,R) and b(x,R) be probabilities, where b(x,R) ≥ a(x,R). Then the func-
tion PD(λ,P) : 2R → R≥0 is a non-negative, non-decreasing, submodular
function.
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Proof. Since b(x,R) ≥ a(x,R) for all (x,R) ∈ X × R, it follows that, for
any point t on a rooted phylogenetic X-tree Tj ∈ P, the probability that
t survives to be present in a surviving taxa is non-decreasing in the set
R′ ⊆ R. That is, if we enlarge R′, then the probability of t surviving
cannot decrease. Thus, from the definition, PD(λ,P) is non-decreasing. Since
PD(λ,P) is certainly non-negative, it remains to show that it is submodular,
that is, for any two subsets S, T ⊆ R,

PD(λ,P)(X, pS) + PD(λ,P)(X, pT ) ≥(2)

PD(λ,P)(X, pS∪T ) + PD(λ,P)(X, pS∩T ).

To establish (2), it is sufficient to show, by linearity, that, for any point t
on an arbitrary rooted phylogenetic tree Tj ∈ P, the probability of survival
of a feature arising at t is submodular. In turn, by linearity, it is sufficient
to show that this holds when t coincides with a vertex of Tj . To this end,
for a vertex v of Tj and a subset R′ of R, let pR′(v) denote the probability
that a feature arising at v survives to be present in some taxon which itself
survives when the reserves in R′ are selected for conservation. Thus, to
establish (2), it suffices to show that

pS(v) + pT (v)− pS∪T (v)− pS∩T (v) ≥ 0.(3)

We prove (3) by induction on the maximum number of vertices in a path
from v to one of its descendants in X. For the base case, suppose that
v is itself a leaf x. Let R1 denote the set of reserves in S but not in T ,
let R2 denote the reserves in S ∩ T , let R3 denote the reserves in T but
not in S, and let R4 denote the reserves in R but not in S ∪ T . For all
i ∈ {1, 2, 3, 4}, let bi (respectively, ai) denote the probability that x survives
in some reserve in Ri when the reserves in Ri are (respectively, are not)
selected for conservation. By inclusion-exclusion and the independence of
the reserves, it follows that

pS(x) = b1 + b2 + a3 + a4 − b1b2 − b1a3 − b2a3 − b1a4 − b2a4 − a3a4

+ b1b2a3 + b1b2a4 + b1a3a4 + b2a3a4 − b1b2a3a4,

pT (x) = a1 + b2 + b3 + a4 − a1b2 − a1b3 − b2b3 − a1a4 − b2a4 − b3a4

+ a1b2b3 + a1b2a4 + a1b3a4 + b2b3a4 − a1b2b3a4,

pS∪T (x) = b1 + b2 + b3 + a4 − b1b2 − b1b3 − b2b3 − b1a4 − b2a4 − b3a4

+ b1b2b3 + b1b2a4 + b1b3a4 + b2b3a4 − b1b2b3a4,

pS∩T (x) = a1 + b2 + a3 + a4 − a1b2 − a1a3 − b2a3 − a1a4 − b2a4 − a3a4

+ a1b2a3 + a1b2a4 + a1a3a4 + b2a3a4 − a1b2a3a4.

Now

pS(x) + pT (x)− pS∪T (x)−pS∩T (x)

= (1− b2)(b1b3 + a1a3 − b1a3 − a1b3)(1− a4).

Note that, as 0 ≤ b2 ≤ 1 and 0 ≤ a4 ≤ 1, we have (1−b2) ≥ 0 and (1−a4) ≥
0. Furthermore, writing bi = ai+ δi where δi ≥ 0 for all i ∈ {1, 2, 3}, we also



10 MAGNUS BORDEWICH1 AND CHARLES SEMPLE2

have b1b3 + a1a3 − b1a3 − a1b3 = δ1δ3 ≥ 0. Hence

pS(x) + pT (x)− pS∪T (x)− pS∩T (x) ≥ 0,

thus establishing the base case.

Now assume that (3) holds for vertices w and w′, where w and w′ are
the child vertices of v. Let l and l′ be the lengths of the edges {v, w} and
{v, w′}, respectively. Then, for a subset R′ of R,

pR′(v) = e−λlpR′(w) + e−λl
′
pR′(w′)− e−λ(l+l′)pR′(w)pR′(w′).

