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Incorporating Generic and Specific Prior
Knowledge in a Multi-Scale Phase Field Model for

Road Extraction from VHR Images
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Abstract—This paper addresses the problem of updating digital
road maps in dense urban areas by extracting the main road
network from very high resolution (VHR) satellite images.
Building on the work of Rochery et al. (2005), we represent
the road region as a ‘phase field’. In order to overcome the
difficulties due to the complexity of the information contained
in VHR images, we propose a multi-scale statistical data model.
It enables the integration of segmentation results from coarse
resolution, which furnishes a simplified representation of the data,
and fine resolution, which provides accurate details. Moreover,
an outdated GIS digital map is introduced into the model,
providingspecific prior knowledge of the road network. This new
term balances the effect of the generic prior knowledge describing
the geometric shape of road networks (i.e. elongated and of low-
curvature) carried by a ‘phase field HOAC’ term. Promising
results on QuickBird panchromatic images and comparisons
with several other methods demonstrate the effectiveness of our
approach.

Index Terms—Dense urban area, Geographical Information
System (GIS), multi-scale analysis, road network extraction,
variational model, Very High Resolution (VHR) image.

I. INTRODUCTION

KEEPING the road network information contained in
Geographical Information Systems (GIS) up to date

is crucial for many applications. The high rate of urban
growth, especially in many developing countries, means that
this has become an increasingly important research topic
in remote sensing. Fig. 1 shows two pairs of QuickBird
panchromatic images of Beijing, retrieved respectively in the
year 2002 and the year 2006, showing the great changes
in the past few years. Very high resolution (VHR) optical
satellite images (e.g. QuickBird and Ikonos, and Pléiades in
the near future), with sub-metric resolutions, provide new
opportunities for the extraction of information from remote
sensing data: qualitatively new categories of information are
available, and the accuracy of previously extracted categories
of information can be quantitatively improved. VHR brings
with it new challenges however. Details invisible in lower
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Fig. 1: Two pairs of QuickBird panchromatic images 0.61
m/pixel (both size: 1000× 1000) of Beijing. Top: year 2002;
bottom: year 2006.

resolution images, e.g. cars, shadows, road markings, and other
linear but non-road features, can easily disrupt the recognition
process, and demand more sophisticated modelling, both of the
image and of the road network. For the former, the existence of
phenomena at multiple scales suggests a multi-scale approach,
while for the latter, the incorporation into the models of our
prior knowledge of the geometry of the road network becomes
critical.

In this paper, we address the issue of main road network
updating from VHR images in dense urban areas. Specifically,
we will show how to make use of an outdated GIS digital
map and a recently acquired QuickBird image to generate an
up-to-date road network of the observed region. We model
the road network region using a ‘phase field’ [1]. Building
upon [1], our contribution is twofold: first, we propose a multi-
scale framework for road extraction; it is based on a wavelet
decomposition of the image and enables an accurate extraction
of the road region; second, we introduce a specific prior term
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into the energy functional; we will show how this specific prior
term can be derived from an existing GIS digital map.

An exhaustive review of the work on road extraction, multi-
scale approaches, and active contour models is out of the
scope of this paper. Here we briefly review those we believe
to be the most relevant. Péteri and Ranchin [2] take advantage
of a topologically correct graph of the network in order to
extract roads and junctions using two different types of active
contours. Negri et al. [3] first extract road candidates using
two detectors, and then optimize road network topology with
an MRF model. Gamba et al. [4] introduce knowledge about
road direction via adaptive filtering. Amo et al. [5] propose
a region competition based method for providing large-scale
GIS information. Hu et al. [6] detect roads based on shape
classification, and then prune a road tree using a Bayesian
decision process. However, all these methods are restricted
to applications on semi-urban areas and using aerial or SAR
images. They are not robust enough to be applied to dense
urban areas and optical images.

