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1 Introduction

The behaviour of QCD at non-zero temperature and density is an active area of

research both from a theoretical as well as an experimental perspective. While per-

turbation theory can be used at very large temperatures or densities, this is of limited

use in intermediate regimes such as those that are relevant for heavy ion collisions

or the description of the interior of neutron stars, where QCD is strongly coupled.

Lattice methods in turn are hard to apply to highly time-dependent processes, and

also pose difficulties when dealing with systems with large baryon density because of

the sign problem. Alternative techniques are therefore called for. The gauge/gravity

duality provides a non-conventional approach to the study of strongly coupled gauge

theories, and while the dual of QCD proper is not known (not even in the large-Nc

limit), some of the current proposals for holographic duals of gauge theories do at

least seem to capture several qualitative properties of strongly coupled QCD.

One of the key questions related to QCD at non-zero quark chemical potential is

that of the character of the ground state. Various models suggest that, for particular
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values of the chemical potential and temperature, an instability sets in which results

in the decay of the homogeneous vacuum to one which breaks translational invariance

(see for instance the ladder analysis of QCD in the large-Nc limit by Deryagin,

Grigoriev and Rubakov [1]). In the dual holographic language, chemical potentials

are typically realised by introducing an electric gauge field configuration on the world-

volume of a flavour brane, with the non-normalisable component being related to

the value of the chemical potential. Such electric configurations in the presence of a

curved background can become unstable, as was emphasised in work of Nakamura,

Park and Ooguri [2]. These authors have pointed out that a black hole with a

constant electric field in five-dimensional Maxwell-Chern-Simons theory is unstable

against decay towards a configuration with both electric and magnetic fields turned

on. Importantly, this instability occurs only for a non-vanishing value of the spatial

momentum k, signalling that the new ground state is spatially modulated. The

lowest energy state has a uniquely specified momentum kgs, which is determined by

the value of the electric field. The origin of the instability can be traced to the

presence of a Chern-Simons coupling.

In the context of holographic models, such behaviour was in fact first found in

the work of Harvey and Domokos [3], who exhibited an instability in a particular

bottom-up model with a Chern-Simons coupling and an axial chemical potential.

More recently, Ooguri and Park [4, 5] have analysed the Sakai-Sugimoto model [6, 7]

in the deconfined phase, where chiral symmetry is restored. This model contains

Chern-Simons couplings in the action of flavour D8-branes. The presence of a non-

vanishing electric field corresponding to a quark chemical potential then leads to

an instability towards a phase where baryonic charge density is generated. This

non-homogeneous ground state contains corresponding baryonic and axial currents

carrying non-zero momenta kgs.

This still leaves open the question as to whether a similar instability can occur

at vanishing temperature. In the aforementioned Sakai-Sugimoto model, it is known

that even at zero temperature, a sufficiently large isospin chemical potential can lead

to an instability towards a new ground state in which vector mesons condense [8].

This ground state, even though it breaks rotational invariance, is spatially homoge-

neous. The question remains whether a non-homogeneous ground state is possible in

this model. In the present paper, we therefore set out to use the holographic model

of Sakai and Sugimoto to study the properties of a QCD-like theory in the large-Nc

limit, at non-vanishing values of the axial chemical potential.1 More precisely, we

1An axial chemical potential is induced by a time-dependent theta angle, and as such is one of

the motivations to study the Chiral Magnetic Effect [9], where theta angle fluctuations together

with a magnetic field induce an electric current. The axial potential also plays an important role

in the holographic realisation of chiral magnetic spirals [10]. In the present paper, however, we do

not turn on any additional magnetic field but simply study the consequence of the axial chemical
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analyse the ground state in the confining phase where chiral symmetry is broken.

Although the axial currents are anomalous in real QCD, this anomaly is suppressed

in the large-Nc limit, and the axial U(1) current is conserved. We will see that this

potential can trigger an instability to a new non-homogeneous ground state. This is

to be contrasted with the effect of a baryon chemical potential. The latter would lead

to condensation of baryons, which are somewhat problematic in the large-Nc limit as

they become infinitely heavy, and are in fact singular objects in the Sakai-Sugimoto

model.2 Our solutions are regular and have finite energy.3

Our results show that even the low-temperature phase of the Sakai-Sugimoto

is unstable against decay into a non-homogeneous state. These results can be con-

trasted with recent work [12] on the effects of the axial chemical potential in the

PLSMq model, where no evidence for an axial potential induced phase transition at

zero temperature was found. The spatial modulation of the ground state we find

is characterised by the momentum, which is interestingly, to good approximation

independent of the axial density (or chemical potential). We also find that the axial

density of the new ground state is substantially larger for a given chemical potential

than in the homogeneous phase. The instabilities towards new ground state occur

both in the Maxwell-Chern-Simons truncation of the flavour D8-brane action as well

as in the full DBI system, provided the Chern-Simons coupling of the latter is suf-

ficiently large. We do not find any evidence for condensation into other states as

the chemical potential is increased further. While new non-homogeneous configura-

tions appear, they do not correspond to new global energy minima, but only to new

meta-stable vacua, as they have larger free energy than the true ground state.

2 Chemical potentials in the Sakai-Sugimoto model

2.1 Review of the model

In this section we briefly review the basics of Sakai-Sugimoto model [6, 7] in order to

set the scene and to introduce the conventions we will be using in this paper. The

Sakai-Sugimoto model at low temperature is derived by considering the decoupling

limit of a large number Nc of D4-branes compactified on a circle of radius R spanned

by the coordinate τ . Anti-periodic boundary conditions are imposed on the fermions.

