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Abstract

Problems including both material and geometric nonlinearities are of practical engineering importance

in many applications. Efficient computational modelling of these problems with minimum computer re-

sources remains challenging. Often these problems are modelled with the finite element method (FEM)

with adaptive analysis, in which an error estimation procedure automatically determines regions for

coarse and fine discretization. Meshless methods offer the attractive possibility of simpler adaptive pro-

cedures involving no remeshing, simply insertion or deletion of nodes. However, as meshless methods are

computationally more expensive than the FEM, the use of the minimum possible number and proper

distribution of nodes are important issues. In this study an adaptive meshless approach for nonlinear

solid mechanics is developed based on the element free Galerkin method. An existing error estima-

tion procedure for linear elasto-static problems, is extended here for nonlinear problems including finite

deformation and elasto-plasticity, and a new adaptive procedure is described and demonstrated.

Keywords: meshless, meshfree, EFG, adaptive analysis, error estimation.
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1 INTRODUCTION

The finite element method (FEM) is the most prominent numerical tool for the solution of linear and non-

linear boundary value problems in computational mechanics. Robust FEM commercial codes are available,

and are widely used for the solution of practical engineering problems. In spite of these positive points, the

FEM can struggle, particularly when considering nonlinear problems where issues such as high pre-processing

time, low accuracy of stresses and complexity of adaptive procedures become important. It is also not ideal

for certain classes of problems, e.g. crack growth, moving boundaries and large deformation problems [1] and

various refinements are necessary, XFEM for fracture for instance. Indeed in this area major advances have

been made [2–4]. With mesh-based numerical methods, one cannot avoid the issues of element distortion

and the need for remeshing in finite deformation problems (which also brings the difficulty of projection

of information from one mesh to another). With these issues in mind, meshless methods are an attractive

alternative as only a set of nodes is required for the problem discretization and most of the main drawbacks

of mesh-based methods disappear. In this paper we present details of a meshless modelling procedure for

finite deformation elasto-plasticity which brings together a number of ideas and features including max-ent,

error estimation and adaptive refinement into a single model. The modelling is restricted here to continuum

problems and we do not present results or solutions for fracture modelling, although we do note the links to

the literature in this area in the text.

A number of different meshless methods have been developed for solid mechanics since 1990 and detailed

reviews can be found in [5–7]. The element free Galerkin method (EFGM) is one of the most widely used, in

which moving least squares (MLS) approximations are used as test and trial functions, background cells are

employed for numerical integration in the weak form and essential boundary conditions are enforced using

Lagrange multipliers. The EFGM has been used to model a variety of physics, e.g. 2D linear elasticity

[8–10], static and dynamic fracture mechanics [11, 12], plate and shell analysis [13–15], vibration [7, 16, 17],

electromagnetics [18], heat transfer [8, 19–21], metal forming [22, 23], biomechanics [24, 25] and geomechanics

[26]. While the EFGM is superior to the FEM in terms of accuracy and convergence, and there are no issues

of volumetric locking [27], MLS shape functions are computationally more expensive and complicate the

imposition of essential boundary conditions. The use of Lagrange multipliers for the latter also increases the

dimension of the final system of equations and the stiffness matrix is no longer positive definite [28]. Other

examples of meshfree approaches applied to cracking problems can be found in [29–31]. A related meshfree

method is the finite point method which also uses MLS techniques but adds stabilization and was developed

first for fluid mechanics [32] but later was applied to solid mechanics [33]. Smoothed finite element methods

(SFEMs) are often cited as competitors to meshless methods such as the EFGM. In SFEMs a modified or

constructed strain field is used, which involves only the shape functions. The Galerkin weak form is also

changed to get stability and convergence. The SFEM was first proposed in [34] for linear elastic problems.

Based on its strain smoothing formulation it is divided into cell based (CS-FEM) in [35], n-sided polygonal
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(nSFEM) [36], node based (NS-FEM) [37], edge based (ES-FEM) for 2D [7], and face based (FS-FEM) for

3D [38]. Its properties, convergence and accuracy are discussed in [39] and it has been used in adaptive

analysis [40].

Returning to the EFGM, a recent and welcome advance in shape function formulations for meshless methods

have been those based on maximum entropy (max-ent) concepts. These lead to formulations in which

imposition of essential boundary conditions is as straightforward as in the FEM. Sukumar [41] describes the

link between concepts of informational entropy [42], maximum entropy [43, 44] and global approximations

to a function. Non-local and non-interpolating characteristics of these shape functions are highlighted in [45]

where the (more useful) local max-ent formulation is introduced and incorporated into meshless modelling

of linear and non-linear elasticity. Compact support shape functions are derived using Gaussian weight

functions (or priors) in [45], work which is extended in [46] for any weight function (or generalized prior).

