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ABSTRACT

The predictability, or lack thereof, of the solar cycle is governed by numerous

separate physical processes that act in unison in the interior of the Sun. Mag-

netic flux transport and the finite time delay it introduces, specifically in the

so-called Babcock-Leighton models of the solar cycle with spatially segregated

source regions for the α and Ω-effects, play a crucial rule in this predictabil-

ity. Through dynamo simulations with such a model, we study the physical

basis of solar cycle predictions by examining two contrasting regimes, one domi-

nated by diffusive magnetic flux transport in the solar convection zone, the other

dominated by advective flux transport by meridional circulation. Our analysis

shows that diffusion plays an important role in flux transport, even when the

solar cycle period is governed by the meridional flow speed. We further examine

the persistence of memory of past cycles in the advection and diffusion domi-

nated regimes through stochastically forced dynamo simulations. We find that
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in the advection-dominated regime, this memory persists for up to three cycles,

whereas in the diffusion-dominated regime, this memory persists for mainly one

cycle. This indicates that solar cycle predictions based on these two different

regimes would have to rely on fundamentally different inputs – which may be

the cause of conflicting predictions. Our simulations also show that the observed

solar cycle amplitude-period relationship arises more naturally in the diffusion

dominated regime, thereby supporting those dynamo models in which diffusive

flux transport plays a dominant role in the solar convection zone.

Subject headings: Sun: activity — Sun: interior — Sun: magnetic fields

1. Introduction

Direct observations of sunspot numbers over 400 years, as well as proxy data for much

longer timescales (Beer 2000), show that both the amplitude and the duration of the so-

lar magnetic cycle vary from one cycle to the next. The importance of this phenomenon

lies in the contribution of varying levels of solar activity to long-term climate change, and

to short-term space weather (Nandy & Martens 2007). While there is now a concensus

that the Sun’s magnetic field is generated by a hydromagnetic dynamo (Ossendrijver 2003;

Charbonneau 2005), the origin of fluctuations in the basic cycle is yet to be conclusively deter-

mined. Several different mechanisms have been proposed, including nonlinear effects (Tobias

1997; Beer et al. 1998; Knobloch et al. 1998; Küker et al. 1999; Wilmot-Smith et al. 2005),

stochastic forcing (Choudhuri 1992; Hoyng 1993; Ossendrijver et al. 1996; Charbonneau & Dikpati

2000; Mininni & Gómez 2002), and time-delay dynamics (Yoshimura 1978; Durney 2000;

Charbonneau et al. 2005; Wilmot-Smith et al. 2006). A coupled, equally important, but

ill-understood issue is how the memory of these fluctuations, whatever may be its origin,

carries over from one cycle to another mediated via flux transport processes within the solar

convection zone (SCZ). A unified understanding of all these disparate processes lays the

physical foundation for the predictability (or lack-thereof) of future solar activity. These

considerations motivate the current study.

The main flux transport processes in the SCZ involve magnetic buoyancy (timescale on

the order of months), meridional circulation, diffusion and downward flux-pumping (timescales

relatively larger). Because magnetic buoyancy, i.e., the buoyant rise of magnetic flux tubes,

acts on timescales much shorter than the solar cycle timescale, the fluctuations that it pro-

duces are also short-lived in comparison. Our focus here is on longer-term fluctuations, on

the order of the solar cycle period, that may lead to predictive capabilities.
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Through an analysis of observational data, Hathaway et al. (2003) have shown that the

solar cycle amplitude and duration are correlated with the equatorward drift velocity of the

sunspot belts during the cycle. They associate this drift velocity with the deep meridional

counterflow that must exist to balance the poleward flows that are observed at the surface

(Hathaway 1996, 2005; Miesch 2005). The results show a significant negative correlation

between the drift velocity and the cycle duration, so that the drift is faster in shorter cycles,

consistent with the interpretation of meridional circulation as the timekeeper of the solar

cycle (Nandy 2004; but see also Schüssler & Schmitt 2004). In addition Hathaway et al.

