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The Optimum Growth Rate for Population under Critical-Level Utilitarism 
by Thomas I. Renström  and Luca Spataro  

 

Abstract 
We characterize optimal consumption, capital and population growth rates of a production 

economy entailed with critical-level utilitarian preferences and endogenous population 

size. First, we show that, under standard conditions concerning preferences and technology 

neither classical utilitarianism (CU) nor average utilitarianism (AU) can avoid a corner 

solution for the population growth rate, in that the former would prescribe that the 

population grows at the maximum speed (i.e. the so called “repugnant conclusion”) while 

according to the latter such a growth rate should take the minimum value (AU). Critical 

level utilitarianism (CLU) does deliver an interior solution for the population growth rate 

provided that the critical level belongs to a positive, open interval. Second, we show that 

the transition to the steady state is nontrivial, in that, while consumption and capital move 

in the same direction, as in the standard Cass-Koopmans-Ramsey model, the optimal 

population growth rate and the time needed for reaching the steady state depend crucially 

on whether the steady state value of the optimal population growth rate is an interior or a 

corner solution. Finally, we perform comparative dynamics exercises on the steady state 

show that: a) A positive technological shock increases both capital and population growth 

rates, while reduces consumption; b) An increase of the critical level parameter increases 

consumption, leaves the capital intensity unchanged and decreases the population growth. 

Keywords: Social evaluation, critical-level utilitarianism, economic growth, 

population 

JEL Classification: D63, D90, J13 

 

1. Introduction 

 

It is well known that the evaluation of alternative public policies often implies the comparison of 

states of the world with different population. Such an evaluation becomes problematic when welfarist 

criteria are to be used, that is, criteria based on the well-being (utilities) of the individuals who are alive 

in different states of the world. Despite the relevance of this problem, the theoretical foundations of 

social evaluation with variable populations have received little attention in the literature. Typically, 

welfarist principles are adopted such as classical utilitarianism, where the objective is to sum the 

utilities over the population.
1
 

However, these criteria cannot avoid the repugnant conclusion (Parfit (1976, 1984), Blackorby et 

al. (2002)), whereby any state in which each member of the population enjoys a life above neutrality is 

declared inferior to a state in which each member of a larger population lives a life with lower utility 

(Blackorby et al. (1995, 2002)). The implication of the repugnant conclusion is that population should 

grow at its maximum physically possible rate. 

A strand of philosophical literature has argued that the repugnant conclusion is not a problem and 

that societies may avoid ending up in a situation with very large populations living just at existence-

indifference level (see, for example Tännsjö (2002)). However, in economic models with classical 

utilitarianism those are precisely the equilibria likely to emerge. The reason is that with concave 

utilities (decreasing marginal utilities) for a given resource, X, an additive social welfare function will 
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take on a higher value for an N+1 population where everyone consumes X/(N+1) than for an N size 

population where everyone consumes X/N. That is, for normalized utility (u(0)=0), we have 

(N+1)u(X/(N+1)) > Nu(X/N)
2
. Consequently, the welfare function increases as N goes to infinity (in a 

sense one wants an infinite population where each individual consumes zero). If the resources can 

grow, as we will show, the problem does not go away (such in models with capital accumulation). 

There are ways of avoiding the repugnant conclusion. Some earlier literature assumed objective 

functions of a particular (non-welfarist) form.
3
 However, such objective functions may not have an 

axiomatic foundation. We believe an axiomatic foundation is important, especially since we are dealing 

with questions regarding life (who will live and who will not). 

Critical-level utilitarianism is a population principle that can avoid the repugnant conclusion. It is 

axiomatically founded, derived from a social preference ordering (see Blackorby et al. (1995)).
4
 The 

critical level α can be defined as the utility level of an extra-individual i who, if added to an unaffected 

population N with utility distribution u, would make the two alternatives socially indifferent, i.e. (N,u) 

as good as (N,u;i,α).
5
 

In our paper we rely on work by Blackorby et al. (1997) allowing for the possibility of discounting 

the utilities of future generations. They show that a population and utility alternative (N, u) is preferred 

to another alternative (N‟,u‟) if and only if 
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Classical utilitarianism is a special case where α is set to zero. However, as we will show, with 

α=0, one cannot avoid the repugnant conclusion. Average utilitarianism cannot be obtained as a special 

case, but one has to ignore the summation over population (and only compare average utilities). The 

latter is close to the Samuelson (1975) formulation of optimal population growth, more recently 

analyzed by Jaeger and Kuhle (2009). 