First-order consistent max-ent shape functions [46] are then extended to second order in [47] and max-ent is

used in [48] for the automatic calculation of the nodal domain of influence within a meshless method. Other

recent examples of the use of max-ent in meshless methods can be found in [49–52]. Another option which

is not considered here is the use of so-called interpolatory MLS, which satisfies the Kronecker delta property

and is used for imposition of the essential boundary condition in the EFGM in [53] and also in other meshless

methods [54]. In these approaches a singular weight function is used. However careful choices are necessary

for the arrangements of the domains of influence of nodes otherwise the methods acncan become unstable

[55].

It is clearly recognized in FE modelling that adaptive procedures based on robust error estimates are neces-

sary to remove user-bias and to automate analyses, and mature procedures are now available, many based on

recovery type measures such as the famous Zienkiewicz-Zhu approach. Error estimation procedures based on

constitutive relations for linear FE problems are also well developed, e.g. [56–58]. The idea here is to calculate

an admissible displacement and stress field from the finite element solution which satisfies the kinematic and

equilibrium equations but will not satisfy the constitutive relation, from which the error measure is drawn.

These are also extended to nonlinear problems in [59–62]. Residual based error estimation methods for FEs

were first proposed in [63] which are further divided into explicit and implicit depending on the use of the

residual. Details of explicit methods can be found in many references, e.g. [64, 65] and the implicit in

[66–68]. An interesting avenue of research in error estimation can also be found in the works of Larsson &

Runesson [69].

Error estimation and adaptivity have yet to become widely used in meshless methods partly because of the

current lack of a firm mathematical basis for error estimation as has been developed for FEs. However there

is evidence of a strong interest as indicated in the following. Chung and Belytschko [70] describe possibly the

first error estimator for the EFGM using the difference between raw EFGM results and projected stresses from

the same nodal distribution but with reduced domains of influence. In [71] error estimation and adaptivity
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is performed using stress gradients, thus requiring second derivatives of the meshless shape functions. In

[72] a computationally efficient method for error estimation based on tessellation is proposed for the EFGM,

i.e. error at a Gauss point is calculated as the difference between the EFGM stress or strain and that

calculated at the nearest node. A slight change is made in [73] where comparison is instead made with a field

calculated using a first order Taylor series expansion with a four quadrant criterion, and the two approaches

are compared by the same authors in [74]. [75] describes an error estimate for the EFGM based on a

Taylor series with a higher order derivative and a structured grid is used instead of a cloud of points, which

makes the implementation very straightforward. Error estimation based on the gradient of strain energy

density is proposed in [76] and an adaptive analysis for EFGM is proposed in [77] based on background cells,

error being estimated based on two different integration orders and a refinement algorithm based on local

Delaunay triangulation is also proposed. In [78], the approach from [70] is used for error estimation and

adaptive analysis in crack propagation problems. A Zienkiewicz-Zhu type recovery type error estimator is

proposed in [79]; two methods are used for stress recovery including that due to Chung & Belytschko [70]

with the discrete MLS over a stationary least square fitting and it is found that the approach of [70] is more

effective, and is used further for adaptive analysis in [80].

The survey of the current literature reveals that to date, for continuous problems (i.e. excluding fracture)

adaptive meshless methods have been limited in their use to elasto-static problems with infinitesimal strains.

In this paper we incorporate a new adaptive procedure into the max-ent EFGM for material and geometrically

nonlinear problems in solid mechanics including a robust means of transferring data between discretizations.

The paper is structured as follows. In §2.1 the EFGM and max-ent shape functions are briefly reviewed. The

formulation adopted for finite deformation and elasto-plasticity are then given in §2.2. Error estimation and

adaptive procedures for the EFGM are discussed in §2.3, including an error estimation formulation for linear

problems which is extended in §2.3.2 to nonlinear problems. The meshless refinement strategy is explained

in §2.3.3, followed by the means of transfer of path dependent variables from one discretization to the next.

Numerical examples follow in §3 to show the performance of the current approach.

2 MODEL COMPONENTS

2.1 The Element Free Galerkin method with max-ent shape functions

The element free Galerkin method is developed as follows, considering for clarity a 2D elasto-static problem

in [x , y]T (extension to 3D is trivial), in domain Ω bounded by Γ. The equilibrium equations at a material

point x are written as

∇T · σ + b = 0 in Ω, (1)
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subject to boundary conditions of σ ·n = t on Γt and u = u on Γu where Γu

⋃
Γt ≡ Γ. Here σ is the Cauchy

stress vector, t is a vector of prescribed tractions on traction boundaries Γt, u is a vector of prescribed

displacements on essential boundaries Γu, n is unit normal, b is body force vector and the differential

operator

∇ =





∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x





. (2)

The weak form of Equation 1 is written as
∫

Ω

VT ·
(
∇T · σ + b

)
dΩ = 0. (3)

where V is a vector of test functions, which are chosen to be the same as the shape functions in the EFGM.