Therefore

pS(v) + pT (v)− pS∪T (v)− pS∩T (v)

= e−λl
(
pS(w) + pT (w)− pS∪T (w)− pS∩T (w)

)
+ e−λl

′(
pS(w′) + pT (w′)− pS∪T (w′)− pS∩T (w′)

)
− e−λ(l+l′)

(
pS(w)pS(w′) + pT (w)pT (w′)− pS∪T (w)pS∪T (w′)− pS∩T (w)pS∩T (w′)

)
Without loss of generality, we may assume that pS(w) ≥ pT (w). Observ-

ing that

pS∪T (w) ≥ pS(w) ≥ pT (w) ≥ pS∩T (w),

set ε, δ ≥ 0 such that pS∪T (w) = pS(w) + ε and pT (w) = pS∩T (w) + δ. By
submodularity at w,

pS(w) + pT (w)− pS∪T (w)− pS∩T (w) ≥ 0,

and so δ ≥ ε. The rest of the induction proof is broken into two cases: (i)
pS(w′) ≥ pT (w′) and (ii) pS(w′) < pT (w′).

For (i), set ε′, δ′ ≥ 0 such that pS∪T (w′) = pS(w′) + ε′ and pT (w′) =
pS∩T (w′) + δ′. Then

pS(v) + pT (v)− pS∪T (v)− pS∩T (v)

= e−λl(δ − ε) + e−λl
′
(δ′ − ε′)− e−λ(l+l′)

(
pS(w)pS(w′)− (pS(w) + ε)(pS(w′) + ε′)

+ (pS∩T (w) + δ)(pS∩T (w′) + δ′)− pS∩T (w)pS∩T (w′)
)

= e−λlδ
(
1− e−λl′pS∩T (w′)− e−λl′δ′

)
− e−λlε

(
1− e−λl′pS(w′)− e−λl′ε′

)
+ e−λl

′
δ′
(
1− e−λlpS∩T (w)

)
− e−λl′ε′

(
1− e−λlpS(w)

)
= e−λlδ

(
1− e−λl′pT (w′)

)
− e−λlε

(
1− e−λl′pS∪T (w′)

)
+ e−λl

′
δ′
(
1− e−λlpS∩T (w)

)
− e−λl′ε′

(
1− e−λlpS(w)

)
.

Since δ ≥ ε and pT (w′) ≤ pS∪T (w′),

e−λlδ
(
1− e−λl′pT (w′)

)
− e−λlε

(
1− e−λl′pS∪T (w′)

)
≥ 0.(4)

Furthermore, δ′ ≥ ε′ and pS∩T (w) ≤ pS(w), so

e−λl
′
δ′
(
1− e−λlpS∩T (w)

)
− e−λl′ε′

(
1− e−λlpS(w)

)
≥ 0.(5)

Combining (4) and (5),

pS(v) + pT (v)− pS∪T (v)− pS∩T (v) ≥ 0,
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completing the induction proof for (i).

Consider (ii), where pS(w′) < pT (w′). For this case, set ε′, δ′ ≥ 0 such
that pS∪T (w′) = pT (w′) + ε′ and pS(w′) = pS∩T (w′) + δ′. By submodularity
at w′,

pS(w′) + pT (w′)− pS∪T (w′)− pS∩T (w′) ≥ 0,

so δ′ ≥ ε′. Now

pS(v) + pT (v)− pS∪T (v)− pS∩T (v)

= e−λl(δ − ε) + e−λl
′
(δ′ − ε′)− e−λ(l+l′)

(
pS(w)(pS∩T (w′) + δ′) + (pS∩T (w) + δ)pT (w′)

− (pS(w) + ε)(pT (w′) + ε′)− pS∩T (w)pS∩T (w′)
)

= e−λlδ
(
1− e−λl′pT (w′)

)
− e−λlε

(
1− e−λl′pT (w′)− e−λl′ε′

)
+ e−λl

′
δ′
(
1− e−λlpS(w)

)
− e−λl′ε′

(
1− e−λlpS(w)

)
+ e−λ(l+l′)

(
pS∩T (w)pS∩T (w′)− pS(w)pS∩T (w′)− pS∩T (w)pT (w′) + pS(w)pT (w′)

)
= e−λlδ

(
1− e−λl′pT (w′)

)
− e−λlε

(
1− e−λl′pS∪T (w′)

)
+ e−λl

′
(δ′ − ε′)

(
1− e−λlpS(w)

)
+ e−λ(l+l′)

(
(pS(w)− pS∩T (w)

)(
pT (w′)− pS∩T (w′)

)
.