The system furthermore includes Nf flavour D8-branes positioned at τ = 0 and

Nf anti-D8-branes positioned at τ = L. The dual gauge theory is a maximally

supersymmetric SU(Nc) gauge theory in 4+1 dimensions, which is compactified on a

potential by itself.
2The authors of [11] found a dynamical instability treating the baryonic chemical potential as a

source of cusps in the flavour D8-branes.
3Because the solutions originate from the Chern-Simons term, they are of course still such that

the fields scale as ∼ λ, i.e. their scale is set by the string length.
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circle with anti-periodic boundary conditions for the adjoint fermions, coupled to Nf

left-handed fermions in the fundamental representation of SU(Nc) localised at τ = 0

and Nf right-handed fermions in the fundamental representation localised at τ = L.

In more detail, the background generated by the stack of D4-branes has a metric,

Ramond-Ramond four-form and string coupling given by

ds2 =
U3/2

R3/2
ηµνdx

µdxν +
U3/2

R3/2
f(U)dτ 2 +

R3/2

U3/2

dU2

f(U)
+R3/2U1/2dΩ2

4 ,

eφ =gs
U3/4

R3/4
, F4 =

(2πls)
3Nc

VS4

ε4 , f(U) = 1− U3
KK

U3
,

(2.1)

where ε4 is the volume form on S4 and VS4 its volume. The index µ = 0, 1, 2, 3 defines

the directions of the dual gauge theory, and τ is a coordinate on the circle so that

τ ≡ τ + δτ . The curvature radius is given by R = (πgsNc)
1/3ls where gs is the string

coupling and ls =
√
α′ is the string length. The period of the compact coordinate

introduces a four-dimensional mass scale

δτ =
4π

3

R3/2

U
1/2
KK

≡ 2π

MKK

, (2.2)

and the four dimensional ’t Hooft constant is related to the string coupling by

λ = g2YMNc = 2πMKKgsNc ls . (2.3)

For our purposes it will also be convenient to introduce use pair of dimensionless

coordinates y and z defined by the relations

U = UKK

(
1 + y2 + z2

)1/3 ≡ UKKK
1/3
y,z , τ =

δτ

2π
arctan

(
z

y

)
. (2.4)

In terms of these coordinates the metric takes the form

ds2 = U
3/2
KKR

−3/2K1/2
y,z ηµνdx

µdxν +
4

9
R3/2U

1/2
KK

K
−5/6
y,z

y2 + z2

[
(z2 + y2K1/3

y,z )dz2

+ (y2 + z2K1/3
y,z )dy2 + 2yz(1−K1/3

y,z )dydz
]

+R3/2U
1/2
KKK

1/6
y,z dΩ2

4 . (2.5)

In this background one introduces a probe D8-brane and D8-brane which fill

out the 3 + 1 dimensional space-time and the four-sphere, and trace out a curve in

the remaining two directions (U, τ). The latter coordinates span a two dimensional

cigar-like subspace. The shape of the curve is obtained by solving the equation of

motion of the probe branes, and is given by a one parameter family, which is specified

by the asymptotic separation between the D8 and D8-brane. In this paper we will be

interested in the so-called antipodal brane embedding corresponding to the maximal,

antipodal separation of the branes in the circular direction τ . In this case, the branes

– 4 –



extend all the way to the tip of the cigar where they join in a smooth way. For this

special case the metric on the brane world-volume takes the form

dsD8 = U
3/2
KKR

−3/2K1/2
z ηµνdx

µdxν +
4

9
R3/2U

1/2
KKK

−5/6
z dz2 +R3/2U

1/2
KKK

1/6
z dΩ2

4

≡ GMNdxMdxN ,
(2.6)

where Kz = 1 + z2.

The action for the U(Nf ) gauge fields living on the D8-D8-branes is given by the

DBI action which in the non-abelian limit is not fully known, but at the quadratic

order reduces just to the the Yang-Mills action in a curved background, corresponding

to the curved world-volume of the brane,

SYM = −µ8(πα
′)2
∫

d4xdzd4Ω e−φ
√
−|G|Tr

(
FMNFMN

)
(2.7)

where FMN = ∂MAN − ∂NAM + i[AM ,AN ], and the index m = (µ, z, α). The

coordinate z spans the holographic direction and α labels the directions on S4; indices

are raised or lowered using the metric (2.6). In order to avoid non-singlet SO(5)

states associated to the S4, in what follows we will set all the excitations along the

sphere directions to zero, Aα = 0 and assume that Aµ and Az do not depend on the

S4 coordinates. Then we can integrate out the S4 coordinates and the Yang-Mills

action reduces to

SYM = −κ
∫

d4xdzTr

[
1

2
K−1/3z ηµρηνσFµνFρσ +M2

KKKzη
µνFµzFνz

]
(2.8)

where

κ =

√
α′gsN

2
cMKK

108π2
=

λNc

216π3
. (2.9)

Note that the Yang-Mills action can now be written in terms of an effective five-

dimensional metric

ds2(5) = gmndxmdxn = M2
KKK

2/3
z ηµνdx

µdxν + K−2/3z dz2 , (2.10)

in terms of which it takes the form

SYM = −κ
2

∫
d4xdz

√
−gTr [FmnFmn] , (2.11)

where the indices are now raised or lowered using the metric gmn.

The effective action for the D8 brane includes also a Chern-Simons term which

is given by

SCS = µ8
(2πα′)3

3!