Equation 3 can be discretized using an approximation to the displacement field in Ω

uh(x) = φ(x)T û(x), (4)

where φ is a n×1 vector of shape function values, û is a n×1 vector of nodal parameters (or fictitious nodal

values) for the n nodes in support at the point of interest x. Combining Equations 3 & 4 and after further

standard steps the final discrete system of linear equations is written as

Ku = f , (5)

where

Kij =
∫

Ω

BT
i DBjdΩ, (6)

fi =
∫

Γt

φit dΓ +
∫

Ω

φib dΩ, (7)

Bi =




∂φi

∂x 0

0 ∂φi

∂y

∂φi

∂y
∂φi

∂x


 , (8)

D =
E

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2


 , (9)

with

E =





E for plane stress,
E

1−ν2 for plane strain,
(10a)

ν =





ν for plane stress,
ν

1−ν for plane strain,
(10b)
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here ν is the Poisson’s ratio and E is the modulus of elasticity.

Max-ent shape functions are used for the approximation of the field variable (displacement) in this study.

These shape functions are strictly positive and possess a weak Kronecker delta property at the boundaries,

which facilitates the direct imposition of the essential boundary conditions. We now briefly summarize their

derivation.

The max-ent concept comes from information theory [42] where a measure of the amount of information or

uncertainty of a finite scheme is termed information entropy and is given as

H(p1, ...., pn) = −
N∑

i=1

pi log pi, (11)

where p1, ...., pn are n probabilities of n mutually independent events. The most likely probability distribution

is obtained by using Jaynes’ principle of max-ent [43], i.e. maximising Equation 11 subject to constraints
n∑

i=1

pi = 1 and
n∑

i=1

pigr (xi) = 〈gr(x)〉 , where 〈gr(x)〉 is the expectation of a function gr(x). The max-

ent approach can be used to derive shape functions by seeing an analogy between the probabilities above

and the shape function values themselves. A useful local shape function formulation can be obtained [46]

by incorporating prior distributions wi which can be regarded as weight functions that provide compact

support, and then maximising the following

H(φ,w) = −
n∑

i=1

φi log
(

φi

wi

)
, (12)

again subject to the standard constant and linearly reproducing constraints

n∑

i=1

φi=1,

n∑

i=1

φixi = x,

n∑

i=1

φiyi = y. (13)

Shape functions can be derived as

φi =
Zi

Z
(14)

where

Zi = wie
−λ1x̃i−λ2ỹi , & Z =

n∑

j=1

Zj , (15)

in which wi is the weight function associated with node i, evaluated at point x = {x, y}T
, x̃i = xi − x and

ỹi = yi − y are shifted coordinates. n is the number of nodes in support at x and λ1 and λ2 are Lagrange

multipliers which can be found from

{λ1, λ2} = argmin F ({λ1, λ2}), where F ({λ1, λ2}) = log(Z). (16)

F is a convex function and Newton’s method is used to solve Equation (16) to find the Lagrange multipliers

which can then be used in the expressions for the shape functions.
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The weight function is an important part of the max-ent shape function formulation. In this study a cubic

spline weight function is used. In the one-dimensional case the cubic spline weight function is written as

w (x− xi) = w (r) =





2
3 − 4r2 + 4r3 for r ≤ 1

2 ,

4
3 − 4r + 4r2 − 4

3r3 for 1
2 < r ≤ 1,

0 for r > 1,

(17)

Here, r = di

dmi
is the normalized distance, where di = ‖x− xi‖ is the distance between node i and point

of interest (in 1D) x and dmi is the domain of influence of a node and is written as dmi = dmaxci where

dmax is a scaling parameter. ci is the maximum distance to the neighbouring nodes. Two-dimensional shape

functions require 2D weight functions, and here we use the tensor product of one-dimensional forms [7, 10]

with a square nodal domain of influence. The size of the influence domain is dmk, where k = x, y in the x

and y directions respectively. The weight function of a node i at point x is then written as

w (x− xi) = w1D (rx) · w1D (ry) = wx · wy (18)

where rk = ‖k−ki‖
dmk

and dmk = dmax · cki and cki is calculated as

ci = maxj∈Sj ‖x− xi‖ . (19)

Sj is a set of surrounding nodes, found here using the information from the Voronoi diagram of the nodal

distribution [81, 82]

Sj = [j : V (j) ∩ V (i) 6= ∅] (20)

where V (i) is the Voronoi cell of node i. For illustrative purposes a sample 2D grid of nodes is shown in

Figure 1(a), its Voronoi diagram is shown in Figure 1(b) and the corresponding rectangular nodal domains

of influence (reduced in size for clarity) are shown in Figure 1(c).

Integration of the weak form to provide the discretized algebraic equations in Equation 5 is carried out here

using Gauss quadrature in the EFGM. To facilitate this, in this study we use structured grids of nodes which

also delineate the quadrature cells. As will be shown below, this allows for a straightforward refinement

algorithm to be used. An alternative to quadrature is nodal integration which is first proposed in [83] for

linear elasto-static problems, in order to avoid the cell based integration in EFGM. Instability due to under-

integration is treated by adding the square of the residual in the equilibrium equation. Stabilized confirming

nodal integration for meshfree Galerkin methods is first described in [84], using strain smoothing as a sta-

bilization as compared to the residual in [83]. Strain smoothing avoids the need to calculate shape function

derivatives at node and has been extended to nonlinear problems in [85].