Since δ ≥ ε and pT (w′) ≤ pS∪T (w′),

e−λlδ
(
1− e−λl′pT (w′)

)
− e−λlε

(
1− e−λl′pS∪T (w′)

)
≥ 0.(6)

Furthermore, as δ′ ≥ ε′,

e−λl
′
(δ′ − ε′)

(
1− e−λlpS(w)

)
≥ 0(7)

and, as pS(w) ≥ pS∩T (w) and pT (w′) ≥ pS∩T (w′),

e−λ(l+l′)
(
(pS(w)− pS∩T (w)

)(
pT (w′)− pS∩T (w′)

)
≥ 0.(8)

Combining (6), (7), and (8), we get that

pS(v) + pT (v)− pS∪T (v)− pS∩T (v) ≥ 0,

completing the induction proof of (ii). Hence PD(λ,P) is submodular,
thereby completing the proof of the lemma. �

Lemma 4.2. Let P be a collection of weighted rooted phylogenetic X-trees
and let R be a collection of subsets of X. For all (x,R) ∈ X×R, let a(x,R)
and b(x,R) be probabilities, where b(x,R) ≥ a(x,R). Then the function
PD(λ,P) : 2R → R≥0 is computable in time polynomial in max{|X|, |P|}.

Proof. Recall that

PD(λ,P)(X, p) =

k∑
j=1

w(Tj)
∫
t∈Tj

P(t→ X)dt,

where (t → X) denotes the event that a feature arising at point t on Tj
survives to be present in a taxa in X which itself survives. We first show that
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we can compute PD(λ,P) for a single unweighted tree T in time polynomial
in |X|. That is, compute

PD(λ,T ) =

∫
t∈T

P(t→ X)dt

in time polynomial in |X|. It then follows that we may compute PD(λ,P) in
time polynomial in k|X|, where k = |P|.

The first step to computing PD(λ,T ) is to compute, for each vertex v of T ,
the probability pv that a feature which has survived to that point survives
from v to be present in a surviving leaf. This is done by beginning with
the leaves and working up through T towards its root. If v is a leaf, then
v ∈ X and so pv = p(v). If v is not a leaf, then v has children, w and w′

say, connected by edges with lengths l and l′, respectively, and

pv = e−λlpw + e−λl
′
pw′ − e−λ(l+l′)pwpw′ .

With this in hand, we may now compute the contribution of each edge
e = {ue, ve} of T towards PD(λ,P):∫

t∈e
P(t→ X)dt =

∫ le

0
pvee

−λxdx =
pve
λ

(1− e−λle),

where ve is the endvertex of the edge e furthest from the root of T and le is
the length of e. Thus

PD(λ,T ) =

∫
t∈T

P(t→ X)dt =
∑
e∈T

pve
λ

(1− e−λle).

Since T has O(|X|) vertices and edges, the value pv at all vertices v of T
and the contribution of all edges of T towards PD(λ,T ) can be computed in
time O(|X|). Thus the contribution of each tree in P towards PD(λ,P) can
be computed in time O(|X|), and so the full weighted-sum PD(λ,P)(X, p)
can be computed in time O(k|X|). �

Consider BNRS(λ,P). Let ApproxBNRS(λ,P) denote the algorithm ob-
tained from ApproxFunction (see Section 3) by replacing I, f , c, and B
with R, PD(λ,P), c, and B, respectively. The first part of the next theorem
immediately follows from Lemma 4.1 and 4.2, while the second part follows
from the fact that BNRS is a special case of BNRS(λ,P).

Theorem 4.3. ApproxBNRS(λ,P) is a polynomial-time
(
1 − 1

e

)
-

approximation algorithm for BNRS(λ,P). Moreover, for any δ > 0,

BNRS(λ,P) cannot be approximated with an approximation ratio of
(
1− 1

e+δ
)

unless P=NP.
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5. A (1− 1/e)-Approximation Algorithm for BNRSΣ

Bordewich and Semple [2] showed that there is a polynomial-time (1 −
1/e)-approximation algorithm for when BNRS is restricted to compatible
split systems. In this section, we extend this result to arbitrary split systems.

Lemma 5.1. Let Σ be a weighted split system of X, let Y be a distinguished
non-empty subset of X, and let R be a collection of subsets of X. Then the
function PD(Y,Σ) : 2R → R≥0 defined, for all subsets R′ of R, by the PDΣ

score of Y ∪
⋃
R∈R′ R is a submodular function.

Proof. It suffices to show (see, for example, [11]) that if R′′ ⊆ R′ ⊆ R and
Q ∈ R−R′, then

PD(Y,Σ)(R′ ∪Q)− PD(Y,Σ)(R′) ≤ PD(Y,Σ)(R′′ ∪Q)− PD(Y,Σ)(R′′).