The rest of the paper is organised as follows. In section II,
we introduce the essentials of the basic phase field model, and
then describe our multi-scale data model. In section III, we
introduce the new GIS prior energy. In section IV, we detail
the optimization algorithm. In section V, we illustrate experi-
mental results on QuickBird panchromatic images and perform
validation and comparison with several other techniques. We
conclude in section VI.

II. THE MODEL: PRIOR AND DATA ENERGIES

In this section, we first recall the Bayesian formulation
of image segmentation, and then describe the various energy
terms in our model.

Given an image I : Ω→ R, and given the prior knowledge
K we may have, our goal is to find the region R in the
image domain Ω that corresponds to the main road network.
This region can be estimated by maximizing the posterior
probability

P(R|I,K) ∝ P(I|R,K)P(R|K) , (1)

with respect to the region R. Equivalently, after taking negative
logarithms, one can minimize a total energy functional defined
by

E(R; I) = θEP (R) + ED(I,R) , (2)

where θ is a constant that balances the contribution of the
prior energy EP and the data energy ED. To represent R
mathematically, we use a phase field function φ, much used
in physics and first introduced to image processing by [1].

A. Prior Energy

We use the same prior energy EP as [1]. It is composed of
two terms: a basic phase field energy EP,0 and a higher-order
active contour (HOAC) phase field energy EP,NL.

Conventional active contours [7]–[11] are defined by linear
functionals, so they can incorporate only weak prior know-
ledge of region geometry. In contrast, via long-range inter-
actions between points in the region boundary, HOACs [12]

allow the inclusion of complex prior geometrical constraints.
For this reason, HOACs are more robust to noise than conven-
tional active contours, and permit a generic initialization that
renders them more automatic.

Phase fields [1] represent a region using a function φ defined
over the entire image. By definition, R = {x ∈ Ω : φ(x) > ζ},
where ζ ∈ R is some threshold, i.e. R is a level set of
φ, but phase fields have several advantages over distance
function level sets: a linear representation space; ease of
implementation; and a neutral initialization. In addition, they
allow greater topological freedom, which is critical when the
topology of the region is not known a priori: thus phase fields
can ‘naturally’ deal with the topological complexity of road
networks. Phase field HOACs are phase field models that also
include the long-range interactions characteristic of HOACs.

The basic phase field energy EP,0 is given by

EP,0(φ) =

∫
Ω

{
1

2
∇φ(x) · ∇φ(x) +W (φ(x))

}
dx . (3)

The potential W is

W (z) = λ(
1

4
z4 − 1

2
z2) + α(z − 1

3
z3) , (4)

where λ and α are constants. For λ > α > 0, W has two
minima, at −1 and 1, and a maximum at α/λ. We choose
the threshold ζ = α/λ. The potential W effectively constrains
φ(x) ' 1 for x ∈ R and φ(x) ' −1 for x ∈ R̄ = Ω \
R. As a result, φ± = (1 ± φ)/2 are approximately equal to
the characteristic functions of R and R̄. The local derivative
product ∇φ(x) · ∇φ(x) penalizes large gradients and ensures
that φ makes a smooth transition from −1 to 1 across the
boundary ∂R. In [1], it is shown that EP,0 is equivalent to
an active contour model whose energy is a linear combination
of region boundary length and region area. Therefore, EP,0
ensures stability, boundary smoothness, and the properties of
the functions φ±.

We introduce sophisticated geometric constraints into the
model via a higher-order energy term EP,NL. EP,NL describes
long-range interactions between the gradients of φ at pairs of
points separated by many pixels. It is defined as

EP,NL(φ) = −β
2

∫∫
Ω2

∇φ(x) · ∇φ(x′)Ψ
( |x− x′|

d

)
dx dx′ ,

(5)

where d controls the range of the interaction. The interaction
function Ψ, is given by

Ψ(x) =

{
1
2

(
2− |x|+ 1

π sin(π|x|)
)

if |x| < 2 ,

0 else .
(6)

