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Abstract Specification tests for the error distribution are proposed in semi–linear

models, including the partial linear model and additive models. The tests utilize an in-

tegrated distance involving the empirical characteristic function of properly estimated

residuals. These residuals are obtained from an initial estimation step involving a com-

bination of penalized least squares and smoothing techniques. A bootstrap version of

the tests is utilized in order to study the small sample behavior of the procedures in
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comparison with more classical approaches. As an example, the tests are applied on

some real data sets.

Keywords Semiparametric model · Goodness–of–fit test · Symmetry test · Empirical

characteristic function · Bootstrap test

1 Introduction

Suppose that a response variable y is driven by a combination of a linear component

and another component which is of unknown functional form. We express the relation

between response and predictors through a semi-linear model

y = x
′
β + g(z) + σε (1)

where x = (x1, . . . , xp)′ and z = (z1, . . . , zq)
′ denote non-overlapping predictor vectors

of dimensions p and q respectively, and where both β and g(·) are unknown and have

to be estimated from data {yi, xi, zi} ∈ R
1+p+q , i = 1, . . . , n. The error ε, which is the

actual object of interest of this paper, is assumed to follow an unknown distribution

function (DF) F , with E(ε) = 0 and E(ε2) = 1. We assume throughout this paper that

the errors ε1, . . . ,εn associated to different observations are independent. Important

subcases nested in model (1) are the linear model for q = 0 and the nonparametric

regression model for p = 0. Depending on the perspective taken, model (1) has also

been referred to as a partial linear model (Speckman, 1988), a semi-parametric model

(Hastie & Tibshirani, 1990), or a partial spline model (Wahba, 1984).

We wish to examine two aspects of the corresponding distribution function F of the

errors ε: (a) its specific parametric form, i.e. whether F belongs to a specific parametric

family of distributions and (b) whether F is symmetric or not. Problem (a) has been
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considered in certain popular subcases of model (1) such as the linear regression model

and the nonparametric regression model by Jurečková et. al. (2003), Sen et al. (2003),

Hušková & Meintanis (2007, 2010), Neumeyer et al. (2006), and Akritas & van Keilegom

(2001). For the symmetry problem (b) the reader is referred to Neumeyer & Dette

(2007), Hettmansperger et al. (2002), Fan & Gencay (1995) and Dette et al. (2002).

To motivate our procedures we start from Bickel (1982) who provided a general

method for constructing asymptotically adaptive and efficient estimates in semipara-

metric models under certain conditions on the error distribution. However, Schick

(1986) points out that Bickel’s conditions may not hold for certain error distributions,

and yet such adaptive estimates of the non–parametric part in (1) could be feasible,

and proceeds to weaken this condition. Subsequent authors study the existence of ef-

ficient estimates for β with known true error distribution, or under other restrictive

assumptions; see for instance Chen (1988), Cuzick (1992) and Schick (1996). As a

general message it may be stated that knowledge about the error distribution will ulti-

mately improve statistical analysis for model (1). Also, the linear regression paradigm

indicates that if the error distribution is symmetric, efficient adaptive estimation of

the regression parameter is always possible; refer to Klaassen & Putter (2005). Addi-

tionally, it is well known that certain bootstrap procedures are facilitated considerably

under symmetric errors. For extra theoretical and practical information regarding the

impact of error–distribution specification on estimation the reader is referred to van

der Vaart (1998) and Härdle et al. (2004), respectively.

In this paper we construct testing procedures for the aforementioned null hypothe-

ses (a) and (b) by following the ‘Fourier approach’ which utilizes the characteristic

function (CF). Specifically we consider test statistics which are based on the empirical
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CF

ϕn(t) =

Z

eitε̂dFn(ε̂) =
1

n

n
X

j=1

eitε̂j ,

where Fn(·) denotes the empirical DF of the residuals ε̂1, ..., ε̂n, obtained from esti-

mation of the semi–linear model (1). The properties of the estimator Fn of the error

DF F have been derived by Müller et al. (2007). In what follows we also explore the

small–sample properties of the corresponding classical tests of goodness–of–fit based on

this estimator in comparison to the Fourier tests proposed herein. It should be pointed

out that generalizing from the classical linear model to the current semiparametric

(or to the nonparametric) set–up involves the introduction of an infinite–dimensional

‘parameter’ g(·) which introduces novel features into the new model. Hence classical

methodology, such as analysis of variance and F–tests does not automatically carry

over to these more general situations but requires proper modification and new inter-

pretations; see for instance Dette & Neumeyer (2001) and Huang & Davidson (2010). In

this connection, and although the proposed test statistics are of similar shape as those

considered in a linear and nonparametric regression setup by Hušková & Meintanis

(2007, 2010, 2011), the expressions for the limit null distributions given therein do not

carry over to our context, since the semiparametric regression setup requires complex

estimation routines which inhibit the use of asymptotic theory to a large extent.