(2003) identified positive correlations between the drift velocity of cycle n and the amplitudes

of both cycles n and n + 2. While the two-cycle time lag was a new result, the positive

correlation between circulation speed and amplitude of the same cycle is supported by several

earlier studies. In their surface flux transport model, Wang et al. (2002) needed a varying

meridional flow, faster in higher-amplitude cycles, to sustain regular reversals in the Sun’s

polar field. They cited observational evidence from polar faculae counts (Sheeley 1991),

which peaked early for two of the stronger cycles, coinciding with poleward surges of magnetic

flux. Furthermore, observations show a statistically-significant negative correlation between

peak sunspot number and the duration of cycles 1 to 22 (Figure 1c of Charbonneau & Dikpati

2000; see also Solanki et al. 2002). Such a negative correlation between cycle amplitude and

duration is also found in the models of Hoyng (1993) and Charbonneau & Dikpati (2000).

Taken with the inverse relation between cycle duration and circulation speed, this is again

suggestive of a positive correlation between circulation speed and cycle amplitude.

Meridional circulation plays an important role in a certain class of theoretical solar

cycle models often referred to as “flux-transport”, “advection-dominated,” or “circulation-

dominated” dynamo models (see, e.g., the review by Nandy 2004). Such models have

gained popularity in recent years owing to their success in reproducing various observed fea-

tures of the solar cycle (Choudhuri et al. 1995; Durney 1995; Dikpati & Charbonneau 1999;

Küker et al. 2001; Bonanno et al. 2002; Nandy & Choudhuri 2001, 2002; Chatterjee et al.

2004). In these models, a single-cell meridional circulation in each hemisphere (which is ob-

served at the solar surface) is invoked to transport poloidal field, first poleward at near-surface

layers and then down to the tachocline where toroidal field is generated. Subsequently, the

return flow in the circulation advects this toroidal field belt equatorward through a region at

the base of the SCZ which is characterized by low diffusivity. From this deep toroidal field

belt, destabilized flux tubes rise to the surface due to magnetic buoyancy, producing sunspots

(Parker 1955). We may point out here that the name “flux-transport dynamo” is somewhat

inappropriate to classify a circulation or advection-dominated dynamo (where the diffusion

timescale is much larger than the circulation timescale throughout the dynamo domain).

Our results indicate that diffusive flux-transport in the SCZ could play a dominant role in
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dynamos even when the cycle period is governed by meridional circulation speed, pointing

out that flux-transport is a shared process. So, henceforth, by “flux-transport” dynamo,

we imply a dynamo where the transport of magnetic field is shared by magnetic buoyancy,

meridional circulation, and diffusion.

Flux-transport dynamos offer the possibility of prediction because of their inherent

memory. This arises specifically when the dynamo source regions for poloidal field production

(the traditional α-effect) and toroidal field generation (the Ω-effect) are spatially segregated.

A brief discussion on important timescales (we identify three significant ones) in the dynamo

process is merited here. The first is governed by the buoyant rise of toroidal flux tubes from

the Ω-effect layer to the α-effect layer to generate the poloidal field; since this is a fast

process on the order of months, no significant memory is introduced here. The second

involves the transport of poloidal field back into the Ω-effect layer (either by circulation

or diffusion). This could be a slow process where significant memory is introduced which

is dominated by the fastest of the competing processes (advection versus diffusion). The

third timescale relates to the slow equatorward transport of the toroidal field belt through

the base of the SCZ, which sets the period of the sunspot cycle. In this class of dynamo

models, with meridional circulation and low diffusivities in the tachocline (at the base of

the SCZ), the third timescale is almost invariably determined by the circulation speed. It is

the second timescale above, with competing effects of diffusive flux transport and advective

flux transport, that becomes important in the context of the persistence of memory. In the

advection-dominated, stochastically fluctuating model of Charbonneau & Dikpati (2000),

this second timescale (governed by advection of poloidal field due to meridional circulation)

was about 17 years, so that the polar field at the end of cycle n correlated strongest with

the toroidal field of cycle n + 2 rather than that of cycle n + 1. The length of memory

of any particular flux-transport dynamo model is unfortunately dependent on the internal

meridional flow profile, and on other chosen properties of the convection zone which are not

yet well-determined observationally. A particular problem is the strength of diffusivity in

the convection zone, which strongly affects the mode of operation of the dynamo.