Several authors have criticised CLU: for example, according to Parfit (1984) CLU cannot avoid the 

repugnant conclusion, in that, as long as average utility is higher than α, it is always socially preferable 

to get larger populations with lower utility levels closer to α; and this would be “repugnant” if the 

critical level is too low (on the same argument see also Shiell 2008). Moreover, Broome (1992) argued 

that, if the critical level is set too high, then this would prevent the addition of a person whose life is 

worth living (i.e. with a positive utility level). In this case the same problems as those arising in 

presence of average utility would apply. Moreover, Ng (1986) pointed out that CLU involves 

counterintuitive social orderings in case the average utility is lower than α (i.e. the so called “sadistic 

conclusion”; see also Arrhenius 2000). 

Although we believe that the philosophical discussion on the relevance of the repugnant 

conclusion and on CLU is far from being closed, we still adopt the critical level utilitarian criterion for 

two reasons: first, as stated above, it represents a logically coherent and axiomatically founded device 

for dealing with social evaluation of population alternatives, and, second, by departing from the 
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existing literature, we introduce production and physical capital and analyze the outcomes under 

critical-level utilitarianism. To the best of our knowledge, this has not been done before. 

Moreover, we will show that in presence of CU the system would not have an interior solution for 

n, in that in the long run it would be optimal to boost population as fast as possible. Hence, the 

repugnant conclusion would occur. The CU solution is avoided, i.e. an interior solution for the 

population growth rate emerges, only if the critical level is strictly positive and higher than a threshold 

level (thus, to some extent answering to the point raised by Parfit 1984. 

On the other hand, we show that according to the AU view, the population should decrease as fast 

as physically possible. The AU solution can be avoided only if the critical level is not too high (thus to 

some extent addressing the point raised by Broome 1992). Finally, as for the point raised by Ng (1986), 

the author proposed a possible solution called the “number-dumpened critical level” (see also Hurka 

1983 and 2000 on this point). Although interesting, the latter criteria violate one of the axioms on 

which CLU is based (namely, the “independence of the long dead”), which seems particularly undue in 

our context, in which we deal with the intertemporal distribution of resources and population growth.
6
 

For all these reasons we still decide to adopt CLU and to leave the analysis of the implications of the 

above mentioned alternative social ordering criteria for future research. 

 Finally, in a recent work Shiell (2008) argues that neither CU nor CLU can avoid (a revised 

version of the repugnant conclusion) under an unrestricted domain, that is,  if population size and per 

person utility can be chosen independently.  Moreover, Shiell provides examples of situations (i.e. 

sufficient conditions) in which the repugnant conclusion is avoided both in CU and CLU. Our work, on 

the one hand, is in line with Shiell (2008), because we also cannot choose per capita utility and 

population size independently due to the capital accumulation constraint. Moreover, in line with Shiell, 

we show that the modified-RC can be avoided under CLU provided that a restricted domain is imposed 

(i.e. critical level belonging to a positive, open interval). However, we depart from Shiell (2008) in 

several respects: first, among other things, we assume capital accumulation, which prevents one of the 

crucial assumptions by Shiell to hold (i.e. Shiell‟s law of conservation of matter). Moreover, in line 

with the tradition of the CLU literature, we assume zero neutral consumption. 

One can take either a normative or a positive view on our paper. Under the normative view, we see 

the objective function as a social ordering and the solution states how population, consumption, and 

capital should evolve over time. Under the positive view, we take a dynastic decision maker, with 

critical-level utilitarianism as altruistic preferences and provide an alternative view for interpreting the 

differences in growth paths undertaken by developed and developing countries. 

Precisely, in the present work we characterize the steady state solution and show that neither CU 

nor AU can avoid a corner solution for the steady state. Second, we show that CLU preferences can 

avoid such a dichotomous result provided that the critical level belongs to a positive, open interval. 

Moreover, we show that, along the transition path towards the steady state, capital accumulation 

and per capita consumption move in the same directions and that the features of the dynamic path 

undertaken by the economy are strongly dependent on whether the steady state value of the population 

growth rate is a corner or an interior solution.  

Finally, by carrying out comparative dynamics exercises, we show that: a) a positive technological 

shock increases both optimal capital and optimal population growth rates, while reduces consumption, 

at the steady state; b) an increase of the critical level parameter increases optimal consumption, leaves 

the optimal capital intensity unchanged and decreases the optimal population growth at the steady state. 