EP,NL has two effects: it prevents pairs of points with anti-
parallel normal vectors from coming too close; and it encour-
ages pairs of points with parallel normal vectors to attract each
other, and thus the growth of armlike structures. Consequently,
the effect is to assign low energy to (and hence favour) regions
composed of long arms of a certain width and with roughly
parallel sides that join together at junctions.
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B. Data Energy

The data energy ED takes into account the following ra-
diometric properties of dense urban areas, which discriminate
roads from the background:
• Roads are mainly built from the same materials (concrete,

asphalt) and thus tend to have somewhat homogeneous
spectral properties. In contrast, the background (i.e. the
non-road region) has no single photometric characteristic.

• The surfaces of main roads are not entirely uniform due
to the presence of noise, such as zebra crossings, over-
bridges, vehicles, shadows, etc. Nevertheless, they still
show much less variability than the background.

ED is the negative logarithm of P(I|R,K) in (1). We
assume that this factorizes as P(IR|R,K)P(IR̄|R,K), where
subscripts indicate ‘restricted to’. We use the same paramete-
rized model for IR and IR̄, the choice of model being based
on a study of the image statistics. We model both the one point
statistics of the image intensity, i.e. the histogram, and the two-
point statistics, which we characterize by the variance V (x)
of the image in a small window around each pixel. Because
of the factorization, the data energy is the sum of two pieces:

ED,SIG(I, φ) = −
∫

Ω

{[
lnP+(I(x)) + θv lnQ+(V (x))

]
φ+(x)

+
[
lnP−(I(x)) + θv lnQ−(V (x))

]
φ−(x)

}
dx , (7)

where θv is the weight of the two-point statistics. P+ and P−
are two-component Gaussian mixture distributions, modelling
the image intensities, while Q+ and Q− are Gamma distribu-
tions, modelling the variances:

P±(I) = a±N(I;µ1±, σ
2
1±) + (1− a±)N(I;µ2±, σ

2
2±) ,

(8a)

Q±(V ) =
V b±

d±
e
− V

c± , (8b)

where + denotes the road and − denotes the background,
a± ∈ [0, 1], and N is the normal distribution.

The complexity of VHR images in dense urban areas,
however, compels us to introduce a multi-resolution approach.
The motivations are as follows. First, as noted in section I,
VHR images contain objects, e.g. roads, buildings, at many
different scales. In order to capture this complicated behaviour,
it makes sense to analyse an image at several resolutions
simultaneously. Second, the same object observed at high or
low resolutions presents different characteristics. In particular,
at low resolutions, the background can be viewed as noise,
while the larger roads are still clearly distinguished as ho-
mogeneous areas. Road segmentation is thereby facilitated,
but is also less precise. In contrast, higher resolutions can
provide a more precise location and width for the road. The
use of several resolutions thus allows the combination of
coarse data, in which details in the image that can disrupt
the recognition process have been eliminated, with fine data
to increase precision.

The multi-scale framework we use was first introduced
in [13]. The Haar wavelet scaling coefficients at different
scales (levels) [14] provide us with a multi-scale representation

of the original data. Our multi-resolution data energy is a
sum of energies computed at four different levels, which aims
to combine the advantages and balance the disadvantages of
coarser and finer resolution data:

ED,MUL(I, φ) =
∑
s

ED,SIG,s(Is, φ) , (9)

where Is, s ∈ {0, 1, 2, 3}, are the scaling coefficients at level
s of a wavelet transform and ED,SIG,s is the data energy at a
single level s. This can be viewed as the energy of a maximum
entropy distribution in which the mean energy at each level
is fixed. In practice, since the size of the image varies with a
factor 2 from level s to level s + 1, we up-sample all Is to
the finest resolution.