2.2 Finite deformation and elasto-plasticity

There are relatively few changes required to model finite deformation and elasto-plasticity with a meshless

approach as opposed to one using finite elements. Here, an updated Lagrangian scheme is used in which
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(a) (b) (c)

Figure 1: Problem discretization, Voronoi diagram and corresponding nodal domains of influence

deformation gradient is the fundamental measure of deformation providing the relationship between the

current and reference configurations, i.e.

F =
∂x
∂X

, (21)

where x and X are the coordinates of a point in the current and reference configurations respectively. The

work-conjugate stress and strain measures used in this paper are logarithmic strain and Kirchhoff stress [86],

which are given as [87]

ε =
1
2

lnb, τ = Jσ, (22)

where b is the left Cauchy-Green tensor and J is the determinant of the deformation gradient F. The

updated deformation gradient Fn at the end of increment n is written as

Fn = ∆F Fn−1, ∆F = [I− δF]−1
, δF =

L∑

i=1

∆ui




∂φ
∂x

∂φ
∂y




T

i

, (23)

where Fn−1 is the value of deformation gradient at the end of previous increment, I is the unit matrix, L is

the number of nodes in support and ∆ûi is the vector of incremental nodal parameters (or fictitious nodal

values). The trial elastic left Cauchy-Green strain tensor is written as

be
tr = ∆F · be

n−1 ·∆FT , (24)

Equation 24 can be used in Equation 22 to calculate the trial elastic strain, which is input to the constitutive

model. In this study the Prandtl-Reuss constitutive model is used, which comprises the von-Mises yield
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function with perfect plasticity and associated flow. The consistent or algorithmic tangent is used for

stress updating, which leads to asymptotic quadratic convergence of the global Newton-Raphson algorithm.

Effective plastic strain is used as one of the measures to evaluate the performance of the proposed model

and is given as

εp =

√
2
3

(εp)T (εp), (25)

where εp = εe
tr − εe is the plastic logarithmic strain vector, εe

tr is the trial elastic logarithmic strain vector

and εe is elastic logarithmic strain vector. In this case Equation 6 is written as

Kij =
∫

Ω

GT
i aGjdΩ, (26)

where

Gi =




∂φi

∂x 0

0 ∂φi

∂y

∂φi

∂y 0

0 ∂φi

∂x




, (27)

and a is the isotropic spatial consistent or algorithmic tangent and is written as

a =
1
2J

DalgLBa − S (28)

where

L =
∂ln (be

tr)
∂be

tr

, (Ba)ijkl = δik (be
tr)jl + δjk (be

tr)il , (S)ijkl = (σ)il δjk. (29)

Here Dalg is the small strain consistent or algorithmic tangent, L is the derivative of the symmetric second-

order tensor with respect to its component, the detail of which is given in [88], while S is known as the

non-symmetric stress corrector and δij is the Kronecker delta.

2.3 Error estimation and adaptivity in the EFGM

Adaptive refinement algorithms when applied to finite elements work element-by-element. For the EFGM

no elements are present so instead we assess error quadrature cell by quadrature cell. Figure 2 shows a

flowchart of the overall adaptive algorithm. Three components are required in an adaptive algorithm for

nonlinear analysis:

1. estimation of discretization error;

2. refinement strategy;

3. data transfer between the consecutive discretizations.

Each are discussed with reference to the meshless modelling used here in turn below.
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Figure 2: Adaptive algorithm

2.3.1 Error estimation for linear elasto-static problems

Firstly we explain the error estimation procedure for the EFGM due to Chung and Belytschko [70], which

is confined to linear elasto-static problems. This procedure is extended to nonlinear problems in the next

section.

Recovery type error estimation procedures for FE analysis, based on smoothing procedures applied to stress

and strain fields, are not directly applicable to the EFGM, because the derived stress and strain fields are

already smooth. Instead, the method introduced in reference [70] estimates the discretization error σe in

the stress field at any point as the difference between the stresses returned at Gauss (i.e. integration) points
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in the EFGM and a stress field recovered from the nodal stresses based on reduced domains of influence, i.e.

σe = σp (x)− σh (x) . (30)

In the case of the EFGM, the stress vector returned at any point x is written as

σh (x) =
na∑

i=1

DBiûi (31)

where na is the number of nodes in the support of point x based on the nodal domain of influence dma. The

projected stresses at x are obtained using

σp (x) =
np∑

j=1

ψj (x) σh (xj) . (32)

Here ψj (x) is the shape function of node j at point (x) based on a reduced domain of influence dmp and np

is the number of nodes in the support of point x based on that reduced domain of influence.