The paper is organized as follows: after presenting the model, in section 3 we characterise the 

steady state and, in section 4 we analyze the dynamics of the model and in section 5 we perform a 

comparative dynamics analysis. 
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2. The economy 

 

We make the simplifying assumption that each generation is alive for a period, and life-time utility 

is u(ct), where ct is life-time consumption for that individual. This means that generations will not 

overlap. This assumption can be relaxed without changing the fundamental properties of the model. We 

also follow the convention that u=0 represents neutrality at individual level (i.e. if u<0 the individual 

prefers not to have been born), and denote the critical level as α. Furthermore, we will conduct the 

analysis in continuous time (it is more tractable given the nature of the problem). Then the birth-date 

dependent critical level utilitarian objective is 

 

dtcueN
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t

t

t

0
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where u(ct) is the instantaneous utility function, increasing and concave in ct. α is the critical level of 

utility, and ρ > 0 is the intergenerational discount rate. Since we fix neutrality consumption to zero (i.e. 

u(0)=0), this implies that c
α
, satisfying u( c

α
 )=α, is strictly positive. 

The population size, Nt, grows at rate nt, i.e. 
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We assume that there are lower and upper bounds on the population growth rate: nnnt , . 

Realistically, there is a physical constraint at each period of time on how many children a parent can 

have. There is also a constraint on how low the population growth can be. First, we do not allow 

individuals to be eliminated from the population (there is no axiomatic foundation for that). Second, 

even if nobody wants to reproduce (or is prevented from doing so by the planner) there will always be 

accidental births. 

Assuming a CRS production technology, tt NKF , , and capital depreciation rate , the capital 

accumulation equation is: 

 

tttttt KNcNKFK ,       (3) 

 

Clearly, from eq. (1) the problem has a solution only if n , which we assume throughout our 

analysis. 

 

 

3. The optimal solution 

 

The problem is to maximize (1) subject to (2)-(3), and nnnt , , taking K0 and N0 as given. The 

current value Hamiltonian is: 

 

tttttttttttt nnNnKNcNKFqcuNH , + nnt   (4) 

 

The first order conditions are the following:  
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and the transversality conditions 
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Let us define the capital intensity 
N

K
k , such that, by exploiting constant returns to scale in the 

production function we can write: kNfNKF ),( , kkfkfNKFN )()(),( . The capital 

accumulation constraint is then 

 

ttttt knckfk )( .      (10) 

 

Combining (5) and (6) gives the consumption Euler equation 
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Finally, combining (7) and (5) we get: 

 

tNttttt cFuun
t

'     (12) 

 

which, together with transversality conditions in (9), complete the set of the dynamic equations of our 

model. An optimal path {ct, nt, kt} has to satisfy equations (8)-(12). Before characterizing the steady 

state solution of the model, it is worth noting that, in principle, along the transition path nt can be either 

interior or a corner solution. Hence, we turn to discuss both cases separately. 

 

3.1 Ideal population sizes 

 

It is clear from equation (8) that there may be corners regarding the population growth rate. E.g. if 

λ
7
 is positive then ν is positive and the constraint nn  is binding, i.e. the population should reproduce 
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itself as much as possible
8
. If λ is negative, N is too large and population growth should be at its 

physical minimum (i.e. only accidental births should happen). When λ is zero, the marginal value of 

population size is zero and consequently it constitutes an ideal size (at that instant of time any 

population growth rate will do, i.e. society/planner is indifferent with respect to the population growth 

rate). We will characterise ideal population sizes in a way suitable for the dynamic analysis. 

Ideal population sizes are characterised by 0 , i.e. both the multipliers associated with the 

constraint for nt are zero. As mentioned above, in turn these conditions imply, from eq. (8), that λ = 0 if 

we were to remain at ideal size forever. Then from eq. (7) we obtain u - α = q[c-FN]. Hence, by using 

eq. (5) we get: 

 

0
'

NFc
u

u
      (13) 

 

where 0  relates c to k (recall that FN = f(k) - f ′(k)k ). Equation (13) states that the addition to social 

welfare of increasing the population at the margin, u - α, should equal the marginal value (in utility 

units) of what a newborn takes out of society, u′(c)[c-FN]. What an individual takes out of society is the 

difference between what she consumes, c, and what she brings, FN (the marginal value of labour). If the 

social value of one more person is the same as the cost, society (or planner) is indifferent in altering the 

population size. Notice also that (13) holds when u<α. In that case society may be indifferent in 

bringing an individual with lower utility than the critical level if such an individual brings more to 

society than taking out, i.e. if FN > c. Even lives not worth living (u<0) can be brought into existence 

just because of the resource gain. 