III. GIS PRIOR ENERGY

The prior energy EP proposed in section II is generic:
it incorporates constraints on the form of the road network
region that are true for any road network. To improve further
the results at full resolution, we introduce a specific prior
energy [15]. The specific prior says that the region sought must
be ‘close’ to an exemplar region, e.g. a GIS map of the road
network R0 at an earlier date. R0 can also be described by a
phase field function φR0 ; φR0± = (1 ± φR0)/2 thus denote
the characteristic functions of R0 and R̄0. EP,GIS takes the
form

EP,GIS(φ, φR0) =

∫
Ω

[
ω+φR0+(x) + ω−φR0−(x)

]
[
φ(x)− φR0

(x)
]2
dx . (10)

The two terms correspond to the two components of the
symmetric area difference between R and R0: x ∈ R ∩ R̄0

and x ∈ R̄ ∩ R0 respectively. These are separated so that
they can be weighted differently by the parameters ω+ and
ω−. Since this term takes into account the exterior of R0 (i.e.
R̄0), it counteracts the background ‘noise’ appearing in the
data. Note that the values of ω± will depend on extraneous
data, such as the time lapse between the GIS map and the
image: e.g. if the time lapse is large, then ω± should be small,
indicating a weak link between the GIS map and the current
road network. If the time lapse is unknown, a mixture model
over ω± is conceivable. We do not discuss these possibilities
further here.

IV. IMPLEMENTATION

To minimize the total energy E, we perform gradient
descent with the neutral initialization [1]: the initial value
of φ is set equal to α/λ everywhere in Ω, which corre-
sponds to the local maximum of the potential W . During
the algorithm, no re-initialization or ad hoc regularization
is required. In the case of the single-scale model energy
E1 = θ(EP,0 + EP,NL) + ED,SIG, the evolution equation is

∂φ

∂t
= θ
{
∇2φ− λ(φ3 − φ)− α(1− φ2)− β∇2Ψ ∗ φ

}
+

1

2

{[
lnP+ + θv lnQ+

]
−
[
lnP− + θv lnQ−

]}
, (11)
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TABLE I: Parameter values used for the experiments on
Fig. 2a. The left column shows the resolution.

θ α λ β d ω+ ω− θv
1/8 200 0.0905 3 0.02 10 0 0 0.02
full 300 0.0905 3 0.02 80 0.00033 0.0006 0.02

(a+;µ1+, σ2
1+;µ2+, σ2

2+) (b+, c+, d+)

1/8 (0.6479; 595.9, 8.9e4; 380.3, 7.4e3) (3.2, 8e3, 6.5e14)
full (0.5772; 63.1, 1622.9; 43.7, 98.7) (3, 250, 3e9)

(a−;µ1−, σ2
1−;µ2−, σ2

2−) (b−, c−, d−)

1/8 (0.9247; 726.9, 1.3e5; 115.4, 2.3e3) (2, 4.8e4, 1.65e12)
full (0.9285; 94.9, 2480.7; 21.1, 30.4) (2.2, 800, 1e9)

where ∗ indicates convolution. The equation for multiple
scales involves adding a copy of the last line for each scale.
When EP,GIS is included, the term −2(φ−φR0)

[
ω+φR0+ +

ω−φR0−
]

should be added to (11).

V. EXPERIMENTAL RESULTS

The input data I was a QuickBird panchromatic image, as
shown in Fig. 2a. Fig. 2b shows a full resolution zoom on
this image, illustrating the difficulties existing in VHR images.
The associated GIS map, obtained a few years earlier than the
satellite image in the zone, was used in two ways: first, to
create ground truth via a small manual correction (see Fig. 2d);
and to create an inaccurate road network region to serve as R0

(see Fig. 2e). (The GIS map was ‘damaged’ since otherwise
it would have been too close to the true network.) Note that
R0 is very different from the ground truth. Secondary roads
have been kept in the ground truth; this is to allow comparison
with other methods, which attempt to find all roads, not just
the main road network.