Error for the individual cell and for the whole domain can then be found using an appropriate norm. Error

in energy norm is used in this paper and is written as

‖e‖ =




∫

Ω

∣∣∣(σe (x))T D−1 (σe (x))
∣∣∣ dΩ




1
2

. (33)

The relative error in energy norm is often used for adaptive analysis and is written as

η =
‖e‖
‖U‖ × 100, (34)

where ‖U‖ is the energy norm and is written as

‖U‖ =




∫

Ω

∣∣∣σp (x)T D−1σp (x)
∣∣∣ dΩ




1
2

. (35)

We should here distinguish between the above discretisation-based error estimator, and the model error

approach exemplified by the work of Larsson & Runesson [89, 90].

2.3.2 Error estimation in nonlinear problems

For finite element modelling the Zienkiewicz-Zhu (Z2) error estimator (based on the superconvergent patch

recovery method (SPRM)), has been widely used for materially and geometrically nonlinear FE problems.

An example can be found in [91] for industrial metal forming problems with elasto-plasticity and finite

strains, with estimators based on energy norms, plastic dissipation and rate of plastic work. In [92] the

SPRM is used in large deformation problems with hyperelasticity as a material model. An adaptive strategy

with error estimation based on an L2 norm of strain is used in 3D analysis in [93] with large deformation
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to model liquefaction phenomena. The Z2 error estimator is used in the case of viscoplasticity problems,

with application to metal forming processes in [94]. In this case the deviatoric stress is used to calculate the

error in energy norm due to the incompressible nature of the materials. The work in [94] is further extended

in [95] for 3D complex forging simulations and in [96] the SPRM with error based on an L2 norm in strain

is used in analyses involving non-homogeneous soil with large deformation. here we are taking a relatively

simple approach by using a recovery-based method, however it should be noted that there is considerable

work on more advanced error estimators [60] and of discretization errors due to choice of (pseudo- in this

case) time step [97].

Here we extend the use of the recovery type error estimation for EFGM proposed in [70] and as described

above, to nonlinear problems modelled with the EFGM including finite deformation and elasto-plasticity.

The error in energy norm is used, as first proposed in [98] as a practical error estimator for engineering

analysis for linear elasto-static problems. This also follows the approach in [91] also mentioned above. For

the nonlinear case the exact incremental error in energy norm for solution step n for the problem domain Ω

is equal to [99]

‖e‖ =




∫

Ω

∣∣∣
(
τn (x)− τh

n (x)
)T (

∆εn (x)−∆εh
n (x)

)∣∣∣ dΩ




1
2

, (36)

where τn (x) and τh
n (x) are the exact and approximate Kirchhoff stresses respectively at point x for solution

step n, while ∆εn (x) and ∆εh
n (x) are the exact and the approximate incremental logarithmic strains at

point x for the solution step n, i.e.

∆εn (x) = εn (x)− εn−1 (x) , ∆εh
n (x) = εh

n (x)− εh
n−1 (x) . (37)

For practical engineering problems, exact stresses and strain increments are not available, therefore, as in

other recovery methods, projected Kirchhoff stresses τ p
n (x) and projected incremental logarithmic strains

∆εp
n (x) are used to obtain an error estimator ‖ep‖, i.e. replacing the exact quantities in Equation 36.

In the case of the EFGM the projected Kirchhoff stresses and the projected logarithmic strain increment for

the solution step n at point {x} are determined from the following

τ p
n (x) =

n∑

i=1

ψi (x) τh
n (xi) , ∆εp

n (x) =
n∑

i=1

ψi (x)∆εh
n (xi) , (38)

where ψi (x) is the shape function of node i evaluated at point x with reduced nodal support as compared

to the support used to obtain the original approximate solution. The approach is therefore similar to that

originally proposed for meshless linear elasto-statics in [70] in obtaining projected values but uses the energy

norm as the error measure, in addition to the use of finite deformation stress and strain measures.

The incremental global percentage error for the whole domain is written as

η =
‖ep‖
‖U‖ × 100, (39)
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where ‖U‖ is the incremental energy norm for solution step n

‖U‖ =




∫

Ω

∣∣∣(τ p
n (x))T (∆εp

n (x))
∣∣∣ dΩ




1
2

. (40)

Equations 36 and 40 can also be integrated over the each individual integration cell Ωk instead of the whole

problem domain Ω to calculate the incremental error in energy norm and incremental energy norm for each

cell. For the whole domain Ω we can write squares of the error and energy norms as

‖ep‖2 =
nc∑

k=1

‖ep‖2k , ‖U‖2 =
nc∑

k=1

‖U‖2k , (41)

where ‖ep‖k is the incremental error estimate in energy norm for background cell k and ‖U‖k is the incre-

mental energy norm for background cell k.

2.3.3 Refinement strategy & data transfer

Having devised a means of estimating error we now move to the refinement strategy. The approach is

the same as that used in the original Z2 paper [98], where the target is the reduction of the incremental

percentage error at the end of each increment for the whole problem domain below a set value η, i.e.