As for the shape of the 0  locus, by differentiating (12) one obtains 
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Figure 1: The 0  locus 
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Note that, when u  tends to α, eq. (14) tends to . Let us call c
α
 the level of c satisfying u(c

α
) = α. In 

Figure 1 we depict the locus 0  for the case when )(lim
0

cu
c

. If u′(0) is finite, the lower part of 

the locus will cut the horizontal axis at some k>0. This would not change our analysis. Moreover, it is 

easy to verify that 0
'

1

u

c
 and 0

''

'2

uu

uc
, where c

ψ
 is the intercept of the 0  on 

the vertical axis. Thereby, as α is reduced, the intercept c
ψ
 and the critical-level consumption c

α
 are 

reduced as well. Furthermore, let us define the point kc ,  satisfying 0  (point B in Fig. 1). From 

eq. (13) this point is such that kFc N  and thus 0
''

1

kfc

k
. Hence, as the critical level 

decreases the 0  shrinks because c  decreases and point B moves south-west (because c
α
 is 

reduced). Finally, when  goes to zero the 0  locus shrinks to the origin. To see this, substituting 

for 0,0 ck  into (13), gives 0 . Moreover, due to concavity of u, when 0  we get that 

0
'

c
u

u
 and, thus, 0  for any k>0. 

Since =0 is a relationship between per-capita consumption and capital, the equation gives all 

combinations of c and k such that society (or planner) is indifferent in increasing or reducing the 

population. This combination, however, can never coincide with an optimal consumption-capital 

trajectory. This implies that trajectories will go outside those combinations and possibly coincide at 

certain points. This means that, typically, on a trajectory towards the steady state, either population is 

too small, and population will grow at n , or too large, and only accidental births take place.  

 

We can now provide the following proposition showing some characteristics of optimal trajectories: 

 

Proposition 1. For optimal trajectories remaining outside the 0  locus, the population growth rate 

is at its physical maximum, nnt , while for those remaining inside the 0  locus population grows 

at its physical minimum (i.e. only accidental births take place), .nnt  

 

Proof Integrate (7) between t0 and T to obtain 
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Then, as T → ∞, by exploiting the transversality condition
9
 we have 
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Clearly for a consumption-capital trajectory reaching the 0  locus at date t0, and remaining there 

forever, 0
0t

 and the population size is ideal. If a trajectory remains outside the 0  locus from 
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date t0 and onwards, then nnttt 000
00 . The argument is reversed for trajectories 

remaining inside the 0  locus.         □ 

 

 

3.2 The steady state solutions 

 

In this subsection we lay down the properties of a steady state and the conditions for its existence. 

It is clear from Proposition 1 that we will have corners along a transition path, and the only possibility 

of interior solution is at a steady state. The steady state equilibrium is given the vector ssssss nkc ,,  

solving the following equations: 

 

)( sskf               (16) 

 
ssssssss cknkf )(                       (17) 
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cu
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Equations (16)-(18) are obtained by setting the time derivatives to zero in (10) and (11) and (12), 

and by using (13).  

We now discuss the role of the critical level in determining the steady state solution. To start with, 

we consider the extreme case of 0  which corresponds to Classical Utilitarianism. 

 

Figure 2: The steady state solution: Classical Utilitarianism case
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Recall that in such a case the 0  locus depicted in Figure 1, shrinks to the origin. As shown in 

Figure 2 there are two possible candidates for the steady state equilibrium: points L and H, 

corresponding to nn ss  and nn ss , respectively. Nevertheless, by the following Proposition we show 

that only point H is the optimal solution. 

 

Proposition 2: Under Classical Utilitarianism (i.e. critical level 0 ) population growth rate is at its 

maximum at all times ( nnt ). Consumption and capital converge asymptotically toward a unique 

steady state described by (16) and (17). 

 

Proof. By concavity of u and u(0)=0, we have cuu '  0c . By using this in (15) and setting 0 , 

one has that 0  0k . Therefore nn  is optimal at all times. The system now behaves as a 

standard Cass-Koopmans-Ramsey model guided by eqs. (10) and (11).     □ 

 

Let us now consider the case of positive critical levels. In Fig. 3 we depict two curves representing the 

0  locus for two different values of α:  and , with . The two values are chosen in such a 

way that the corresponding 0  loci cut the two steady points H and L. 

 

Figure 3: The steady state solution: Critical Utilitarianism 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This corresponds to impose that  ( ) is such that k and c associated with point H (L), satisfying eqs. 

(16) and (17), also satisfy eq. (18a). Hence, these values are
10
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where ssss
N knFc  and ssss

N knFc . 
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We can now state the following Proposition providing the conditions under which Critical Level 

Utilitarianism generates either a corner or an interior solution for the steady state population growth 

rate. 

 

Proposition 3: Under Critical-Level Utilitarianism (i.e. critical level 0 ) if  the steady state 

population growth rate is at its maximum ( nn ss ); if  the steady state population growth rate is 

at its minimum ( nn ss ); if  the steady state population growth rate is an interior solution 

nnn ss , . Steady state consumption and capital are described by eqs. (16) and (17). 