∫
D8

ω5 ∧ F4 = α

∫
ω5 , α = α̂

Nc

24π2
. (2.12)
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Here α̂ = 1 in string theory but we will keep it as a separate parameter for later

use4. Again, F4 is the Ramond-Ramond four-form, proportional to the volume form

of S4 (see (2.1)), and the ω5 form is the usual five-dimensional Chern-Simons form,

ω5 = Tr

(
AF2 − i

2
A3F − 1

10
A5

)
. (2.13)

It is useful for our purposes to decompose the U(Nf ) gauge field into the SU(Nf )

part Ã and the U(1) part Â as

A = Ã+
1√
2Nf

Â (2.14)

For the case Nf = 2, we can decompose the U(2) symmetry into the baryon U(1)

and isospin SU(2), and the Chern-Simons term decomposes as

SCS = α

∫ (
3

2
ÂTrF2 +

1

4
ÂF̂2 + (total derivatives)

)
, (2.15)

We see that in the case of two D-branes, the Chern-Simons coupling has two terms,

one involving only U(1) fields and the other one which couples the U(1) and the

SU(2) fields. In the present paper we will focus on the effect of the U(1) part.

2.2 Holographic realisation of chemical potentials

Holographic models encode global symmetries of the dual gauge theory in the form

of gauge symmetries in the bulk theory, and these relations hold both for the closed

as well as the open sectors of the string theory. So in particular, in the D8-D8

system, there are two independent gauge theories living near the two boundaries of

the flavour brane system, giving rise to U(Nf )L and U(Nf )R gauge symmetries, and

these correspond to the global U(Nf )× U(Nf )R of the dual gauge theory.

In the low-temperature phase of the Sakai-Sugimoto model that we are interested

in, the two branes are connected in the interior of the bulk space, and thus the gauge

fieldsALM andARM are limits of a single gauge field living on the two connected branes.

Therefore, one cannot independently perform gauge transformations on these two

gauge fields, but is constrained to gauge transformations which, as z → ±∞, act in

a related way. Specifically, since near the boundary a large bulk gauge transformation

acts as AL/R → gL/RAL/Rg−1L/R, then clearly if gL = gR any state (and in particular

the trivial vacuum A = 0) is invariant under the vectorial transformations, i.e. those

transformations for which gL = gR. Hence it means that the vector-like symmetry is

unbroken in this model.

The correspondence between the bulk gauge field and the source and global

symmetry current of the dual gauge theory is encoded in the asymptotic behaviour

4For comparison, our α̂ corresponds to 4/3 times α used in [5].
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of the former. More precisely, the bulk gauge field AM(z, xµ) behaves, near the

boundary and in the Az = 0 gauge, as

An(xµ, z)→ an(xµ)
(

1 +O(z−2/3)
)

+ ρn(xµ)
1

z

(
1 +O(z−2/3)

)
. (2.16)

Here an(xµ) describes non-normalisable behaviour of the field, and is interpreted as

a source in a dual field theory action of the form∫
d4x an(xµ)Jn(xµ) , (2.17)

while ρn(xµ) is proportional to the expectation value of the current Jn(xµ). Therefore,

adding a chemical potential to the field theory corresponds to adding a source for J0,

which implies the boundary condition for the holographic gauge field An(x) = µδn0.

For the Sakai-Sugimoto model, the bulk field Am living on the D8-branes has two

asymptotic regions, corresponding to each brane, and hence there are two indepen-

dent chemical potentials µL and µR which can be separately turned on. Instead of

left and right chemical potentials one often introduces vectorial and axial potentials,

defined respectively as µV = 1
2
(µL + µR) and µA = 1

2
(µL − µR). The vectorial and

axial chemical potentials for the U(1) subgroup of the U(2) gauge group on the two

D8-branes correspond to the baryonic and axial chemical potential in the dual gauge

theory, while the non-abelian SU(2) chemical potentials are mapped to the vectorial

and axial isospin potentials.

In this paper we will be interested only in axial chemical potentials. Our compu-

tations will mainly be concerned with the U(1) subgroup, since the instability which

leads towards the spatially modulated phase in the U(1) subgroup is present in the

same form in the U(1) subgroup of an isospin SU(2) group, leading to the instability

of homogeneous configuration for the isospin chemical potential as well.

Our starting point is the homogeneous solution [6] in the Az = 0 gauge. For the

configuration to describe an axial chemical potential one needs to turn on only the

A0(z) component, and look for odd, non-normalisable solutions to the equations of

motion (3.2). It is not hard to see that with this simple ansatz the Chern-Simons

contribution to the equations of motion vanishes, and the solution to the equation

of motion is given by

A0(z) =
2

π
µA arctan z . (2.18)

Just as in the chiral Lagrangian, there is no potential generated on moduli space [8],

and the result of the axial potential is simply a non-vanishing axial density. The

value of this density is easily read off using (2.16) to be ρA = 2µA/π. This same

solution can also be trivially embedded in the U(1) subgroup of the SU(2) isospin

group. In this case however, as explained in [8], the odd A0(z) configuration in the

Az = 0 gauge is equivalent (by a global SU(2) rotation) to a system with a vectorial

chemical potential and a non-trivial pion condensate.
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3 The spatially modulated phase

We have seen in the previous section that turning on the axial chemical potential

in Sakai-Sugimoto model requires finding a non-normalisable spatially homogeneous

solution for the U(1) field A0, which is an odd function in the holographic direction.

The asymptotic values of A0 correspond to the values of the chemical potentials in

the dual gauge theory.