The rest of the paper unfolds as follows. In Section 2 we introduce the tests and

discuss some aspects of the test statistics. Section 3 deals with the important issue of

estimation, while bootstrap versions of the tests are introduced in Section 4 and their

behavior is studied by means of Monte Carlo in Section 5. We extend the proposed

technique to semi–linear additive models in Section 6. Finally in Section 7 we apply

our method to some real data, and summarize our findings in Section 8.
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2 Test statistics

Let us write ϕn(t) = Cn(t) + iSn(t), where Cn(t) = n−1 Pn
j=1 cos(tε̂j) is the real

part and Sn(t) = n−1 Pn
j=1 sin(tε̂j) is the imaginary part of ϕn(t). Likewise, φ(t)

stands for the characteristic function of ε and we denote by C(t) := E[cos(tε)] and

S(t) := E[sin(tε)], its real and imaginary part, respectively. Also let ϕ(t) := ϕϑ(t) be

the CF which corresponds to problem (a) and the null hypothesis H
(P)
0 : F ∈ Fϑ,

where Fϑ denotes a specific family of distributions, possibly indexed by a parameter

ϑ. Then the test statistic for H
(P)
0 takes the form

Tn,w = n

Z ∞

−∞
|ϕn(t) − bϕ(t)|2w(t)dt, (2)

where bϕ(t) := ϕbϑ
(t) corresponds to estimated parameter bϑ and w(t) denotes an ap-

propriate weight function the role of which we discuss later. Concerning problem (b)

of testing for symmetry, note that C(t) captures the full information on the symmetric

component of the error distribution. Hence, the Fourier formulation of the hypothesis

of symmetry around the origin is H
(S)
0 : S(t) = 0, t ∈ R, and the symmetry statistic

takes the form

Sn,w = n

Z ∞

−∞
S2

n(t)w(t)dt, (3)

where w(t) serves the same purpose as the weight function in (2), but it is not neces-

sarily the same.

The remainder of this section will be devoted to certain expansions corresponding

to equations (2) and (3) which will allow us to gain some insight on the test statistics.

To this end, we make the following assumptions:

(A1) The weight function satisfies w(t) = w(−t), t ∈ R.

(A2) For some even integer, say 2r, κ2r :=
R ∞
0 t2rw(t)dt < ∞.



6

(A3) For the same integer as in (A2), µ2r−1+δ < ∞, for some 0 < δ ≤ 1, where µk :=

E(|ε|k).

Based on (A1), it follows that the test statistic in equation (2) admits the repre-

sentation

Tn,w = n

Z ∞

−∞

h

Cn(t) + Sn(t) − bC(t) − bS(t)
i2

w(t)dt,

where bC(t) (resp. bS(t)) denotes the real part (resp. imaginary part) of bϕ(t). Using (A2)

and (A3), it follows by Taylor expansions of the trigonometric functions involved in

Cn(·) and Sn(·), and by Theorem 2.2.1 of Lukacs (1983) that

Tn,w = n

r
X

j=1

κ2jfj(M1, M2, ..., M2j−1) + Rr,

where Rr := Rr(δ, µ2r−1+δ) denotes a remainder. In this equation, mk = n−1 Pn
j=1 ε̂k

j ,

k = 1, 2, ..., are the sample moments and Mk = mk−E(εk|bϑ), where E(εk|bϑ) stands for

the moment of order k of Fϑ with ϑ replaced by bϑ. For example if r = 3, the ‘moment

contrasts’ fj , j = 1, 2, 3, may be computed by tedious but otherwise straightforward

algebra yielding the expansion

Tn,w = (4)

n

»

κ22M2
1 + κ4

„

1

2
M2

2 − 2

3
M1M3

«

+ κ6

„

1

30
M1M5 − 1

12
M2M4 +

1

18
M2

3

«

+ R3

–

.

It is transparent from equation (4) that the CF statistic for testing problem (a)

involves moment–matching between the sample moments based on ε̂j , and the theoret-

ical moments of the hypothesized distribution. In this connection the role of the weight

function is to determine the weight κ2j with which each moment equation fj appears

in the test statistic. Under the null hypothesis H
(P)
0 of course and for large n, each

pair of moments (empirical and theoretical) match almost perfectly, and consequently

each moment equation fj and the test statistic itself, should be close to zero. A typical
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choice for the weight function is an exponentially decaying weight function, such as

w(t) = e−a|t|b , a, b > 0, which can be easily seen from (4) to yield the limiting values

lima→∞ a3Tn,w = 4nM2
1 , and lima→∞ a3/2Tn,w = (

√
π/2) nM2

1 , for b = 1 and b = 2,

respectively.

Using an analogous argument in equation (3) yields the expansion

Sn,w = 2n

»

κ2m2
1 − 2κ4

1!3!
m1m3 +

κ6

5!(3!)2

“

72m1m5 + 120m2
3

”

+ R3

–

, (5)

(clearly the remainders in equations (4) and (5) are different) which shows that the

CF test for symmetry essentially involves odd–order sample moments of the residuals.

The limiting values are likewise obtained and correspond exactly to those of the test

statistic Tn,w, but with M1 being replaced by m1.

The preceding discussion sheds some light on the criteria based on which the weight

function w(·) should be chosen. To begin with, w(·) should be chosen so that the integral

figuring in equation (2) can be computed without resorting to numerical integration.