 

Proof: Recall that by construction, if , the steady state nkc ss ,,  satisfies (16) (17) and (18a) and 

hence, by (15) 0 . Now, if  from this position is lowered,  in (13) turns positive and, by (15), 

 turns positive as well. Consequently n  is optimal and nkc ss ,,  is the steady state. 

On the other hand, since by construction, when , the steady state nkc ss ,,  satisfies (16) (17) and 

(18a) and hence, by (15) 0 . Now, if  from this position is increased,  in (13) turns negative 

and, by (15),  turns negative too. As a consequence n  is optimal and nkc ss ,,  is the steady state. 

Finally, if  then neither nkc ss ,,  nor nkc ss ,,  are steady states and the solution will be 

ssssss nkc ,,  with ccc ss ,  and nnnss , . To show this, take 
ssk  from (16) and substitute for it 

into (17) and (18a); then substitute (17) in (18a) to get  

 
ssssssssss

N
ssssss

N knknFuknFu '       (20) 

 

which provides all couples of  and n satisfying (16), (17) and (18a). Note that 
ssk is independent of α. 

By differentiating (20) one gets:  
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''

1
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ss
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that is, a negative relation between  and n
ss

. By (19) we know that if , then nn ss  and if   

then nn ss . Hence, for any ,,  we have nnnss ,  and, therefore, by (17) we have 

ccc ss , .         □ 

 

So far we have shown that when  is sufficiently low, (i.e. lower than ) the steady state 

solution under Critical Level Utilitarianism corresponds to the one obtaining from Classical 

Utilitarianism. We will now show that when the critical level is set very high (i.e. higher than ) the 

steady state solution for n under CLU corresponds to the solution obtained under another known 

population criterion, namely Average Utilitarianism (AU). 

In fact, in case the latter criterion is adopted, one seeks to maximize average utility, that is  

 

dtcue

t

t
t

0

max . 
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Since only per capita consumption enters the objective function, the appropriate constraint on this 

problem is eq. (10). We see that in eq. (10) n enters as a “cost” and therefore it should take on the 

lowest possible value, that is, nn ss , thus corresponding to CLU solution when . This is point 

L in Figures 2 and 3. 

Hence, we can conclude that neither CU nor AU can avoid corner solutions for the population 

growth rate; on the contrary, CLU can generate an interior solution if the critical level is in an open, 

positive interval, i.e. , . 

 

 

4. Transitional dynamics 

 

In this section we discuss the dynamic properties of the system by distinguishing two cases, according 

to whether the steady state solution for n is interior or a corner. 

 

4.1 The case of interior solution for the rate of growth of population 

 

Suppose that , , i.e. an interior steady-state solution for n exists. To analyze the transition 

dynamics we need to keep track of two systems. System (I) applies to trajectories that remain inside the 

0  locus (i.e. when λ<0). In this dynamical system we have ttt cknkfk )( . The 0k  

locus for system (I) is drawn in Figure 4, with a solid line where it applies (and dotted where it does not 

apply). It crosses the 0c locus in point L. Similarly, system (II) applies to trajectories that are outside 

the 0  locus (i.e. when λ > 0). In this system 0)( ttt cknkfk . The 0k  locus here is 

depicted with a solid line where it applies and a dotted where it does not (crossing the 0c locus in 

point H). Inside and outside the 0  locus, λ is changing value over time, but is not affecting the 

dynamical system of per-capita capital and per-capita consumption (equations (10) and (11)), as n is 

constantly at a corner. Therefore, the 2x2 per-capita consumption and capital system can be analysed 

independently (just keeping track of the sign of λ, to determine at which corner n is). So a 3x3 system 

is not needed. 

The optimal trajectory is shown in Figure 4, leading to point E. If the initial per-capita capital stock 

is lower than its steady state value, k
ss

, it is optimal to move along an unstable trajectory in the system 

(I) (i.e. nn ). This trajectory moves north east away from the steady state in the system (I). 

Eventually, in finite time, it reaches the intersection of the ψ=0 and 0c  loci, and the population 

growth rate jumps from n  to n
ss

, and the economy remains in this point forever. Consequently, the 

steady state is reached in finite time. Similarly, if the initial per-capita capital stock is greater than the 

steady state value, it is optimal to take an unstable trajectory in system (II) (where nn ), moving 

south west, away from the would-be steady state in that system. In finite time the 0  and 0c  

intersection is reached, and the n  falls to n
ss

. Again the steady state is reached in finite time. In the 

light of the analysis above, we can summarize our findings in the following Proposition: 

 

Proposition 4. For critical level ,  the unique steady state (with n
ss

 interior: nnnss , ) is 

stable and is reached in finite time. If k0 < k
ss

, then during the transition path, nn , and consumption 

and capital increase over time. At the time when k
ss

 is reached n is raised to n
ss

. If k0 > k
ss

, then during 

the transition path, nn , and consumption and capital decrease over time. At the time when k
ss

 is 

reached n is lowered to n
ss

. 
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Figure 4: The phase diagram of the model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof: As seen in Proposition 3 when ,,  there exists only one steady state, and in this steady 

state nnnss , . In constructing the proof we follow Koopmans (1965). 