As mentioned in the introduction, the work of Domokos and Harvey [3] and

Nakamura, Ooguri and Park [2, 4] has shown that in Maxwell theory with a Chern-

Simons coupling turned on, a constant electric field is unstable against decay to a

spatially modulated phase, in which a magnetic field transverse to the direction of

the initial electric field is switched on. Since the configuration with non-vanishing

axial chemical potential (2.18) amounts to having a non-vanishing electric field in

the bulk, we expect that an instability similar to that found by the aforementioned

authors should be present here. In the present section we will analyse the Sakai-

Sugimoto model at zero temperature with non-zero axial chemical potential, show

that for sufficiently large values of that potential a new ground state appears, and

determine that it has lower energy than the homogeneous vacuum.

3.1 Equations of motion

Let us begin by writing the effective 5-dimensional action for the case of a single

flavour Nf = 1, obtained after we integrate out the fields on the four sphere S4, for

the case of the single D8-D8 brane,

SYM + SCS = −κ
2

∫
d4xdz

√
−gFmnFmn +

α

4
ε`mnpq

∫
d4xdzA`FmnFpq . (3.1)

The equations of motion following from this action read

√
−g
[
g00gzz∂0F0z + gxxgzz∂iFiz

]
+

3

2

α

κ
εijkF0iFjk = 0 ,

∂z
[√
−g gzzg00Fz0

]
+
√
−g g00gxx∂iFi0 −

3

2

α

κ
εijkFziFjk = 0 ,

∂z
[√
−g gzzgxxFzi

]
+
√
−g (gxx)2∂jFji +

√
−g g00gxx∂0F0i

+
3

2

α

κ
εijkFz0Fjk −

3α

κ
εijkFzjF0k = 0 .

(3.2)

Here we have split the five-dimensional bulk indices as m = (i = (1, 2, 3), 0, z) and

we have assumed that the general diagonal five-dimensional effective metric gmn
depends only on the z coordinate and has symmetry g11 = g22 = g33 = gxx (valid for

the Sakai-Sugimoto system).
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It is important to note that the variation of the action (3.1) leads to a boundary

term, which, after one uses the Bianchi identity ∂mFpq + ∂qFmp + ∂pFqm = 0, reads

δSbdy = −
∫

d4xdz ∂m
[
δA`

(
2κ
√
−gFm` + αε`mnpqAnFpq

)]
. (3.3)

Therefore, when δAl does not vanish, one has to add a boundary term to the action

in order to ensure that there are no boundary contributions to the equations of

motion (see e.g. [13] for a discussion in related context). This is important when

we consider the system at constant density. In the appendix we discuss this issue in

more detail, and give the corresponding boundary term for the antipodal embedding

of D8-D8 branes.

3.2 The abelian ansatz

To describe a spatially modulated phase, our starting point is the ansatz

A0 = f(z, ~x) , ~A = ~A(z, ~x) , (3.4)

where ~A are in the spatial directions of the boundary. We will work in the gauge

Az = 0. Furthermore, we only want to turn on the chemical potential for the axial

currents and insist that the spatially modulated phase is spontaneously generated

(i.e. without introducing any kind of sources). Hence we impose normalisable bound-

ary conditions on the fields ~A, while similar to the homogeneous case we impose that

A0 is non-normalisable, and tends to opposite constants at the two ends of the D8-

brane system,
~A(z = ±∞) = 0 , A0(z = ±∞) = ±µA . (3.5)

For this ansatz (3.4) the full non-linear equations of motion (3.2) become5

√
−g gxxgzz∂z(∇ · ~A)− 3

α

κ
~E · ~B = 0 , (3.6)

∂z
[√
−g gzzg00∂zf

]
−
√
−g g00gxx(∇ · ~E)− 3

α

κ
(∂z ~A) · ~B = 0 , (3.7)

∂z

[√
−g gzzgxx∂z ~A

]
−
√
−g(gxx)2∇× ~B + 3

α

κ

[
(∂zf) ~B − ∂z ~A× ~E

]
= 0 . (3.8)

In these equations, ~E = F0i x̂
i = −∇f and ~B = 1

2
εijkFjkx̂i = ∇ × ~A are the (bulk)

transverse electric and magnetic field associated to f and ~A.

A simple ansatz that solves these equations is to impose

~E = 0 , ~B = k ~A , (3.9)

5In order to compare our normalisation of the Chern-Simons coupling α with [5], note that

equation (6) of that paper contains a typo: the coefficient α should read α/6.
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where k = ±|~k| and ~k is the spatial momentum. This way the equation (3.6) is

automatically satisfied and the equation (3.7) can be integrated. The gauge field

consistent with this ansatz can be written as

A0 = f(z) , ~A = ~η1h(z) cos(~k · ~x) + ~η2h(z) sin(~k · ~x) , (3.10)

where ~η1, ~η2 are polarisation vectors satisfying

~η1 × ~k = k ~η2 , ~k × ~η2 = k ~η1 . (3.11)

For simplicity we choose ~k = k x̂1 so that the polarisation vectors reduce to ~η1 = x̂2,

~η2 = −x̂3 where h(z) is a function that vanishes at z → ±∞. The equations (3.7)

and (3.8) take the form

M2
KKKz∂zf = ρ̃− 3

2

α

κ
k h2 , (3.12)

M4
KKKz∂z [Kz∂zh]−M2

KKK
2/3
z k2h+ 3

α

κ
kh

[
ρ̃− 3

2

α

κ
kh2
]

= 0 , (3.13)

where ρ̃ is an integration constant, Kz = 1 + z2 and Mkk is defined in (2.2). Equa-

tions (3.12) and (3.13) form the system that determines the new vacuum. In order

to solve numerically this system it is convenient to introduce dimensionless variables

f̂ , ĥ, k̂ and ρ̂ defined by

f = λ̄MKK f̂ h = λ̄MKK ĥ k = MKKk̂ , ρ̃ = λ̄M3
KK ρ̂ , (3.14)

with λ̄ = λ/(27π). Then equations (3.12) and (3.13) can be written as

Kz∂zf̂ = ρ̂− α̂

2
k̂ĥ2 , (3.15)