Also, among the weight functions ensuring computational simplicity, one should opt for

those which secure good power properties. These aspects of w(·) have been discussed

by Epps (2005) and Jiménez–Gamero et al. (2009) in the i.i.d. case. Essentially they

propose to use a weight function which is proportional to |ϕ(t)|2, where ϕ(t) is the CF

under the null hypothesis. This is actually the approach followed in our simulations

for testing normality (but there are also other choices that serve the purpose of com-

putational simplicity). Building on this choice, and by introducing an extra parameter

a, we use w(t) = e−at2 as a weight function for testing normality. Expansion (4) as

well as the limit statistics obtained thereof are illuminating, at least qualitatively, with

respect to the value of a. In particular, choosing a large value of a, causes the weight

function to decay rapidly, which in turn forces the test statistic to practically ‘ignore’
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higher order moments, sample and theoretical, and consequently renders its value sig-

nificantly affected only by few low order moments. In fact, in the limiting case a → ∞

only first order moments have any effect on Tn,w. On the other hand, choosing a to

be too small may cause numerical instability. (Note that for a = 0 the test statistic

diverges). Hence one may only guess that proper values of a lie somewhere in the in-

terval 0 < aL < a < aU < ∞, between a lower limit aL and an upper limit aU , but

these values could only be determined empirically via Monte Carlo simulation of the

behavior of the test. Otherwise, a more detailed theoretical analysis requires specifica-

tion of alternative directions away from the null hypothesis; for such an analysis with

i.i.d. data and Gram–Charlier alternatives the reader is referred to Epps (1999) and

Tenreiro (2009).

3 Estimation in semi–linear models

We recall the setup. We are given data {yi, xi, zi}, with xi = (xi1, . . . , xip)′, and

zi = (zi1, . . . , ziq)′, i = 1, . . . , n, and yi generated according to model (1), i.e.

yi = x
′
iβ + g(zi) + σεi (6)

where β = (β1, . . . , βp)′. The basic problem in calculating the test statistics in (2) and

(3) is the estimation of the errors εi in (6),

ε̂i =
yi − x′

iβ̂ − ĝ(zi)

σ̂
, i = 1, 2, . . . , n, (7)

which requires the specification of efficient estimators, β̂ and ĝ(·), of the p-dimensional

regression parameter β and of the nonparametric function g(·) : R
q −→ R, respectively,

and the use of an appropriate variance estimator σ̂2 of σ2.
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A large family of estimators of β and g(·) can be derived as solutions to a penalized

least squares problem. Denote y = (y1, . . . , yn)′, g = (g(z1), . . . , g(zn))′, and X =

(x1, . . . , xn)′. Given a symmetric n × n penalty matrix K , one aims to minimize

Q(β, g) = (y − Xβ − g)′ (y − Xβ − g) + λg
′
Kg (8)

w.r.t. β and g. In the important special case of univariate penalized smoothing splines

for p = 0 and q = 1, the penalty matrix K is constructed such that the penalty term

corresponds to
R

g′′(t)2 dt (see appendix). The solution to (8) is then a natural cubic

smoothing spline, i.e. a piecewise cubic polynomial which is connected at the locations

of the design points such that the resulting curve is twice continuously differentiable,

and has vanishing second and third derivatives at the boundary (Green & Silverman,

1994).

Returning to the general minimization problem (8), we equate ∂Q
∂β

and ∂Q
∂g

to zero,

yielding

β̂ = (X ′X)−1X ′ (y − ĝ) (9)

and

ĝ = (I + λK)−1
“

y − Xβ̂
”

≡ S
“

y − Xβ̂
”

(10)

This system of p + n equations is explicitly solvable: by plugging (10) into (9) one has

β̂ = {X ′(I − S)X}−1
X

′(I − S)y. (11)

In (10) we have implicitly defined the smoother matrix S, that is a n × n matrix S

which takes an input vector and produces its smoothed counterpart (see appendix),

similar as the hat matrix known from the linear regression model. The analytic solution

(11) was already provided in an early paper by Green, Jennison, and Seheult (1985),
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who restricted to the case q = 1, but mentioned the possibility of extension to bivari-

ate smoothers. For predictors of dimension q > 1 nothing is different; the task boils

down to constructing an appropriate penalty or smoother matrix and using (10) and

(11) (Speckman, 1988). The significance of this result is that no iterative algorithms

like backfitting are needed for semi-linear models involving smoothers of arbitrary di-

mension q. Note also that, given any symmetric smoother matrix S, (10) tells us that

K ∝ (S− − I), where S− is a generalized inverse of S. Hence, this technique is im-

mediately justified for all symmetric linear smoothers, in the sense that in this case

always exists a penalty matrix K such that the resulting estimates can be considered

as solutions of a penalized least squares problem. Following Green, Jennison & Se-

heult (1985) and Speckman (1988), this estimation method can still be used for linear

smoothers with asymmetric smoother matrix, though the justification as a penalized

least squares solution is lost in this case. The smoother matrices for univariate cubic

smoothing splines and local linear smoothers (which are the smoothers used in the

simulation study in Section 5) are given in the appendix.

There remains the issue of how to estimate the variance. A natural way of doing

this is to compute the residual sum of squares, yielding

σ̂2 =
1

n − df

n
X

i=1

“

yi − x
′
iβ̂ − ĝ(zi)

”2
(12)

where df = dfpar + dfnpar is some measure of the fitted degrees of freedom, con-

sisting of a parametric and nonparametric part. Obviously, dfpar = p, and following

the analogue to parametric regression, a straightforward choice is to set dfnpar =

tr(S). A more elaborated solution is obtained by considering the expected residual

sum of squares of the smoother, which according to Buja et al. (1989) is given by

`

n − tr(2S − SS′)
´

σ2 +bias. This motivates to use dfnpar = tr(2S −SS′), which can
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be efficiently approximated by

dfnpar ≈ 1.25tr(S) − 0.5 (13)

(Hastie & Tibshirani, 1990, Appendix B). We finally note that, in the approach taken

above, the degree of freedom corresponding to the intercept parameter is part of dfnpar ,

since the intercept is absorbed by the function g, and, hence, by S.