The parameters of the Gaussian mixture and Gamma distri-
butions in ED were learned from image samples of road and
non-road taken from R0. Note that the samples may contain
errors, since R0 does not correspond exactly to the road
network in the image (see Fig. 2). Examples of histograms
and the models fitted to them are shown in Fig. 3. The prior
parameters are for the moment set by hand. However, one
of them is eliminated by a condition that ensures that a long
bar of the desired road width is a stable configuration of the
energy, while the rest are constrained by Turing stability of
the model [1]. The parameter values used for the experiments
on Fig. 2a are given in Table I: apart from a change in the
overall weight of the prior term, and a scaling of d and the
likelihood parameters when changing resolution, they are the
same for different resolutions.

We will first present the results of applying the single-scale
model to the images at different resolutions and of applying
the multi-scale model to the original image. Then, we will
show that the GIS prior energy can significantly increase the
robustness of the method. More results and comparisons with
other approaches are presented at the end of this section.

A. Results Using the Single-Scale Model without GIS Prior

First we apply the single-scale model E1 to the scaling
coefficients of the original image (Fig. 2a) at different levels
of the wavelet decomposition.

(a)

(b) (c)

(d) (e)

Fig. 2: Input data. 2a: a QuickBird image (size: 2560 ×
2560); 2b: a full resolution zoom on the image; 2c: a full
resolution zoom on the reduced resolution image, i.e. scal-
ing coefficients after performing a wavelet transform three
times; 2d: ground truth; 2e: deliberately ‘damaged’ ground
truth, to simulate an earlier GIS map.

Fig. 3: Left: histograms of the pixel intensity I on-road (top)
and off-road (bottom); right: histograms of the variances V
on-road (green/light grey) and off-road (blue/dark grey), and
of the models fitted to them (solid lines).
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(a) (b) (c)

Fig. 4: Experiment at level 3 (size: 320× 320, road width ' 12 pixels). Left to right: the thresholded phase field function at
iterations 1 and 400, and at the final iteration 20000, using the single-scale model E1.

(a) (b) (c)

Fig. 5: Experiments at finer resolutions using the single-scale model E1. 5a: result at level 2 (size: 640×640, road width ' 24
pixels); 5b: result at level 1 (size: 1280×1280, road width ' 48 pixels); 5c: result at full resolution, level 0 (size: 2560×2560,
road width ' 96 pixels).

We start at level 3. Fig. 2c shows a full resolution zoom at
this level, illustrating that even after three levels of smoothing
and down-sampling, the data is still rather complex. Fig. 4
shows the thresholded phase field function at iterations 1 and
400 of gradient descent, and at the final iteration 20000, using
the model E1. The segmentation appears very successful,
but the road region is actually not very accurate. Accuracy
is limited both directly, by the low resolution of the phase
field, and indirectly, because each scaling coefficient in the
data at level 3 is the average of 64 pixels at full resolution.
Coefficients near the road border therefore include both road
and background contributions, and the road width is thereby
distorted. To improve on this result, extraction needs to be
performed at full resolution.

The level 3 image is already quite complex, and we observe
experimentally that if we try to use the same model at finer
resolutions, using the images at levels 2, 1, or 0, the details
of the scene in the image make road extraction more difficult
(see Fig. 5). The erroneous detections in the background result,
on one hand, from regions of poor contrast between the main
roads and the buildings or areas of vegetation, and on the other
hand, from the smaller roads, which have statistical properties
similar to the main roads. The shadows of high buildings, cars,
road markings and bridges lead to jagged borders or gaps along
the roads. The former indicates a lack in the single level data
model, while the latter is due to a weakness in the prior model,

which therefore needs to be improved in order to enforce the
road geometry more effectively.

B. Results Using the Multi-Scale Model without GIS Prior
In an attempt to overcome the problems at fine resolutions,

we apply the multi-scale model E2 = θ(EP,0 + EP,NL) +
ED,MUL. The result is shown in Fig. 6. It is not perfect, but it
is an improvement over the result obtained at full resolution
using E1 (see Fig. 5c). There are still some false detections
in the background and the road borders are rather inaccurate
due to geometric noise along the boundaries of the road. The
result indicates that a simple sum of data energies at several
different scales, while helpful, is not sufficient to solve the
problem completely. It suggests that the model should include
stronger prior knowledge. We show, in the next subsection,
the great improvement at full resolution resulting from the
inclusion of the GIS prior.