Kz∂z

[
Kz∂zĥ

]
+
[
α̂k̂ρ̂−K2/3

z k̂2
]
ĥ− α̂2

2
k̂2ĥ3 = 0 . (3.16)

To determine the physical meaning of the integration constant ρ̂, we recall that

the charge density of the dual axial current JAµ is computed using the AdS/CFT

dictionary as

ρA ≡ 〈JA0 〉± ∼ lim
z→∞

z2∂zA0 + lim
z→−∞

z2∂zA0 . (3.17)

From the asymptotic behaviour ĥ(z) ∼ α0/z + · · · , which can be obtained by per-

turbatively solving (3.16), one deduces that the function ĥ(z) does not contribute

to the charge so ρ̂ is indeed the charge density of the dual axial current (up to a

constant). However, this does not mean that the charge density is the same as in

the homogeneous case. The reason is that the chemical potential is determined via

µA =
1

2
( lim
z→∞
A0 − lim

z→−∞
A0) =

1

2

∫ ∞
−∞

dz ∂zA0(z) . (3.18)

Therefore, we see that the constant α0 does contribute to the value of the chemical

potential, and hence modifies it in a nontrivial way so as to give a new relation

between the chemical potential µA and axial charge ρA. We will see this explicitly

in the next section (see figure 3).
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Figure 1. Result of the stability analysis in the Maxwell-Chern-Simons system. The

curve shows the values of ρ̂ and k̂ for which an instability sets in. From this analysis one

finds ρcrit ≈ 2.35, and the corresponding mode is vectorial. The dashed and dotted curves

correspond to additional instabilities of axial and vectorial nature respectively, which set

in at higher values of the density.

3.3 Analysis of the ground state

In order to find the spatially modulated phase (3.10) we need to solve equation (3.13)

for h(z) and then use this solution when determining f(z) using equation (3.12).

Equation (3.13) can be solved numerically using a shooting method.

Before presenting our numerical solutions, let us note that equations (3.13)

and (3.12) have three free parameters: the Chern-Simons coupling α defined in (2.12),

the wave number k which sets the frequency of the spatial modulation, and the

charge density of the dual current ρ̃ which appears as an integration constant in

equation (3.12). The wave number k will be kept free, i.e. we solve the equation for

various values of this parameter. In string theory the constant α has a fixed value,

but one might consider a more phenomenological attitude in which α is allowed to

take on any value. In this section we will set α to its string theory value, so that

α̂ = 1. The reason is that in Maxwell-Chern-Simons theory, which we discuss in

this section, the actual value of coupling is not really relevant: for any α, a non-

homogeneous state can be made to appear since one can always make the chemical

potential large enough. The situation is however different when dealing with the DBI

action, which we discuss in §4.

Because we do not want to introduce any external sources in the boundary theory,

we are looking for normalisable solutions of the equation (3.13). This means that,
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Figure 2. The charge density of the non-homogeneous solution, as well as the energy

difference with respect to the homogeneous vacuum, as a function of the momentum. These

plots show the range of momentum values (kmin, kmax) for which non-homogeneous solutions

exist. Both plots are made for a charge density ρ̂ = 3.9.

.

even though (3.13) is a second order equation, there is only one undetermined param-

eter, α0, which governs the behaviour of the function h(z) near infinity. By expanding

the equation (3.13) around ±∞ it is easy to see that h behaves as h(z) ∼ α0/z + · · · .
Using the AdS/CFT dictionary we see that the constant α0 is related to the expec-

tation value of the dual current in the directions ~η1 and ~η2 on the boundary,

〈J~η1〉 = lim
z→∞

z2F~η1z = α0 cos(~k · ~x) ,

〈J~η2〉 = lim
z→∞

z2F~η2z = α0 sin(~k · ~x) .
(3.19)

If the current is vectorial, then the same values are obtained by taking the limit

z → ±∞, otherwise it is axial.

Next, we use a shooting method to numerically solve (3.13) for various values of

charge densities ρ and momenta k. The first observation is that there is a critical

value of the charge density (and corresponding potential) so that if the density is

larger than ρcrit, non-homogeneous solutions will exist. This critical value is best

obtained using a linear analysis, looking for unstable modes in the homogeneous

vacuum. A fluctuation with frequency ω satisfies the linear truncation of (3.13)

with an additional term proportional to ω added. A marginally unstable mode is

then obtained by solving for modes which have ω = 0, i.e. modes satisfying the

linear truncation of (3.13). Such modes occur for one-dimensional subspaces of the

ρ− k plane. Figure 1 depicts the result of this analysis, which shows that there are

various branches of unstable modes. More specifically, we have found that for any

ρ̂ > ρ̂crit ≈ 2.35, instabilities exist.
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Figure 3. The chemical potential as a function of the charge density for the non-

homogeneous ground state. The thick dashed line describes the higher-energy, axial branch

of the solutions, which are meta-stable. The thin diagonal dashed line shows the relation

µ̂A = πρ̂A/2 for the homogeneous vacuum.