4 Bootstrap versions

Due to complicated asymptotics, we develop bootstrap versions of the test statistics

in order to actually perform the tests. For the specification null hypothesis H
(P)
0 we

shall restrict the pool of models to simple location–scale families with no extra shape

parameters involved. The advantage of considering simple location–scale families is

that then the problem is reduced to testing the standard form of this family which is

parameter–free. (For this reason the parameter ϑ could be suppressed.) Specifically, in

the context of model (1) the location parameter is set equal to zero, while the scale

parameter is estimated and the residuals are standardized accordingly. In principle

however, the procedure is applicable to general families of distributions with arbitrary

extra parameters, but in this case the issue of these extra parameters should also be

addressed during the estimation step; see for instance Hušková and Meintanis (2010).

As a result of the preceding discussion, the following procedure is employed in order

to compute the critical point of the test for H
(P)
0 :

(i) On the basis of data {yi, xi, zi}, use (11), (10), and (12) to compute the estimators

(β̂, ĝ(·), σ̂) and the corresponding residuals ε̂i, i = 1, 2, ..., n.

(ii) Compute the test statistic Tn,w := Tn,w(ε̂1, ..., ε̂n).
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(iii) Generate i.i.d. observations ε∗i , i = 1, 2, ..., n, from F (the hypothesized error dis-

tribution under H
(P)
0 ), and define the bootstrap observations

y∗i = x
′
iβ̂ + ĝ(zi) + σ̂ε∗i .

(iv) Based on {y∗i , xi, zi}, compute the estimators (β̂
∗
, ĝ∗(·), σ̂∗) and then based on

these estimators compute the corresponding residuals ε̂∗i , i = 1, 2, ..., n, from (7).

(v) Compute the test statistic T ∗
n,w := Tn,w(ε̂∗1, ..., ε̂∗n).

When steps (iii)–(v) are repeated a number of times, say B, the sampling distribu-

tion of Tn,w is reproduced, and on the basis of this bootstrap distribution we decide

whether the observed value of the test statistic is significant or not.

Likewise, when testing the symmetry null hypothesis H
(S)
0 with the test statistic

Sn,w, we need only modify step (iii). Specifically step (iii) is modified as follows:

(iii) Define the wild bootstrap residuals

ε∗i = viε̂i,

where vi, i = 1, ..., n, are i.i.d. observations with P(vi = 1) =P(vi = −1) = 1/2,

and define the bootstrap observations

y∗i = x
′
iβ̂ + ĝ(zi) + σ̂ε∗i .

For classical statistics, the type of resampling used here has been proposed by

Neumeyer et al. (2006) in the case of either linear or nonparametric regression, and

was subsequently shown by Hušková & Meintanis (2010) to be asymptotically valid

also for CF statistics. On the other hand, the consistency of the wild bootstrap for

testing symmetry with classical statistics has been studied by Neumeyer et al. (2005)

and Neumeyer & Dette (2007), in the context of linear and nonparametric regression,
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respectively, and by Delgado & Escanciano (2007) for dependent data. (An alternative

scheme of resampling is the smooth residual bootstrap suggested by Neumeyer, 2009).

For analogous work with CF statistics the reader is referred to Hušková & Meintanis

(2011). We conclude this section by noting that according to the simulation results

in Section 5, the validity of resampling schemes established earlier in the context of

linear or nonparametric regression appears to be asymptotically true also in the present

context of semi–linear models.

5 Simulations

In this section we investigate the finite–sample behavior of the tests. As an exam-

ple of the parametric hypothesis H
(P)
0 we consider testing for normality of the error

distribution. Our investigation is carried out by means of a Monte Carlo study. For

computational convenience, we use the weight function w(t) = e−at2 , and denote the

resulting test statistics corresponding to (2) and (3) by Tn,a and Sn,a, respectively.

An important aspect of this choice for w(t) is that the integrals figuring in the right–

hand sides of equations (2) and (3) can be analytically computed. In particular, Tn,a

is obtained by replacing bϕ(t) in equation (2) by the normal CF, e−(1/2)t2 . Then some

straightforward algebra yields

Tn,a =
1

n

r

π

a

0

@

n
X

j,k=1

e−(ε̂j−ε̂k)2/4a

1

A + n

r

π

1 + a
− 2

r

2π

1 + 2a

0

@

n
X

j=1

e
−

ε̂2
j

(2+4a)

1

A .

Likewise, by replacing in equation (3) w(t) by e−at2 yields

Sn,a =
1

2n

r

π

a

n
X

j,k=1

h

e−(ε̂j−ε̂k)2/4a − e−(ε̂j+ε̂k)2/4a
i

.

We compare our test statistic Tn,a with the classical Anderson–Darling (AD) and

Cramér–von Mises (CM) statistics, which employ the empirical DF; refer to Section
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1. These statistics are routinely employed for testing the parametric null hypothesis

H
(P)
0 with i.i.d. data, as well as for testing for the error distribution in the case of

linear or nonparametric regression; see for instance the previously mentioned paper

of Neumeyer et al. (2006), as well as the recent works of Heuchenne & van Keilegom

(2010) and Neumeyer & van Keilegom (2010). In the context of the semi–linear model