η < η. (42)

The goal of the adaptive analysis is to distribute the incremental error at the end of each increment equally

into each background cell, so the permissible incremental error in each background cell ‖e‖k is written as

‖e‖k =
η

100

(
‖U‖2
nc

) 1
2

, (43)

where nc is the total number of background cells. Integration cells need to be refined for which ‖ep‖k

‖e‖k

> 1.

Given a flag to refine in a particular cell, the step-by-step refinement of the cell is illustrated in Figure 3,

as suggested in [75]. It is clear from the figure that in the cells which need refinement, five new nodes are

inserted, one on each side and one in the middle of the cell, and then the cell is then further divided into

four new cells. A major task in nonlinear adaptive analysis is accurate transfer of path dependent variables

between the old and new discretizations. In this study the moving least squares (MLS) approximation is

used to transfer data from the old nodes and Gauss points to their new counterparts, a strategy suggested

in [75]. The reasons for the choice of MLS rather than max-ent are that the Newton process for determining

the Lagrange multipliers for the max-ent formulation becomes poorly convergent when mapping points are

close to a boundary and secondly max-ent cannot deal with a new node position which falls outside the

original domain, as might commonly occur with finite deformationThe path dependent parameters for the

nodes are displacement u, elastic strain, plastic strain and the deformation gradient F. For the Gauss points
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Figure 3: Step by step refinement of the integration cells (the solid filled circles are the nodes defining each

cell)

the variables are the same except for the omission of displacement. Writing any of these path dependent

variables as ξ, transfer occurs using

ξ (xnew) =
nold∑

i=1

ψi (xnew) ξ (xold)i , (44)

where xnew is the position of the new node or Gauss point, xold is the position of old nodes or Gauss

points, nold is the number of old nodes or Gauss points in the support of xnew and ψj (xnew) are MLS shape

functions, the detailed derivation of which can be found in many papers on meshless methods, e.g. [8].

3 NUMERICAL EXAMPLES

Numerical examples are now given to demonstrate the correct implementation and performance of the full

meshless modelling approach whose components have been described above. All are taken from or are closely

related to problems presented in other publications using finite element analysis. We begin with a simple

small deformation problem in 2D to demonstrate the robustness of the basic code, before moving on to

examples which demonstrate the full features of the modelling.

3.1 Strip footing collapse

The same problem is also analyzed in [100] to determine a limiting load with finite element analysis. The

geometry of the problem, with boundary conditions and material properties are given in Figure 4. The

analytical solution for the same problems is also given in [100] as

Plim = (2 + π) c ≈ 5.14c ≈ 2.97σy. (45)

where c is the cohesion or shear strength (and for von Mises plasticity c = σy/
√

3). Only one half of the

model is analyzed due to symmetry with plane strain conditions and displacement control. In this case 0.002

m of vertical displacement is applied to the footing in 10 equal steps, which is clearly a small strain problem.
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This problem is solved with adaptive analysis with a target error of 20% and the evaluation of adaptive

discretizations are shown in Figure 5(a), 5(b), 5(c) and 5(d) with the number of nodes in the consecutive

discretizations being 121, 191, 305 and 543 respectively. Contour plots of the effective plastic strain are

shown in 6(a). The same problem is also solved with an initial discretization without adaptivity and the

contours of effective plastic strain is given in 6(b) for comparison, which clearly shows the effectiveness of the

adaptive analysis. The normalized pressure vs displacement curves are given in Figure 7. The same problem

is also solved with different initial adaptive discretizations as well as with very fine discretization without

adaptivity for the whole problem domain as shown in Figure 5(e). The convergence of the curve for the

adaptive analysis as well as for different adaptive initial discretization without adaptivity to the analytical

solution is clear from the plot. The solution of this problem with small deformations and matching to

a known analytical solution gives confidence to extend the proposed method to problems involving large

strains. As will be obvious from the plot, the adaptive solution as shown has a number of jumps in the

curve. The jumps represent points where rediscretization is taking place and mapping has been carried out.

The jumps are due to changes in equilibrium state of the domain due to the altered discretisation. They

should not be confused with jumps in displacements. These plots show results from successive analysis not

a single calculation.

Figure 4: Geometry, boundary conditions and material properties for the strip footing problem

3.2 Perforated tensile specimen

The second problem which begins to challenge the modelling is a perforated thin rectangular plate subject

to uniaxial tensile stress applied by prescribed displacements of one set of edges and is used in [99]. The

same geometry, boundary conditions and material properties are used here and are as shown in Figure

8. One quarter of the plate is analyzed due to symmetry, using plane stress conditions with displacement

control. A total vertical displacement of 0.3 units is applied to the upper horizontal edge of the plate
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(a) (b)

(c) (d)

(e)

Figure 5: Step by step discretization (a) First (b) Second (c) Third (d) Fourth (e) Reference

over 100 equal steps, clearly making this a finite deformation problem given the original dimensions of the

plate. This example is solved using the adaptive procedure with a target error of 18%. During analysis

three adaptive refinements are performed. The initial nodal discretization is shown in Figure 9(a), while

the first, second and third refinements (at increasing displacements) are given in Figures 9(b) 9(c) and