Corresponding to these instabilities are new ground states. For any momentum

in the range [k̂min(ρ̂), k̂max(ρ̂)], where k̂min and k̂max are the two values of k̂ on a

line of instability at fixed ρ̂, we find non-homogeneous solutions of the non-linear

equations. See figure (2) for an example at ρ̂ = 3.9. However, among all solutions for

a given ρ̂, there is only one momentum k̂ = k̂gs(ρ̂) for which the solution has minimal

energy. Hence this value specifies the unique ground state for a given charge density

or chemical potential. We should emphasise that when we determine the ground

state, we have compared the homogeneous and non-homogeneous solutions at fixed

charge density ρ̂. In other words we are working in the canonical ensemble. One

could also work in the grand canonical ensemble, comparing solutions at the same

value of the chemical potential µ̂A. The results which are obtained in that case are

qualitatively the same as in the canonical ensemble, so we choose to present only the

canonical ensemble results here.

The solutions describing ground state are uniquely specified by the value of the

charge density ρ̂. In other words, the parameters (α0, k̂gs, µ̂A) specifying the ground

state are all functions of the charge density ρ̂. The dependence of the chemical

potential on the charge density is plotted in figure 3, which also shows the relation

between these two parameters in the homogeneous solution. We see that the relation

is again (almost) linear in the non-homogeneous case, but for a given value of the

charge density the chemical potential in the homogeneous case is larger than in the

non-homogeneous case. The dependence of the momentum k̂gs on the density ρ̂ is
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Figure 4. The momentum of the spatial modulation as a function of the charge density

for the non-homogeneous ground state. The dashed line describes the higher energy, axial

branch. Observe that the momentum is practically independent of the density.

shown in figure 4. Interestingly, we see that the momentum is almost independent

of the charge density. It would be interesting to understand better the reason for

this behaviour. To see if this is a consequence of the Maxwell approximation of the

DBI action, we will examine this relation again in the nonlinear DBI case in the

next section. Finally, the dependence of the constant α0 on the density ρ̂ is shown

in figure 5. As is visible from equation (3.19) this constant is equal to the amplitude

of the current components Jη1 and Jη2 .

The difference between the free energies of the homogeneous and non-homo-

geneous configurations (see equation (6.5)) for fixed value of the charge density ρ

is displayed in figure 6. As required, we see that when ρ̂ > ρ̂crit, the free energy

of the non-homogeneous configuration is lower than the one of the homogeneous

configuration, indicating that the system will settle in the new ground state. We

also see that for large enough charge density, ρ̂ > 5.4, a new branch of solutions

appears. While the first non-homogeneous branch is given by an even function h(z),

thus describing a vectorial current, the next branch is an odd function, describing an

axial current. As the chemical potential is increased further, yet more branches occur,

alternating between vectorial and axial. However, as is manifest from figure 6, all

higher branches have higher values of the free energy, and thus correspond to excited

states, not ground states.

Finally we should note that while the ground state is characterised by vectorial

spatial components η1 and η2 of the current J , the charge density is always axial.

This is a consequence of the fact that the integrand in (3.12) is an even function for
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Figure 5. The amplitude of the expectation value of the currents 〈Jη1〉 or 〈Jη2〉 as a

function of the density. The dashed curve is again the unstable axial branch.
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Figure 6. The difference between the free energies of the homogeneous and non-

homogeneous configurations as a function of the charge density. The dashed line depicts

the axial ground state, which clearly has higher energy and is therefore unstable.

any function h(z).

In conclusion, we see that the Sakai-Sugimoto model predicts that, even at zero

temperature, a non-trivial condensate of vector mesons forms for sufficiently large

value of the axial chemical potential µA. This condensate is non-homogeneous, and its

spatial modulation has a momentum vector which is almost constant as a function of

the chemical potential. These results complement those in deconfined phase obtained

by [5].
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4 Spatially modulated phase for the DBI action

In the Maxwell-Chern-Simons theory, an instability towards a new ground state of

the type found in the previous section will always occur, independent of the strength

of the Chern-Simons coupling. This is simply because the electric field (and hence

the axial chemical potential µA) can be made arbitrarily large. However, given the

fact that the Chern-Simons term is of order λ−1 with respect to the Maxwell term,

the fields in this new ground state are necessarily of order λ. The solution found in

the previous section can therefore not be seen as an approximate solution to the full

DBI system, since the truncation that leads to the Maxwell action assumes that λ is

small. Re-analysing the computation for the DBI action may thus yield qualitatively

new results.6

Furthermore, in the full DBI system, there is an upper bound on the electric

field, which may prevent the instability from setting in [5]. A final reason to repeat

the previous analysis for the DBI-Chern-Simons action is to examine the question

whether the non-linearities of the DBI action modify the values of the ground state

momentum kgs, perhaps making it dependent on the charge density.

Our starting point is the DBI action for the D8-D8 system, after integration over

the S4 (on which none of the fields which are turned on depend),

SDBI = −
∫

d4xdz γ(z)
√
−E (4.1)

where

E = det(Emn) , Emn = gmn + β(z)Fmn , (4.2)

with

γ(z) = VS4 µ8 e
−φa(z)5/2b(z)2 =

λ̄3Nc

π2
K−1/3z ,

β(z) =
2πα′

a(z)
=

1

2λ̄
K1/6
z .

(4.3)

Here gmn is the effective 5-d metric defined in (2.10) and a(z) and b(z) are given by

a(z) =
8

27
MKKR

3K−1/6z , b(z) =
2

3
MKKR

3K1/6
z . (4.4)

This action is coupled to the Chern-Simons term

SCS =
α

4
ε`mnpq

∫
d4xdzA`FmnFpq . (4.5)

The coupling α is defined to be α = α̂Nc/(24π2) with α̂ fixed in string theory to

α̂ = 1. However, since we are interested in investigating the nature of the instability

we will relax this condition and consider an arbitrary α̂.