Let A|B be an element of Σ such that w(A|B) contributes a non-zero weight-
ing to PD(Y,Σ)(R′ ∪Q)− PD(Y,Σ)(R′). Then either (Y ∪

⋃
R∈R′ R) ⊆ A or

(Y ∪
⋃
R∈R′ R) ⊆ B and there is an element q ∈ Q such that q ∈ B or q ∈ A,

respectively. Since Y is non-empty and R′′ ⊆ R′, it follows that w(A|B)
contributes a non-zero weighting to PD(Y,Σ)(R′′ ∪ Q) − PD(Y,Σ)(R′′), and
so the lemma holds. �

Consider BNRSΣ and let Q be a fixed element in R. Let
ApproxBNRS(Q,Σ) denote the algorithm obtained from ApproxFunction
by replacing I, f , c, and B with R−Q, PD(Q,Σ), cQ, and B − c(Q), where
cQ is the cost function on the sets in R−Q defined, for all R ∈ R−Q, by
cQ(R) = c(R). The next theorem shows that the following algorithm is a

polynomial-time
(
1− 1

e

)
-approximation algorithm for BNRSΣ.

ApproxBNRSΣ(R, PD, c,B)
H ← ∅
For all Z ∈ R do
R′ ←ApproxBNRS(Z,Σ)

if PDΣ(R′) > PDΣ(H) then H ← R′
Return H

Theorem 5.2. ApproxBNRSΣ is a polynomial-time
(
1− 1

e

)
-approximation

algorithm for BNRSΣ. Moreover, for any δ > 0, BNRSΣ cannot be approx-
imated with an approximation ratio of (1− 1

e + δ) unless P=NP.

Proof. In essence: we run through each possible choice of set Q and approx-
imate BNRSΣ assuming Q is in the solution. We must be right for some Q
and hence find a good aproximation. Let Q be a fixed element in R. Then,
by Lemma 5.1, the function PD(Q,Σ) : 2R−Q → R≥0 defined, for all subsets
R′ of R−Q, by the PDΣ score of Q ∪

⋃
R∈R′ R is a submodular function.

Furthermore, PD(Q,Σ) is certainly non-negative, non-decreasing, and com-
putable in polynomial time. It now follows that ApproxBNRS(Q,Σ) is a
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polynomial-time
(
1− 1

e

)
-approximation algorithm for BNRSΣ for when the

selected set of reserves includes Q.

Let R∗ be an optimal solution to BNRSΣ and now let Q be an element
of R∗. Then R∗ is an optimal solution to BNRSΣ for when the selected
set of reserves includes Q. Let R′ be the subset of R − Q returned by
ApproxBNRS(Q,Σ) applied to R−Q, PD(Q,Σ), cQ, and B − c(Q). It now

follows that the PDΣ score of Q∪R′ is at least
(
1− 1

e

)
times the PDΣ score

of R∗, and so the theorem holds. �

6. No Better Approximation for Split Systems

In this section, we establish the following theorem.

Theorem 6.1. For any δ > 0, SplitsPD cannot be approximated with an
approximation ratio of

(
1− 1

e + δ
)

unless P=NP.

The proof of Theorem 6.1 is via a reduction from Max-k-Cover.

Problem: Maximum k-coverage (Max-k-Cover)
Instance: A finite set D, a collection C of subsets of D, and a positive
integer k.
Question: Find a subset B = {B1, B2, . . . , Bk} of C of size k that maximizes
the size of the set

B1 ∪B2 ∪ · · · ∪Bk.

Feige [7] showed that no polynomial-time approximation algorithm for Max-
k-Cover can have an approximation ratio better than

(
1− 1

e

)
unless P=NP.

Proof of Theorem 6.1. Let (D, C, k) be an instance of Max-k-Cover. We
construct an instance of SplitsPD as follows. Let X = C∪

{
{ρ}
}

, where ρ is
a distinguished element not in D and, for each d ∈ D, let σd = Ad|(X−Ad),
where

Ad = {C ∈ C : d ∈ C}.
Let Σ be the split system {σd : d ∈ D} ∪

{
{ρ}|(X − {ρ})

}
with weighting

w(σd) = 1 for all d ∈ D and w({ρ}|(X−{ρ}) = ω. The triple (X,Σ, k+1) is
our constructed instance of SplitsPD. For simplicity, throughout the proof,
we will always assume that the instances of Max-k-Cover and SplitsPD
are (D, C, k) and (X,Σ, k + 1), respectively.