(1) however, the behavior of corresponding tests such as the AD and the CM, has

not been investigated. Given the order statistics ε̂(1) ≤ ε̂(2) ≤ ... ≤ ε̂(n), these test

statistics for normality may be written as (see D’Agostino & Stephens, 1986),

TAD = −n − 1

n

n
X

j=1

h

(2j − 1) log Φ(ε̂(j)) + (2(n − j) + 1) log(1 − Φ(ε̂(j)))
i

and

TCM =
1

12n
+

n
X

j=1

„

Φ(ε̂(j)) −
2j − 1

2n

«2

,

respectively, where Φ(u) denotes the DF of the standard normal distribution. We de-

termine the p−values for the AD and CM tests in two different ways: Firstly, based on

tabulated values provided in D’Agostino & Stephens (1986, Table 4.9), and secondly,

using bootstrap versions of these tests (see also Hušková & Meintanis, 2010). A word

of caution is in order: The tabulated p− values correspond to the AD and CM tests as

if the errors εj are observable, which is clearly not the case. On the contrary expansion

(1.2) in Müller et al. (2007) shows that the Kolmogorov–Smirnov type distance between

the empirical DF based on εj and the empirical DF based on ε̂j is not asymptotically

negligible to the order of n−1/2, and in fact depends on the error density (but not on

other aspects of the partial linear model). Consequently, and although our simulation

results indicate that at least in the case of normality the difference between the two

methods could be considered insignificant, these results certainly do not generalize so

as to imply that tabulated p−values can be used for other distributions under test.
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The performance of the test statistic Sn,a is compared to bootstrapped versions of

the Kolmogorov–Smirnov and Cramér–von Mises type statistics of Neumeyer & Dette

(2007). These statistics are conveniently defined by use of the empirical process

Dn(t) =
1

n

n
X

j=1

`

I(ε̂j ≤ t) − I(−ε̂j ≤ t)
´

,

as

SKS = sup
t∈R

|Dn(t)| and SCM =

Z

D2
n(t)dHn(t),

where integration is carried out with respect to the empirical distribution function Hn

of |ε̂j |, j = 1, ..., n.

The data are generated from the model

y = x + sin(2πz) + σε

where both x and z are uniformly distributed in the interval [0, 1], and σ = 0.5. The

simulated error distributions are:

(N) Gaussian distribution with mean 0 and standard deviation 1;

(L) Laplace distribution with mean 0 and scale parameter 1;

(SN) Skew-Normal distribution centered at 0, with scale parameter 1 and skew parameter

10;

(SL) Skew-Laplace distribution centered at 0, with scale parameter 1 and skew parameter

3.

The simulated data sets have a sample size of n = 100, and we use B = 200

bootstrap replicates to carry out each individual test. For each of the error distribu-

tions (N), (L), (SN), and (SL), we consider the null hypotheses H
(P)
0 : Normality, and

H
(S)
0 : Symmetry. We use the previously developed test statistics Tn,a and Sn,a for each

a = 1/2, a = 1 and a = 2. Specifically, 2000 Monte Carlo replications are generated for
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each test problem, and the number of rejections of the corresponding null hypothesis

are counted. We repeat the entire procedure using cubic spline smoothers (with con-

stant penalty parameter λ = 5.8× 10−3) and local linear kernel smoothers (with fixed

neighborhood size N = 42); see appendix A and B for details on the construction of

the smoothers. The smoothing parameters were calibrated to produce nonparametric

terms corresponding to approximately tr(S) = 5 degrees of freedom. For the estimation

of σ, we use (12) and (13).

The percentages of rejections are given in Tables 1 and 2, respectively. One observes

that, for underlying Gaussian error, the null hypotheses of symmetry and normality

are rejected at a proportion corresponding to the significance level chosen, which is

just as it should be. For Laplacian error, the hypothesis of normality is overwhelmingly

rejected, while the rejection rate for the symmetry test is slightly above the significance

level chosen, but still of an acceptable magnitude. For the skew-normal distribution,

both normality and symmetry are clearly rejected for the vast majority of the Monte

Carlo replicates. For the skew-Laplace distribution, both hypotheses are rejected at

practically all occasions. Throughout all considered testing scenarios, the spline-based

smoothers lead to higher test powers (in terms of the proportion of rejection when the

null hypothesis is wrong) than the kernel-based smoothers.

Concerning the weight parameter a, it is important to note that for any considered

value of a, the Fourier-based tests outperform the Kolmogorov-Smirnov, Anderson–

Darling, and Cramér–von Mises statistics both in terms of test power and the accuracy

with which the target significance level is met. For the normality test, this holds whether

bootstrap or tabulated quantiles were used for the latter. For the test of normality under

Laplace error, the power of the test decreased with a, while for the test of symmetry

under skew-normal error, the test power increased in tendency with a. Otherwise,
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we observed no crucial dependence of the performance of the tests onto the weight

parameter a; but in view of the accuracy of the significance level, we would rather

recommend to use values of a which are not larger than 1. Finally, we wish to note

that, as pointed out by a referee, estimation of σ for the symmetry test is not strictly

necessary from a methodological viewpoint, and the bootstrap could be equally carried

out using unstandardized residuals. Based on simulation studies which we have carried

out, but do not report here for the sake of brevity, we observed indeed higher test

powers under this scenario, but at the expense of a greater sensitivity of the method

to the choice of a, which in turn impacts negatively on the precision with which the

target significance level is met.