When k0 < k
ss

, an increasing consumption path is optimal by equation (11). The steady state must be 

approached from below. Any trajectory approaching and reaching the steady state will be inside the 

0  locus, i.e. where λ<0 (follows from (15), since the integral is over negative values). 

Consequently the constraint is binding and by (8), nn . The dynamics is then guided by the system 

ttt cknkfk )(  and (11). The stable trajectory in this system cannot be taken (this trajectory 

ends in the steady state where 0k  for nn , -point L in Fig. 4- and there λ>0, prescribing nn ). 

Instead there is a trajectory with lower initial consumption moving away from the otherwise stable 

trajectory reaching the point [k
ss

, c
ss

] at, say, time t1. When this point is reached, the control previously 

being kept at nn  switches to n
ss

, yielding 0k , (follows from (10) and (17)). At this point 0c  by 

(11) and (16). Since capital and consumption remain on the 0  locus forever, the integral in (15) is 

zero (follows by (18a)), so λ(t1) = 0, (and n
ss

 satisfies the optimality condition). Population size is ideal. 

This is the only trajectory satisfying the optimality conditions (8)-(12). Any other trajectory will cross 

over the 0  locus, and either diverge to the left (reaching k=0 in finite time, making consumption 

dropping to zero, and violating equation (11)), or diverging to the right (and in finite time reaching a 

point 0)(: knkfkk ,  where consumption hits zero and violates equation (11)). 

 

When k0 > k
ss

, the equation (11) prescribes a decreasing consumption path. Any trajectory moving 

down and left, toward the steady state, will be in the region where λ > 0, i.e. outside the 0  locus 

(follows from (15)). Consequently nn . The dynamics is guided by 0)( ttt cknkfk  and 

(11). Again, there is only one trajectory leading to the steady state. When reached, say, at time t2, the 

control n is lowered from nn  to n
ss

, and consequently 0k = 0c . Remaining on the 0  locus, 

yields λ(t2) = 0 (by (15) and (18a)).         □ 

O 

c 

=0  

c
ψ 

 

c
α

 

 

           k
ss
                                                                    k 

0)(nk   

0)(nk   

0)( ssnk   

FN 

0c  

L 

E 

H 
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Let us now comment on some particular features of the solution. First, from our analysis it may well be 

the case that it is optimal to choose the lower limit of population growth even if individuals‟utility is 

higher than the critical level (i.e. u ). However, such a result does not depend on the hypothesis of 

capital accumulation, since it would obtain also in the “static model” with given resources. The reason 

is that in this case the social value of one extra person is lower than his/her cost (i.e. 

kffc
u

u
'

'
), which may well happen also in the static case. Second, it may appear 

somehow counterintuitive that the solution involves a discrete jump of the rate of growth at the steady 

state value, in finite time. However, this feature does not represent a problem because all equations (5)-

(9) are well defined in the presence of such a discrete change (in that the population rate of growth is a 

control variable and λ is continuous, approaching zero on the 0  locus). 

 

4.2 The case of non-interior solution for the rate of growth of population 

 

We saw in section 3.2 that if α is too low or too high in relation to threshold values of α we have 

corner solutions for n. These threshold values are functions of ρ, n  and n (equation 19), as well as 

other primitives. Here, we limit ourselves to variations in the discount rate, ρ. Keeping α constant we 

can find threshold values of ρ, for having an interior solution. We define one threshold value as :

 in equation (19a), and :  in equation (19b). Consequently, for ),(  we have an 

interior solution, and for discount rates outside this interval we have corners. Two corners are depicted 

in Figure 5.  

 

Figure 5: Corner steady states 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In either cases both consumption and capital intensity will behave exactly as they would do in a 

classical Cass-Koopmans-Ramsey growth model (given that the population would be exogenous). 

We now characterize and discuss the dynamic properties of our model in the presence of corner 

solutions. 

First, it can be shown that either equilibria are saddle path stable. 

E  E  
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c
α 

 
  

ss
k                                                  ssk

 

 

0c  0c  

0)(nk

  

FN 

0)(nk   



 14 

Take eqs. (10), (11) and (12) and let us linearize them around the steady state. We get that  

 

ss

ss

ss

kk

cc

Jk

c







 where J=

nkfucFu

nf

f
u

u

N '''''

0'1

0''
''

'
0

 

 

The eigenvalues i  of the matrix H are 01 n , ''
''

'

22

2

3,2 f
u

unn
 the 

latter two with opposite signs; since two eigevalues are positive and one is negative, we can conclude 

that the steady state point is saddle point. 