Let Bk be an optimal solution to Max-k-Cover, and suppose that it
covers bk elements of D. In terms of SplitsPD, consider the PD score of
Bk ∪ {{ρ}}. Since {ρ} is an element of Bk ∪ {{ρ}}, this score is the sum of
the size of the cover of Bk and w({ρ}|(X−{ρ}). That is, the score is bk +ω.
We next determine for what values of ω is Bk ∪ {{ρ}} guaranteed to be an
optimal solution for SplitsPD.
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Now there is no set Bk+1 ⊆ C of size k+ 1 which covers more than bk
k+1
k

elements of D. To see this, let Bk+1 be an arbitrary subset of C of size
k + 1 that covers bk+1 elements of D. First observe that by considering
the marginal contribution of each set in Bk+1, there is a set in Bk+1 whose

removal results in a subset of C of size k that covers at least bk+1 − bk+1

k+1
elements of D. By the optimality of Bk,

bk ≥ bk+1 −
bk+1

k + 1
= bk+1

(
1− 1

k + 1

)
= bk+1

(
k

k + 1

)
,

and so bk+1 ≤ bk
k+1
k . Since bk

k+1
k = bk + bk

k , it now follows that we can

guarantee Bk ∪ {{ρ}} is an optimal solution of SplitsPD if ω > bk
k . Us-

ing this fact, we complete the proof by showing that if we can approximate
SplitsPD to within a ratio

(
1− 1

e + δ
)

for some δ > 0, then we can approx-

imate Max-k-Cover to within a ratio better than
(
1 − 1

e

)
; contradicting

Feige [7].

Suppose that we can approximate SplitsPD to within such a ratio. Since
Max-k-Cover can always be solved in polynomial time for constant size
k, we may assume that k is large enough so that 2

k < δ. By Feige [7],

there is a polynomial-time
(
1 − 1

e

)
-approximation algorithm for the above

instance of Max-k-Cover. Therefore, we can approximate in polynomial
time the optimal value bk with approximation ratio

(
1 − 1

e

)
, in particular,

as 1 − 1
e >

1
2 , we can compute a weight bk

k < ω ≤ 2bk
k in polynomial time.

It now follows that the optimal solution to SplitsPD is given by the set
Bk ∪ {{ρ}} and has value bk + ω ≤ bk + 2bk

k = bk
(
1 + 2

k

)
.

Let β be the answer returned by applying our assumed polynomial-time(
1 − 1

e + δ
)
-approximation algorithm to the above instance of SplitsPD.

Then β ≥
(
1− 1

e + δ
)
(bk + ω), and so, as bk + ω ≥ β,

bk ≥ β − ω
≥
(
1− 1

e + δ
)
(bk + ω)− ω

>
(
1− 1

e + δ
)(
bk + bk

k

)
− 2bk

k

> bk
((

1− 1
e + δ

)
− 2

k

)
= bk

(
1− 1

e +
(
δ − 2

k

))
.

But, by our choice of k, we have δ− 2
k > 0 and so β−ω gives a

(
1− 1

e+
(
δ− 2

k

))
-

approximation to Max-k-Cover; a contradiction. This completes the proof
of the theorem. �

We end this section with a short remark about the rooted version of
SplitsPD. Calling it rSplitsPD, in this problem the instance is a finite
set X ∪ {ρ}, a split system Σ of X ∪ {ρ}, and a non-negative integer k, and
the question is to find a subset Z of X of size k that maximizes PD(Z∪{ρ}).

Using Feige’s tight approximation result for Max-k-Cover, it is straight-
forward to show that, for any δ, rSplitsPD cannot be approximated with
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an approximation ratio of
(
1− 1

e + δ
)

unless P=NP. Briefly, similar to that
in the proof of Theorem 6.1, let (D, C, k) be an instance of Max-k-Cover.
We construct an instance of rSplitsPD by setting X = C and, for each
d ∈ D, setting σd = Ad|((X ∪ {ρ})−Ad), where

Ad = {C ∈ C : d ∈ C}.

Now take Σ to be the split system {σd : d ∈ D} with each split in Σ having
weight 1. The triple (X ∪ {ρ},Σ, k) is our initial instance of rSplitsPD. If
W be a subset of X of size k, then the PD score of W ∪{ρ} is the size of the
cover of W . Thus, as the reduction from Max-k-Cover to rSplitsPD can
be done in time polynomial in the size of (D, C, k), it follows that if there is a
polynomial-time approximation algorithm for rSplitsPD with ratio (1−α),
where α > 0, then there is also such an approximation algorithm for Max-k-
cover. This establishes the desired outcome. The proof of Theorem 6.1 is a
non-trivial modification of this approach, the difficulty lies in the fact that,
in SplitsPD, ρ may not be in any optimal solution. In the terminology of
this paper, this reduction from Max-k-Cover to rSPlitsPD is also shown
by Faller [6]
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