6 Semi-linear additive models

Model (1) is attractive from a theoretical point of view, but the q-dimensional surface

g(z) = g(z1, . . . , zq) can be difficult to fit in practice due to the so-called curse of

dimensionality, which leads to computational problems and to a lack of interpretability

in sparse data regions. Often the more realistic option is to combine the individual

nonparametric contributions of the components of z additively

y = x
′
β +

q
X

j=1

gj(zj) + σε (14)

or to work with smoothers defined on (usually low-dimensional) non-overlapping sub-

sets t(ℓ), ℓ = 1, . . . , L of z such that ˙S
ℓt

(ℓ) = z and
P

ℓ dim(t(ℓ)) = q, yielding the

model

y = x
′
β +

L
X

ℓ=1

gℓ(t
(ℓ)) + σε. (15)
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Table 1 Percentage of rejection of the null hypothesis H
(P)
0 (Normality) for four different

true error distributions, and three different choices of a. Top: using smoothing splines; bottom:

using local linear kernel smoothers. The suffix t indicates the tabulated versions of the AD

and CM tests, while all other columns refer to bootstrapped tests.

Splines a = 1/2 a = 1 a = 2 ADt AD CMt CM

(N) α = 0.05 5.3 5.1 5.0 4.7 4.8 5.5 5.3

α = 0.10 10.6 10.8 10.5 10.8 10.5 11.0 11.0

(L) α = 0.05 79.0 77.6 72.9 73.3 72.4 71.2 70.6

α = 0.10 86.9 86.0 82.5 80.7 80.5 78.9 78.7

(SN) α = 0.05 84.6 87.0 85.4 83.1 82.0 77.6 76.9

α = 0.10 91.6 92.2 91.9 89.5 89.3 85.9 85.6

(SL) α = 0.05 100.0 100.0 100.0 100.0 100.0 99.9 99.9

α = 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Kernels a = 1/2 a = 1 a = 2 ADt AD CMt CM

(N) α = 0.05 4.5 4.6 4.4 5.0 5.1 5.3 5.1

α = 0.10 10.4 9.7 9.3 10.8 10.1 10.6 10.9

(L) α = 0.05 77.4 75.1 69.2 70.3 70.4 68.5 67.9

α = 0.10 86.2 84.8 80.0 79.4 79.1 77.2 77.3

(SN) α = 0.05 80.4 81.8 78.5 78.3 77.6 73.6 73.1

α = 0.10 88.0 89.3 86.3 87.3 86.8 82.1 82.0

(SL) α = 0.05 99.9 100.0 100.0 99.9 99.9 99.9 99.9

α = 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0

We refer to models of type (14) and (15) as semi-linear additive models. The intercept

term, say β0, needs now to be incorporated into the parametric part x′β as identifiabil-

ity problems arise otherwise (Fahrmeir & Tutz, 2001). Obviously, (15) covers (14), and

also covers the so-called additive model where x′β = β0 (Hastie & Tibshirani, 1990).
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Table 2 Percentage of rejection of the null hypothesis H
(S)
0 (symmetry) for four different

true error distributions, and three different choices of a. Top: using smoothing splines; bottom:

using local linear kernel smoothers.

Splines a = 1/2 a = 1 a = 2 KS CM

(N) α = 0.05 5.2 5.2 4.5 4.2 5.7

α = 0.10 10.0 10.0 9.0 8.5 11.4

(L) α = 0.05 6.2 6.3 6.8 7.3 7.7

α = 0.10 11.7 12.0 12.2 12.4 13.0

(SN) α = 0.05 83.1 86.7 87.9 65.6 74.2

α = 0.10 89.6 92.2 93.2 78.2 82.9

(SL) α = 0.05 100.0 100.0 100.0 99.3 99.9

α = 0.10 100.0 100.0 100.0 99.8 100.0

Kernels a = 1/2 a = 1 a = 2 KS CM

(N) α = 0.05 5.6 5.6 4.7 4.2 6.3

α = 0.10 10.1 9.8 9.3 9.1 11.4

(L) α = 0.05 6.3 6.4 6.1 6.3 7.7

α = 0.10 11.9 12.2 11.7 11.3 13.5

(SN) α = 0.05 78.2 80.7 79.5 59.7 67.8

α = 0.10 85.7 87.9 87.2 71.4 77.7

(SL) α = 0.05 100.0 100.0 99.9 98.6 99.8

α = 0.10 100.0 100.0 100.0 99.6 100.0

The testing procedure that we have proposed in Sections 2 and 4 extends straight-

forwardly to this setting. However, the estimation of parameters and smooth terms is

slightly more involved, for which reason we give the corresponding formulas explicitly

below.

In terms of (15), the minimization problem takes the shape

Q(β, g1, . . . , gL) =
`

y − Xβ − P

ℓ gℓ

´′ `

y − Xβ − P

ℓ gℓ

´

+
P

ℓ λℓg
′
ℓKℓgℓ
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where gℓ = (gℓ(t
(ℓ)
1 ), . . . , gℓ(t

(ℓ)
n ))′, with tℓ

i being the corresponding ℓ-th subset of zi.

The matrices Kℓ are n × n penalty matrices with associated smoother matrices Sℓ,

ℓ = 1, . . . , L. Equating ∂Q
∂β

and ∂Q
∂gℓ

to zero, one finds that the equivalent to (9) is given

by

β̂ = (X ′X)−1X ′ `

y − P

ℓ ĝℓ

´

, (16)

while that of (10) is

ĝℓ = Sℓ(y − Xβ̂ − P

k 6=ℓ ĝk). (17)

However, it turns out that the resulting system of p + nL equations is not explic-

itly solvable any more. Hence, one has to resort to the backfitting algorithm, which

was introduced and studied in detail in the context of the additive model by Buja et

al. (1989). Adapted to the semi–linear additive model for general q, the backfitting

algorithm reads as

(i) Initialize: β = β0, gℓ = g0
ℓ , ℓ = 1 . . . , L.