6Note that because the momentum scale k of the spatial modulation is set by Mkk (as follows

from (3.14)), higher-derivative corrections can be ignored when lsMkk is sufficiently small.
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The action variation leads to the DBI-CS equations

∂m

(
γβ

2

√
−EE(`,m)

)
+

3

4
αε`mnpqFmnFpq = 0 , (4.6)

and the boundary term

δSbdy = −
∫

d4xdz ∂m

[(
γβ

2

√
−EE(`,m) + αε`mnpqAnFpq

)
δA`

]
. (4.7)

Here we have introduced the antisymmetric tensor E(`,m) = E`m − Em` where E`m

is defined by E`mEmn = δ`n .

For the ansatz (3.10), the nonzero components of E(`,m) can be written as

E(z,0) = − 2βgzzg00∂zf

1 + gzzg00β2(∂zf)2 + gzzgxx(∂zh)2
,

E(z,i) = − 2βgzzgxx∂zAi
1 + gzzg00β2(∂zf)2 + gzzgxx(∂zh)2

,

E(1,i) = − 2β(gxx)2∂1Ai
1 + (gxx)2β2k2h2

. (4.8)

Using these results the DBI-CS equations can be written in a form which puts all

modifications due to the DBI action in a single function Q(z): the equation (3.12)

becomes

Q(z)Kz∂zf̂ = ρ̂− α̂

2
k̂ĥ2 , (4.9)

while the analogue of equation (3.13) for h(z) now reads

Q(z)Kz∂z

[
Q(z)Kz∂zĥ

]
+
[
α̂k̂ρ̂−K2/3

z k̂2
]
ĥ− α̂2

2
k̂2ĥ3 = 0 . (4.10)

The function Q(z) itself is given by

Q(z) =

√
1 + 1

4Kz

[
k̂2ĥ2 +K

−2/3
z

(
ρ̂− α̂

2
k̂ĥ2
)2]

√
1 + 1

4
K

1/3
z (∂zĥ)2

(4.11)

and we used again the dimensionless variables introduced in (3.14).

4.1 Stability analysis

Before solving the non-linear equation (4.10), it is useful to analyse again possible

instabilities in the fluctuation spectrum, in particular in order to see how they depend

on the Chern-Simons coupling α. Similar to the discussion for the Maxwell case,

we can find unstable modes by solving for h(z) in the linearised version of (4.10).

Results for two values of α̂ are given in figure 7. One observes that the number of
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Figure 7. The relation between ρ and k for the unstable mode of the DBI system, for

two values of the Chern-Simons coupling: α = 1 for the left panel and α = 2 for the right

panel.
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Figure 8. The relation between the critical value of the density and the Chern-Simons

parameter α̂. The critical density diverges as α̂→ 1/3.

solutions which survive from the Maxwell truncation is determined by the Chern-

Simons coupling, and larger values typically make the curves shift to the bottom left

of the graph. For α̂ = 1 (the value used in the Maxwell case), the critical density is

now found to be ρ̂crit ≈ 3.46, i.e. larger than in the Maxwell case.

From this instability analysis one can also find the minimum value of α̂ for which

an instability is possible at all. Figure 8 shows the critical density ρ̂crit as a function

of α̂. This plot agrees with a divergence as α̂ → 1/3, just as in [5], indicating that

there is no instability in the system when α̂ takes on smaller values. For such values,

the non-linearities of the DBI action eliminate the instabilities visible in the Maxwell

truncation.
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Figure 9. Summary of the DBI analysis, with red (dark) curves depicting the DBI results

and the Maxwell result is given in orange (light) for comparison. The left panel shows

the expectation value of the current 〈J〉 as a function of the density. The critical density

has now shifted to ρ̂crit ≈ 3.46. The right panel shows that the momentum vector is still

practically independent of ρ̂, but has also changed value.

4.2 Ground state: Maxwell versus DBI

Finally, we present the analysis of the non-homogeneous ground state in the DBI

case. The logic of obtaining it is again the same as in the Maxwell case, so we will

not dwell on it. We have already commented on the fact that the critical density

is now substantially larger. This is again seen explicitly in the plot of the current

expectation value 〈J1〉 (or 〈J2〉), given in the left panel of figure 9.

As far as the spatial modulation itself is concerned, we find from this analysis

that the momentum vector kgs for which the non-homogeneous ground state has

minimal energy is now somewhat higher than in the Maxwell case. This is depicted

in the right panel of figure 9. Nevertheless, it is still practically independent of the

density.

Numerically, the instability at ρ̂crit ≈ 3.46 corresponds, using MKK = 949 MeV

and λ = 16.6 [6], to a physical density of ρcrit = 4κρ̃ ≈ 0.79Nc fm−3 when Nf = 2

(this is close to the numerical result of [5] up to somewhat puzzling factors of two).

5 Discussion and open questions

We have analysed the effect of an axial chemical potential in the Sakai-Sugimoto

model in the low-temperature phase where chiral symmetry is broken. We have found

that for sufficiently large chemical potential, a vectorial condensate forms, which is

spatially modulated with a momentum vector which is practically independent of the

potential or charge density.

The results persist beyond the Maxwell truncation for the DBI action as well.

The main difference between the two is that critical density and spatial modulation

momentum take on larger values in the DBI case. The non-linearities thus in a
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sense stabilise the homogeneous phase. It would be interesting to understand if

the instabilities of the type we find persist if further non-linearities due to gravity

back-reaction are included.