9(d) respectively. The final deformed configuration (at the final displacement of 0.3 units) is also shown,
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Figure 6: Effective plastic strain contours over the final deformed configuration for discretizations (a) fine

(b) coarse
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Figure 7: Normalized pressure vs displacement for different discretizations

in Figure 9(e). The numbers of nodes in the consecutive discretizations are 96, 163, 297 and 434. The

refinement procedure subdivides integrations cells placing new nodes to define new smaller cells, leading to

a roughly structured pattern of refinement. This is clearly unlikely to be the optimal refinement for the load

increment as a more unstructured arrangement would be expected to be optimal. However, the simplicity

of the refinement algorithm provides a competing advantage. Contours of effective plastic strain over the

deformed configuration at the end of the adaptive process is shown in Figure 10(a), in which a developing

shear band of finite thickness is clearly evident in the thinning section of the plate adjacent to the hole.

The same problem is also solved with an initial coarse discretization without refinement and the contour

plot of effective plastic strain at the end of the analysis is shown in Figure 10(b). Comparing these two
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figures the sensitivity of the level of refinement of the discretization when conducting finite deformation

analysis is clear. Reaction/displacement plots are given in Figure 11, the reaction being the integrated nodal

loads along the displaced edge and the displacement the prescribed displacement. Plots are shown for a

coarse unrefined analysis against the adaptive analysis and it is clear that the adaptive analysis captures

the geometric softening behavior much better than the coarse one. The steps in the adaptive analysis curve

occur at points of refinement and are not physically meaningful, although they provide a useful reminder

of the adaptive process and follow the presentation in [101]. The effect of re-discretization at refinement is

to change the net equilibrium reaction for the given displacement (as one would expect between different

refinements in FEA for instance).

Figure 8: Geometry, boundary conditions and material properties for the perforated tensile specimen (in

complementary units)

(a) (b) (c) (d) (e)

Figure 9: Step by step discretizations: (a) 1st (b) 2nd (c) 3rd (d) 4th (e)Final deformed configurations
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Figure 10: Effective plastic strain contours over the final deformed configuration for discretizations (a) fine

(b) coarse
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Figure 11: Reaction vs displacement curves for coarse and fine discretizations

3.3 Footing loaded on a vertical cut

The third example comprises the modelling of a block of elasto-plastic material carrying a footing adjacent

to a vertical unsupported face. The problem matches that found in a number of references, such as [102–104].

The geometry, material properties and boundary conditions for this problem are given in Figure 12 and it

is solved with displacement control under plane strain conditions where a total displacement of 800 mm is

applied over 400 equal steps. A rough and rigid footing is used in this case with a Young’s modulus 100
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times that of the block material. Two refinements are used in this case with a target error of 20%. The

initial discretization is shown in Figure 13(a), while the first and second refinements appear in Figures 13(b)

& 13(c) respectively. The final deformed configuration for this problem is shown in Figure 13(d). The step

by step adaptive procedure concentrates nodes along an emerging shear band as expected and once again the

structured nature of the added nodes is clear. The numbers of nodes for the 1st, 2nd and 3rd discretization

are 127, 261 and 569 respectively. Contour plots of effective plastic strain over the deformed configuration

are shown in Figure 14(a), which clearly shows a shear band of finite thickness. The same problem is also

solved with an initial discretization without refinement and the contour plot of effective plastic strain is

shown in Figure 14(b). The comparison between the load displacement curves for the adaptive and coarse

discretization is shown in Figure 15. Here we can see a perfectly plastic form of failure occurring as the

wedge of soil slides as a rigid body along the shear plane. The roughness of the footing and the displacement

control serve to control the displacement despite there being near-zero stiffness. It is clear here that the

problem requires finite deformation modelling and it is also clear that finite elements along the shear band

would be severely distorted.

Figure 12: Geometry, boundary conditions and material properties for the footing loaded on a vertical cut

problem

3.4 Footing loaded on a slope

The fourth example is another footing, this time on a block of elasto-plastic material resembling a natural

slope. This problem also appears in a number of references e.g. [99, 101, 102, 104, 105] and the modelling

of problems which are dominated by shear bands are covered using meshless methods in [106–108]. The

20



(a) (b)

(c) (d)

Figure 13: Step by step discretization (a) 1st (b) 2nd (c) 3rd (d) Final deformed configurations
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Figure 14: Effective plastic strain contours over the final deformed configuration for discretizations (a) fine

(b) coarse

geometry, material properties and boundary condition for this problem are taken from [99] and all are shown

in Figure 16. The problem is solved using displacement control applied to a single point offset from the
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centre of the footing, under plane strain conditions. A rough and rigid footing is used in this case with a

Young’s modulus of 100 times that of the slope material. A total displacement of 5.0 units is applied over