C. Results Using the Single-Scale GIS Model
We apply a model making use of the single scale data term

and the GIS prior term E3 = θ(EP,0 + EP,NL + EP,GIS) +
ED,SIG at full resolution. The result is illustrated in Fig. 7a.
The addition of EP,GIS greatly improves the result, when
compared to Figs. 5c and 6. Its main effect is to eliminate
false positives in the background, while preserving the correct
segmentation of the roads themselves.
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Fig. 6: Experiment at full resolution (size: 2560× 2560, road
width ' 96 pixels) using the multi-scale model E2.

(a) (b)

Fig. 7: Experiments at full resolution (size: 2560×2560, road
width ' 96 pixels) using the single-scale GIS model E3. Left:
result obtained with ‘damaged’ ground truth (Fig. 2e); right:
result obtained using the result obtained with E1 at level 3
(Fig. 4c) as a replacement for the GIS information.

Fig. 7b shows the result we obtain when we use as R0, not
the GIS map, but the result obtained at reduced resolution, i.e.
at level 3 (see Fig. 4c). This shows that, in principle, we can
free ourselves from the need to have a GIS map available.

Fig. 8 illustrates two further experiments, using the images
in Fig. 1 acquired in 2006 as inputs. The top row of Fig. 8
shows GIS maps of the main road networks for the same
zones from before the year 2002. Significant changes exist
between the maps and the satellite images. (Consequently, the
GIS maps were not ‘damaged’ for these experiments). The
results obtained with the single-scale GIS model E3 using the
GIS maps as R0 are shown in the bottom row of Fig. 8. These
experiments show that for the main roads, at full resolution, the
single-scale GIS model is able to keep the unchanged roads,
to correct the mistakes, and to extract new roads.

D. Evaluation and Comparison

To evaluate the performance of our models, we compare
our results with four other methods: maximum likelihood
estimation (MLE); a level set approach with global shape
constraint by Bailloeul [16]; a classification, tracking, and
morphology algorithm by Wang [17]; and a fast but rough
segmentation technique based on “straight line density” by
Yu [18]. Except for those involving the multi-scale model, all
results are obtained from full resolution images.

(a) (b)

(c) (d)

Fig. 8: Experiments on the later pair of images in Fig. 1 at
full resolution using the single-scale GIS model E3. Top: GIS
maps of the main road networks from before the year 2002,
used as R0; bottom: the main road networks updated using
the QuickBird images from 2006.

Fig. 2d shows the ground truth used to calculate quantitative
criteria. Figs. 9b-9e illustrate the results obtained using the
four methods mentioned above. MLE is obviously insufficient
to distinguish the roads from the background. The ‘flexible
active contour’ method of Bailloeul (initially dedicated to
building extraction) fails because it is not able to eliminate
road sections that exist in the map but not in the image. On
the other hand, the methods of Yu and Wang are able to detect
the main road network and smaller roads, but, for both, the
accuracy obtained in the delineation of the road boundary is
poor, and the results show a great deal of noise. In addition,
in order to illustrate the importance of the generic prior term
of our model, Fig. 9a shows the result obtained if EP,NL
is omitted, leaving a model equivalent to a standard (i.e. not
higher-order) active contour θEP,0 +ED,SIG. The importance
of the geometric knowledge carried by the prior term is clear.