(ii) Estimate β̂ according to (16).

(iii) For ℓ = 1, . . . , L, update ĝℓ according to (17).

(iv) Cycle (ii) and (iii) until the individual functions and parameters do not change.

A variant of this is to separate the nonparametric part into a parametric (‘projection’)

and the remaining nonparametric (‘shrinking’) part, and estimate the projection part

together with the parametric part in step (ii). This method has several computational

advantages. The results are exactly the same as for the original backfitting algorithm

only for a subclass of symmetric linear smoothers which includes smoothing splines (see

Hastie & Tibshirani (1990), p. 124 ff., for details). This variant, which is implemented

in R function gam (Hastie, 1992), is used in the oceanographic data example in Section

7.
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7 Real data examples

We firstly consider a data set which was used in Ruppert et al. (2003) to illustrate

the performance of semi-parametric regression estimates. We are given 84 observations

from an experiment involving the production of white Spanish onions at two South

Australian locations. The covariates available are the areal density of plants measured

in plants per square meter, and an indicator variable location taking the value 1 if

the measurement was taken at ‘Purnong Landing’. Estimation of a linear model

log(yield) = β0 + β1location + β2density

yields the fitted straight lines in Figure 1. Using the bootstrap technique introduced

in Section 4, one obtains a p−value of 0.02 for testing normality and a p−value of 0.16

for testing symmetry, which gives some evidence that the fitted linear model is not

adequate. Fitting now a semi-linear model

log(yield) = β1location + g(density),

these p− values change to 0.79 and 0.84, respectively, indicating an improved goodness-

of-fit when accounting for the nonlinear dependence of log(yield) on density. We

have used here a local linear smoother with neighborhood parameter N = 39, again

corresponding to roughly tr(S) = 5 degrees of freedom. Of course splines could be used

here equally well, but, as there are tied density values, this would require appropriate

grouping and weighting before the estimation techniques outlined in Section 3 could

be applied (Hastie & Tibshirani, 1990, p. 74).

Secondly, we consider oceanographic data retrieved from the World Ocean Database

by Powell (2009). The data were collected in the North Atlantic by the German ves-

sel “Gauss”, yielding n = 643 measurements on several variables, including the water
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Fig. 1 Logarithm of onion yield vs. areal density of plants, measured at two locations in

Southern Australia. The straight (thin) lines correspond to the linear model fit, while the

smooth curves are obtained by fitting a semi-parametric model.

temperature in degrees Celsius (this serves as the response), the salinity of the water

(measured in the Practical Salinity Scale, PSS), the oxygen content in millimeters per

litre of water, and the depth under the surface (in meters) at which the measurement

was taken. Fitting an additive model (A) of type (14) with an intercept and q = 3 non-

parametric terms (via cubic smoothing splines with tr(Sℓ)− 1 = 6 df per model term,

ℓ = 1, 2, 3), yields the three fitted functions depicted in Figure 2. The corresponding

goodness-of-fit tests deliver a p−value of 0.00 for the symmetry test and 0.00 for the

normality test,1 so both null hypotheses are clearly rejected.

The first of the three smooth curves seems to suggest that the impact of salinity

onto temperature could be rather linear than nonlinear. Hence, it seems a natural idea

1 To be precise, a p–value of 0.00 obtained in this manner, using B = 200, means p < 0.005.
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Fig. 2 Fitted nonparametric terms for salinity, water depth, and oxygen.

to replace this nonparametric term by a linear term, and observe whether this has

implications for the goodness-of-fit. This gives a semi-linear additive model (B) of type

(14) with p = 2 (including the intercept) and q = 2. Interestingly, after having replaced

the nonlinear by a linear term, the p−value for symmetry increases to 0.07 (with that

one for normality remaining at 0.00). It seems plausible that the way that oxygen

content influences temperature depends on the water depth. We therefore consider a

model (C) featuring a bivariate “surface smoother” (Hastie, 1992) for oxygen and water

depth, and a linear term for salinity, which is a semiparametric model of type (1) with

p = 1 (now excluding the intercept) and q = 2, where z = (water depth, oxygen).

The goodness-of-fit tests for this semi-linear model give a p−value of 0.13 for the

symmetry and 0.00 for the test of normality, indicating a symmetrical, though non-

normal, behavior of the residuals. These results are qualitatively confirmed by looking

at histograms and Gaussian probability plots (QQ-Plots) of the corresponding residual
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Fig. 3 Histograms (with overlaid normal densities) and QQ plots for the residuals of the

additive model (A), the semi-linear additive model (B), and the semi-linear model (C) for the

oceanographic data. Note the improving symmetry from left to right, corresponding to the

p−values 0.00, 0.07, and 0.13, respectively, of the symmetry test.

distributions, which are provided in Figure 3. For ease of interpretation, parametric

estimates of Gaussian densities are overlaid over the histograms. One observes that all

distributions show deviations from normality, in particular around the peaks, with that

one based on the interaction model (C) being more symmetrically distributed than the

others.
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8 Discussion

The purpose of this work is (i) to develop Fourier–type goodness–of–fit procedures for

semi–linear models based on the empirical characteristic function, and (ii) to compare

these procedures with classical procedures based on the empirical distribution function.