100 equal steps. Two adaptive refinements are used in this case with a target error of 10%. The initial

discretization is shown in Figure 17(a), while the first and second refinements are given in Figure 17(b),

17(c) with 127, 314 and 668 nodes respectively. The final deformed configuration for this problem is shown

in Figure 17(d). The step by step adaptive procedure once again concentrates the nodes along the shear

band, which in this case is curved, as would be predicted by simple limit equilibrium theory. The contour

plots of the effective plastic strain over the deformed configuration is shown in Figure 18(a), which clearly

show a gradually extending shear band of finite thickness. Once again the same problem has been solved

with an initial coarse discretization without refinement and the contours of effective plastic strain over the

deformed configuration at the end of analysis are shown in Figure 18(b). The load displacement curves for

the adaptive and coarse discretization analyses are shown in Figure 19, showing a clear limit load. For the

coarse analysis however a small hardening response is evident (for the whole structure, recalling that the

elasto-plastic model at the material point is itself only perfectly plastic). For the adaptive case though the

response is closer to perfectly plastic.

4 Conclusions

In this paper we have described a new numerical model for use in nonlinear solid mechanics using meshless

methods. The model can accommodate both geometrical and material nonlinearity and includes automatic

adaptive refinement as well as a number of other innovative features (such as max-ent shape functions). The

error estimation procedure proposed by Chung and Belytschko [70] for linear elasto-static problems for the
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Figure 16: Geometry, boundary conditions and material properties for the footing loaded on a slope problem

(a) (b)

(c) (d)

Figure 17: Step by step discretization (a) First (b) Second (c) Third (d) Final deformed configurations

EFGM is extended here to nonlinear problems. An incremental error is calculated for each solution step

and is used as the criterion to identify regions for refinement, which can take place very simply both due to

the meshless approach and the chosen structured grids of nodes. MLS shape functions are used to transfer

the path dependent variables from the old discretization to the new. Three challenging examples have been
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Figure 18: Effective plastic strain contours over the final deformed configuration for discretizations (a) fine

(b) coarse
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presented to demonstrate the capabilities of the new modelling procedure as a whole. The model is currently

being extended to 3D and performance compared to that of equivalent FE modelling, and these advances

will be reported in future papers.
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[49] González D, Cueto E, Doblaré M. A higher order method based on local maximum entropy approxi-

mation. International Journal for Numerical Methods in Engineering 2010; 83(6):741–764.

[50] Ortiz A, Puso M, Sukumar N. Maximum-entropy meshfree method for compressible and near-

incompressible elasticity. Computer Methods in Applied Mechanics and Engineering 2010; 199(25-

28):1859 – 1871.

[51] Ortiz A, Puso M, Sukumar N. Maximum-entropy meshfree method for incompressible media problems.

Finite Elements in Analysis and Design 2011; 47(6):572 – 585.

[52] Millán D, Rosolen A, Arroyo M. Thin shell analysis from scattered points with maximum-entropy

approximants. International Journal for Numerical Methods in Engineering 2011; 85(6):723–751.
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[60] Ladevèze P, Moës N. A new a posteriori error estimation for nonlinear time-dependent finite element

analysis. Computer Methods in Applied Mechanics and Engineering 1998; 157(12):45 – 68.
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[100] de Souza Neto E, Perić D, Owen D. Computational Methods for Plasticity: Theory and Applications.

John Wiley and Sons, 2008.

[101] Lu H. Progressive adaptivity formulation in Galerkin meshfree method. PhD Thesis, The University

of Iowa, United States – Iowa 2001.

[102] Khoei AR, Tabarraie AR, Gharehbaghi SA. H-adaptive mesh refinement for shear band localization in

elasto-plasticity cosserat continuum. Communications in Nonlinear Science and Numerical Simulation

2005; 10(3):253 – 286.

[103] Khoei A, Bakhshiani A. A hypoelasto-viscoplastic endochronic model for numerical simulation of shear

band localization. Finite Elements in Analysis and Design 2005; 41(14):1384 – 1400.

[104] Khoei A, Gharehbaghi S, Tabarraie A, Riahi A. Error estimation, adaptivity and data transfer in

enriched plasticity continua to analysis of shear band localization. Applied Mathematical Modelling

2007; 31(6):983 – 1000.

[105] Peric D, Hochard C, Dutko M, Owen DRJ. Transfer operators for evolving meshes in small strain

elasto-placticity. Computer Methods in Applied Mechanics and Engineering 1996; 137(3-4):331 – 344.

[106] Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods.

Computer Methods in Applied Mechanics and Engineering 2008; 197(6-8):641–658.

[107] Rabczuk T, Areias P. A new approach for modelling slip lines in geological materials with cohesive mod-

els. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 30(11):1159–

1172.

[108] Rabczuk T, Areias PMA, Belytschko T. A simplified mesh-free method for shear bands with cohesive

surfaces. International Journal for Numerical Methods in Engineering 2007; 69(5):993–1021.

32