Some quantitative evaluation measures [19] are shown in
Table II. For each method and each measure, the average
value from three experiments (using the images in Figs. 1c, 1d
and 2a) is shown. The completeness is the percentage of
ground truth road network that is extracted; the correctness is
the percentage of extracted road network that is correct; and
the quality is the most important measure of the “goodness”
of the result, because it takes into account the completeness
and the correctness. As already discussed, although the result
obtained with model E1 at level 3 (Fig. 4c) seems similar to
that obtained with model E3 at full resolution (Fig. 7a), the
quality of the former is in fact worse than that of the latter
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(a)

(b) (c)

(d) (e)

Fig. 9: Comparison with methods taken from the literature, at
full resolution. 9a: result obtained when EP,NL is dropped,
leaving a model equivalent to a standard active contour; 9b-
9e: results obtained respectively using MLE, the approaches
of Bailloeul [16], Wang [17], and Yu [18].

TABLE II: Quality Measures of the Different Methods (T =
True, F = False, P = Positive, N = Negative)`````````Method

Measure Completeness Correctness Quality
TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)

Our model E1 at level 3,
but up-sample to full
resolution (e.g. Fig. 4c)

0.7177 0.7571 0.5834

Our model E1 (e.g. Fig. 5c) 0.8159 0.6758 0.5893
Our model E2 (e.g. Fig. 6) 0.7859 0.7301 0.6141
Our model E3 (e.g. Fig. 7a) 0.7920 0.8914 0.7198
θEP,0 + ED,SIG (e.g. Fig. 9a) 0.6358 0.8743 0.5810

MLE (e.g. Fig. 9b) 0.7567 0.2775 0.2545
Bailloeul (e.g. Fig. 9c) 0.5529 0.8318 0.4990

Wang (e.g. Fig. 9d) 0.8918 0.6180 0.5717
Yu (e.g. Fig. 9e) 0.7743 0.7196 0.5893

due to the loss of information at reduced resolution.

VI. CONCLUSION

We have presented two models for the updating of road
maps in dense urban areas by extracting the main road network
from VHR QuickBird panchromatic images. To adapt the
original phase field HOAC model [1], which was developed
for road extraction from medium resolution images, to VHR
images, we first proposed a new multi-resolution data energy.
Although the result at full resolution is better than that
obtained with the single-scale model, the multi-scale approach
needed further improvements in order to eliminate false de-
tections and improve the accuracy of road border delineation.
Consequently, we introduced specific prior knowledge in the
form of an outdated GIS map, to complement the generic
prior knowledge encoded by HOACs. Our results indicate that,
when working at full resolution, the combination of generic
and specific prior knowledge is essential, due to the great
complexity of VHR images. Our model gives better results
than several other methods in the literature. Our current work
focuses on the extraction of secondary roads.
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[2] R. Péteri and T. Ranchin, “Detection and extraction of road networks
from high resolution satellite images,” in Proc. ICIP, Barcelona, Spain,
Sep. 2003.

[3] M. Negri, P. Gamba, G. Lisini, and F. Tupin, “Junction-aware extraction
and regularization of urban road networks in high-resolution SAR
images,” IEEE Trans. Geosci. Rem. Sens., vol. 44, no. 10, pp. 2962–
2971, 2006.

[4] P. Gamba, F. DellAcqua, and G. Lisini, “Improving urban road extraction
in high-resolution images exploiting directional filtering, perceptual
grouping, and simple topological concepts,” IEEE Geosci. Rem. Sens.
Lett., vol. 3, no. 3, pp. 387–391, 2006.

[5] M. Amo, F. Martı́nez, and M. Torre, “Road extraction from aerial images
using a region competition algorithm,” IEEE Trans. Image Process.,
vol. 15, no. 5, pp. 1192–1201, 2006.

[6] J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka, “Road network
extraction and intersection detection from aerial images by tracking road
footprints,” IEEE Trans. Geosci. Rem. Sens., vol. 45, no. 12, pp. 4144–
4157, 2007.

[7] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans.
Image Process., vol. 10, no. 2, pp. 266–277, 2001.

[8] Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson,
K. Gopinath, R. Briggs, and E. Geiser, “Using prior shapes in geometric
active contours in a variational framework,” Int. J. Comput. Vis., vol. 50,
no. 3, pp. 315–328, 2002.
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