In doing so we have considered different estimators of the components of the semi–

linear model, and have studied original and bootstrap versions of the tests. The general

messages from our simulation results are that (i) all methods recover the nominal size

of the tests to a satisfactory degree, (ii) splines rather than kernels lead to somewhat

higher power, (iii) bootstrap and original versions result in almost indistinguishable

rejection rates, and that (iv) Fourier–type tests are more powerful than classical tests,

though not by a wide margin.

As noted above, the goodness–of–fit tests proposed have been implemented by

using spline– and kernel– based estimators for the nonparametric part. The vehicle

for estimation that we have used builds on normal equations motivated originally in

the context of penalized least squares regression (Green, Jennison, & Seheult, 1985),

and developed further in particular by Hastie & Tibshirani (1990). Though we have

investigated the performance of our testing routines only for this particular way of

estimation, there is no apparent reason as to why these tests couldn’t be applied onto

models fitted through other semi-parametric regression techniques, such as the direct

kernel approach by Robinson (1988) or the mixed model approach by Ruppert et al.

(2003). Preliminary investigations using these techniques led to encouraging results,

so we tentatively recommend the proposed tests beyond the framework of the estima-

tion methods considered here. Furthermore, it is also clear that the test procedures

for the null hypothesis H
(P)
0 proposed herein do not serve the sole purpose of test-
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ing normality, but can readily be applied to any other error distribution under test.

This is particularly important given the fact that applied workers, particularly in the

area of empirical finance, have long rejected the assumption of normality and operate

under distributions that are both asymmetric and heavy tailed. In this connection,

and although as mentioned above there seems to be no apparent gain in power, boot-

strap quantiles are to be preferred over tabulated ones as they are readily operational

regardless of the method of estimation and the postulated error distribution.

We close with a word of caution: The notion of goodness-of-fit advocated here refers

to certain aspects of the error distribution, and therefore it should not be confused with

that of significance of parameters or smooth terms. Hence, rather than considering it

as a competitor to F–tests, our method may serve as a vehicle to justify or discard the

application of the latter: If the null hypothesis of normality (of the smaller model) is

rejected, then the application of the F-test is not justified, as it uses the assumption

of Gaussian errors under the null hypothesis that the smaller model is correct. In

fact, when carrying out the appropriate F–test comparing the linear (B) with the

nonparametric (A) term for salinity, it turns out that model (B) is clearly rejected

in favor of (A)2; but as shown in Section 7, the application of the F-test itself is not

endorsed by the normality test.

Appendix: Linear smoothers and smoother matrices

Suppose we are given data (x1, y1), . . . , (xn, yn) generated from a model of type

yi = g(xi) + σεi

2 In fact, one can even argue that the kink in the smooth term for salinity is biologically

plausible, see Powell (2009) for details.
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where εi is noise with mean zero and unit variance. Given a nonparametric smoother,

i.e. a twice continuously differentiable function ĝ : R
p −→ R, the smoother matrix S is

defined as the n×n matrix which maps a vector of observed responses y = (y1, . . . , yn)′

to their fitted (smoothed) values ŷ = (ŷ1, . . . , ŷn)′, where ŷi = ĝ(xi). If such a smoother

matrix exists which does not depend on y, then the smoother is called a linear smoother

(Buja et al., 1989), and one has

ŷ = Sy.

If S is symmetric, ĝ is called a symmetric linear smoother. Let g = (g(x1), . . . , g(xn))′.

Symmetric linear smoothers can be considered as minimizers of the penalized least

squares problem

(y − g)′(y − g) + λg
′
Kg

where K ∝ (S− − I), with S− being a generalized inverse of S (Hastie & Tibshirani,

1990, p. 110).

Smoother matrices for two important special cases involving univariate predictors

x1, . . . , xn ∈ R are provided below. A quite comprehensive overview of other smoothers

and their associated smoother matrices is provided in Buja et al. (1989).

A. Cubic smoothing splines. Assume we have an ordering of predictors such

that x1 < x2 < . . . < xn, and let di = xi+1 − xi. The penalty matrix is given by
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K = D′C−1D, where

D =

0
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is an n − 2 × n upper-tridiagonal matrix and
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A

is an n − 2 × n − 2 tridiagonal symmetric matrix (Green & Silverman, 1994, p. 12f;

Fahrmeir & Tutz, 2001, p. 181f). For fixed smoothing parameter λ, the smoother matrix

is then obtained by taking S = (I + λK)−1.

B. Local linear smoothers. Denote K : R −→ R
+ a symmetric kernel function. The

smoother matrix S = (sij)1≤i≤n,1≤j≤n is specified by

sij = (Sn,0(xj)Sn,2(xj) − S2
n,1(xj))

−1K

„

xi − xj

h(xj)

«

`

Sn,2(xj) − (xi − xj)Sn,1(xj)
´

with bandwidths h(xj) ∈ R
+ and

Sn,ℓ(x) =
n

X

i=1

K

„

xi − x

h(x)

«

(xi − x)ℓ.

Two important subcases are the use of a global bandwidth h(x) ≡ h, and the use of N

nearest neighbors, in which case h(x) is the distance to the N−th nearest neighbor to
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x. In the former case it is common to work with a Gaussian or Epanechnikov kernel

K (Fan & Gijbels, 1996), while in the latter case commonly a tricube weight function

K(t) = 70
81 (1 − |t|3)3I[−1,1](t) is used (Cleveland, 1979). In either case, this smoother

matrix is asymmetric, implying that there is no exact representation in form of a

penalty matrix K . The simulations performed for Table 1 and 2 use the variant based

on nearest neighbors and the tricube kernel.
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