 

As for the dynamics, consider the case when . By looking at Figure 5 we can see that if 

ss
kk0 , it is optimal to move along the stable trajectory in the system with nn , approaching E  

from below. If 
ss

kk0  society should move along an unstable trajectory in the system with nn  

and reach the stable trajectory in the system with nn  exactly on the 0  locus. At that point the 

population growth rate falls from n  to n , and follows the stable trajectory in the system with nn  

approaching E  from above. Here, in either case, it takes infinite time to reach the steady state. 

Similarly, consider the case . If sskk0 , it is optimal to follow an unstable trajectory in the 

system with nn  and when reaching the 0  locus to increase n from n  to n , and continue on the 

stable trajectory in the system with nn , approaching E  from below. Finally if sskk0 , society 

should pick the stable trajectory in the system with n . Again, the economy will reach the steady state 

in infinite time. 

 

We can summarize our findings through the following proposition: 

 

Proposition 5: The corner steady state is characterized by the values of ssssss nkc ,,  that are the 

solutions of eqs. (16), (17) and (18b) and satisfies the condition u . Along the transition path the 

economy will undertake a stable trajectory and i) n can jump from the upper (lower) value to the lower 

(upper) steady state value if 0k  is sufficiently low (high): ii) capital intensity and per-capita 

consumption move in the same direction along the transition path, and precisely they increase 

(decrease) if ss

t kk  ( ss

t kk ). Finally, the economy will reach the steady state in infinite time. 

 

 

5. Comparative dynamics 

 

Let us now investigate the effects of  the change of some relevant parameters of our model on both 

the steady state and on the dynamics of the model. More precisely, in the next two subsections we 

focus on a technological shock affecting total productivity, and on a change of the critical level, 

respectively. For the sake of brevity we will focus on the interior solution case for n, corresponding to a 

critical level , . 
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5.1 The effects of a technological shock 

 

In order to analyze the effects on population growth of technological shock we introduce a total 

factor productivity parameter A, and replace the previous production function f=Ag(k). The steady state 

solution is now described by the following equations: 

 

 

)(' sskAg             (16‟) 

 
ssssssss cknkAg )(                      (17‟) 

 

])(')([
)(

)( ssssssss

ss

ss

kkAgkAgc
cu

cu
      (18a‟) 

 

Let us point out the consequences on the steady state of an unexpected permanent increase in A 

occurring in period t1. We will also discuss the implications for the dynamics of the model of this 

technological shock. 

All equations are affected. First, as far as steady state capital is concerned, when A increases the 

new steady state capital will be higher: differentiating (16‟), since g is concave, we get 

0
''

'

Ag

g

dA

dk ss

 and the 0c  line shifts right. As for the steady state per capita consumption, by 

differentiating (18a‟) with respect to A and realizing that k
ss

 is a function of A (from (16‟)), we have 

0
'

''

2

u

u

u

g

dA

dcss

.  

Finally, by totally differentiating (17‟) with respect to A and using the derivatives for k
ss

 and c
ss

, we 

get: 0
'

''''

'1 2

u

u

u

g

Ag

g
ng

kdA

dnss

.  

As for the locus 0 , recall that it is defined by 0'
'

kAgAgc
u

u
, providing all 

combinations of c and k satisfying (18a). To see how such a locus changes with A, we must see how c 

associated with each k varies. Thus we take the derivative with respect to A, keeping k constant, which 

yields: u
u

kgg

u

u

dA

dc
0

'

''

'2
; hence, we can conclude that the locus 0  shifts inwards 

when A increases, apart from the intercepts on the vertical axis, where k is equal to zero. 

All this considered, as for the steady state, when A increases, c
ss

 decreases while k
ss

 and n
ss

 increase 

as well. The new steady state moves from point E to point E‟ in Figure 6. 

Consumption must jump instantaneously on to the new stable trajectory leading to E‟. Otherwise, if 

c remains where it is it would take a path north-west and reach the k=0 axis in finite time, forcing 

eventually consumption to drop to zero and violating eq. (11). The drop in consumption is depicted in 

Figure 6. The stable trajectory leading to the new steady state is inside the 0  locus and 

consequently  is negative, by (15), and the population growth rate is at its minimum, n . Along this 

trajectory, per capita consumption and capital are increasing over time. When the economy reaches E‟ 
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at say time t2 the population growth rate jumps to its new interior steady state level which is higher than 

the previous steady state level as shown above. 

 

Figure 6: The effects of a positive technological shock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us provide an economic intuition of the dynamics of the model initiated by the increase in A. 