It would also be interesting to understand if the new phase which we find occurs in

other QCD-like theories, and in particular in QCD itself. The analysis of [12] does not

find this phase, so it is worthwhile to analyse other (holographic and non-holographic)

models and isolate more carefully which feature of the theory is responsible for the

existence of the new phase. It would also be interesting to understand how robust

is our finding that the spatial modulation is almost independent of the value of

the charge density, especially since in the large-Nc analysis for the quark chemical

potential [1], the momentum is proportional to the chemical potential kDGR ∼ µV .

Putting together our results with those of Park and Ooguri [5], we can construct

a large part of the phase diagram of the Sakai-Sugimoto model in the presence of an

axial chemical potential. We see that both in the confining and non-confining (and

chirally symmetric) phases at large enough values of the axial chemical potential a

second order phase transition to a new non-homogeneous phase appears. To complete

the phase diagram it would be interesting to study the deconfinement in the presence

of the non-homogeneous condensate, and see if and how it modifies the deconfinement

temperature. For related work in other models see e.g. [14].

Finally, the chemical potential analysed in this paper can be embedded in the

context discussed in [8]. The question then arises how the homogeneous (but non-

isotropic) condensate found there competes with the non-homogeneous condensate

found in the present paper. We will return to this question in a future publication.
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6 Appendix: The Hamiltonian

6.1 Maxwell truncation

Here we present the detailed formulas for the Hamiltonian associated with the Chern-

Simons action, taking special care about the surface terms which are present for the

D8-D8 system.

Our starting point is the Lagrangian density of the Maxwell-Chern-Simons action

of (3.1), where we split the space and time indices,

L = −κ
[
F0aF0a +

1

2
FabFab

]
+

α

4
√
−g

ε0abcd [A0FabFcd + 4F0aAbFcd] (6.1)

The conjugate momentum associated to ∂0Aa is given by

Πa =
∂L

∂(∂0Aa)
= −2κF0a +

α√
−g

ε0abcdAbFcd , (6.2)

so that the Hamiltonian takes the form

HM-CS = κ

∫
d3xdz

{√
−g
[
−F0aF0a +

1

2
FabFab

]
+ ∂a

[√
−gΠaA0

]
− 2

[
∂a(
√
−gFa0) +

3α

8κ
ε0abcdFabFcd

]
A0

}
.

(6.3)

The first two terms in the above Hamiltonian belong to the bulk part Hbulk, the

third term is a surface term, i.e. a boundary Hamiltonian Hbdy, while the terms in

the last line vanish, since it is just the zeroth component of the Maxwell-Chern-

Simons equations of motion.

Using the Maxwell-CS equations of motion and the ansatz (3.10), the canonical

momentum (6.2) reduces to

Πi = 0 , Πz =
2κ√
−g

[
−ρ̃+

α

2κ
kh2
]
, (6.4)

and the Hamiltonian becomes HM-CS = Hbulk +Hbdy with

Hbulk = H
∫

dz

[
1

Kz

(ρ̂− k̂

2
ĥ2)2 +Kz(∂zĥ)2 +K−1/3z k̂2ĥ2

]
, (6.5)

Hbdy = 2κVx

[(
−ρ̃+

α

2κ
kh2
)
f
]z→∞
z→−∞

= −4H ρ̂ µ̂A , (6.6)

where H = M4
KKVxλ̄

3Nc/(8π
2), and we have expressed the result in terms of the

dimensionless variables defined in (3.14). We hence see that for our configuration,

when there is non-vanishing value of chemical potential, the boundary Hamiltonian

Hbdy is nonzero.
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By adding to the action an extra surface term Sbdy which for our configuration

takes the form

Sbdy = −2κρ̃

∫
d4xdz ∂zf , (6.7)

one can remove the surface contribution to the equation of motion (3.3) which origi-

nates from the variation of the action (3.1). This addition also simultaneously cancels

the boundary contribution to the Hamiltonian Hbdy. When comparing free energies

of the various configurations in this paper, we therefore just need to compute the

bulk contribution Hbulk to the Hamiltonian.

6.2 DBI-CS Hamiltonian

The DBI-CS Lagrangian can be written as

L = − γ√
−g
√
−E +

α

4
√
−g

ε`mnpqA`FmnFpq , (6.8)

The conjugate momentum for the gauge field is given by

Πa =
γβ

2
√
−g
√
−EE(0,a) +

α√
−g

ε0abcdAbFcd , (6.9)

so the corresponding Hamiltonian is

HDBI-CS =

∫
d3~xdz

{
γ
√
−E

[
1 +

β

2
E(0,a)F0a

]
+ ∂a

[√
−gΠaA0

]
−
[
∂a

(
γβ

2

√
−EE(0,a)

)
+

3

4
αε0abcdFabFcd

]
A0

}
. (6.10)

Note that the last term vanishes because it is just the 0th component of the DBI-CS

equations.

Using the DBI-CS equations and the ansatz (3.10), the conjugate momentum

reduces to

Πi = 0 , Πz =
1√
−g
(
−ρ̄+ αkh2

)
, (6.11)

where ρ̄ = 2κρ̃. This is the same as the result (6.4) found for the Maxwell truncation.

The boundary term in the action variation takes the form

δSbdy = ρ̄

∫
d4xdz ∂zδf , (6.12)

so in order to obtain a stationary action we need to add the boundary term

S̃ = −ρ̄
∫

d4xdz ∂zf . (6.13)

This term cancels the boundary term in the Hamiltonian. The bulk term takes the

form

HDBI-CS = 8H
∫

dz K2/3
z Q(z)

[
1 +

1

4
K1/3
z (∂zĥ)2

]
, (6.14)

with Q(z) given by (4.11).
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