First note that at time t1 consumption falls down (see Fig. 7a): in fact, since the new steady state capital 

intensity is higher, it is optimal for the society to boost capital accumulation in order to exploit the 

higher productivity of both capital and labour. Thus, the society finds it convenient to increase capita 

accumulation by reducing the amount of resources consumed in period t1, in such a way that the 

economy jumps on the new saddle path at time t1. In the following periods, both consumption and 

capital intensity grow steadily towards the new steady state. Note that the increase of both variables 

during the transition is favoured by the reduction of the population growth rate, which remains at the 

lower boundary level throughout (see Fig. 7b).  

 

We can summarize our findings with the following proposition: 

 

Proposition 6: An increase in A increases k
ss

, reduces c
ss

 and increases n
ss

. Along the transition path, 

the economy experiences a demographic deceleration, with n sticking at the lower limit n , while per-

capita consumption experiences an undershooting movement, in that after falling down, it progressively 

increases towards the new steady state value. Finally, per capita capital constantly increases along the 

transition. 
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Figure 7a: Dynamic path of consumption caused by an increase of total productivity  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7b: Dynamic path of population growth rate caused by an increase of total productivity  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Increase of the critical level utility 

 

Suppose now that at a certain time t1 the critical level α is increased. In fact, the only locus affected by 

the change of α is 0 : cF
u

u
N

'
. More precisely, since for any given level of k it turns out 

that 0
''

'

uu

u

d

dc
 iff u , then the locus shifts outwards (see Fig. 8). 

Note that given that ssk  remains constant, the outwards shift of the 0  implies an increase 

of c
ss

. Moreover, from eq. (16)-(18a) it turns out that 
d

dc

kd

dn ss

ss

ss 1
<0. As for the adjustment towards 

the equilibrium, it is easy to realize that there is no dynamics, in that the economy jumps 

instantaneously on the new steady state, characterized by higher consumption and lower population 

growth rate. Finally, when the critical level takes values which are outside the , , further changes 

of it produce no effect on the steady state values for 
ssssss nkc ,, . 

We summarize our findings in the following proposition: 
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Proposition 7: An increase of the critical level increases c
ss

, leaves k
ss

 unchanged, and decreases n
ss

. 

The economy achieves the new steady state instantaneously. 

 

Figure 8: The effects on an increase of the critical level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

 

In the present work we characterize the steady state equilibrium and the dynamic properties of an 

intertemporal economy with production and endogenous fertility, under a critical-level utilitarian 

welfare criterion (CLU). We show that the steady state solution emerging under the CLU approach 

would coincide with the one generated by Classical Utilitarianism (i.e. population should grow at the 

maximum speed –the so-called “the repugnant conclusion”) only if the critical level adopted is too low, 

while the solution would coincide with the one obtaining in the Average Utilitarianism approach (i.e. 

population should grow at the maximum speed) only if the adopted critical level is too high. Such a 

result has two straightforward implications: from a normative standpoint, the CLU approach can 

provide results which differ from the traditional ones if the critical level to be chosen belongs to a 

positive, closed set. From a positive perspective, the results stemming from the CLU approach may 

represent an alternative interpretation of the observed different population growth paths undertaken by 

developed and underdeveloped countries (that is, in terms of different critical levels). In fact, according 

to our results it may well be the case that underdeveloped countries find it optimal to grow as fast as 

possible given that they are entailed with a lower critical level, while developed countries have reduced 

their fertility rates due to a higher critical level. Clearly, the conjecture that the critical level can vary 

according to the stage of development an economy is experiencing seems plausible and is left for future 

research (preliminary results on such an issue confirm that this extension can strengthen the robustness 

and the explicative power of the CLU approach). 

As for the optimal transition towards the equilibrium, we show that while consumption and capital 

move in the same directions, the optimal rate of population growth is a corner solution, either at the 

lower or at the upper limit, depending on whether the initial capital intensity is higher or lower than the 

steady state level, respectively. Moreover, we point out that the economy reaches the steady state in 
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either finite or infinite time, depending on whether the steady state solution for the population growth 

rate is either interior or corner solution. We also perform a comparative dynamics analysis, in which we 

show that, at the steady state: a) a positive technological shock increases both optimal capital and 

optimal population growth rates, while reduces consumption; b) An increase of the critical level 

parameter increases optimal consumption, leaves the optimal capital intensity unchanged and decreases 

the optimal population growth rate. While in the former case the dynamics of the economy implies an 

initial reduction of per-capita consumption and then a parallel increase of both consumption and capital 

along the transition (with the rate of growth at the minimum level), in the latter the economy achieves 

the new steady state equilibrium instantaneously. 
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