Even if one assumes that these flux-transport dynamos capture enough of the realistic

physics of the SCZ to make predictions of future solar activity, these predictions are critically

dependent on the relative role of diffusion and advection in the SCZ. Dikpati & Gilman

(2006), in their highly advection-dominated model, show that bands of latitudinal field from

three previous cycles remain “lined up in the meridional circulation conveyor belt”. They

suggest that poloidal fields from cycles n−3, n−2, and n−1 combine to produce the toroidal

field of cycle n. Based on an assumed proxy for the solar poloidal fields (sunspot area), this

leads them to predict that Cycle 24 will be about 50% stronger than Cycle 23 (Dikpati et al.

2006). In stark contrast, Choudhuri et al. (2007), using a flux-transport dynamo model
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with diffusion-dominated SCZ, and using as inputs the observed strength of the solar dipole

moment (as a proxy for the poloidal field), predict that Cycle 24 will be about 35% weaker

than Cycle 23. Choudhuri et al. (2007) argue that the main contribution to the toroidal

field of cycle n, comes only from the polar field of cycle n− 1 (see also Jiang et al. 2007 for

further details of this model).

The conflicting predictions from these two solar dynamo models presumably result from

the difference in the memory (i.e., survival) of past cycle fields in these models and could be to

some extent influenced by the different inputs they use as proxies for the solar poloidal field.

We also hypothesize that stronger diffusion in the Choudhuri et al. (2007) model destroys

polar field faster, and that flux transport by diffusion across the SCZ in this model short-

circuits the meridional circulation conveyor belt, thereby shortening the memory of previous

cycles. We perform a detailed analysis to test these ideas. To begin with, we consider a

wider parameter space in the present paper, where we study the effect of varying meridional

circulation speed and SCZ diffusivity on the amplitude and period of the solar cycle. In these

simulations, we keep all other parameters the same, allowing a direct comparison between

advection-dominated and diffusion-dominated SCZ regimes – which has previously been

clouded by other differences between models. Then we introduce stochastic fluctuations in

the model α-effect to self-consistently generate cycle-amplitude variations – as a completely

theoretical construct towards studying cycle-to-cycle variations, in contrast to using diverse

observed proxies for time-varying poloidal fields. Subsequently, we perform a comparative

analysis of the persistence of memory in this stochastically forced dynamo model in both the

advective and diffusive flux-transport dominated regimes. Therefore, in spirit, this paper

deals with the underlying physics of solar cycle predictability, and is not concerned with

making a prediction itself. The layout of this paper is as follows. The main features of

the model are summarised in Section 2, and the results of the parameter-space study are

presented in Section 3. These results are interpreted in Section 4. In Section 5 we analyze the

persistence of memory in the advection versus diffusion dominated regimes. We conclude

in Section 6 with a discussion on the relevance of this work in the context of developing

predictive capabilities for the solar activity cycle.

2. The Model

We use the solar dynamo code Surya, which has been studied extensively in different

contexts (e.g. Nandy & Choudhuri 2002, Chatterjee et al. 2004, Chatterjee & Choudhuri

2006), and is made available to the public on request. The major ingredients of the code

include an analytic fit to the helioseismically-determined differential rotation profile, a single-



– 6 –

cell meridional circulation in the SCZ, different diffusivities for the toroidal and poloidal

fields, a buoyancy algorithm to model radial transport of magnetic flux, and a Babcock-

Leighton (BL; Babcock 1961, Leighton 1969) type α-effect localized near the surface layer

(signifying the generation of poloidal field due to the evolution of tilted bipolar sunspot pairs

under surface flux transport). The code solves the kinematic mean-field dynamo equations

for an axisymmetric magnetic field, which may be expressed in spherical coordinates (r, θ, φ)

as

B = B(r, θ)eφ + Bp, (1)

where B(r, θ) and Bp = ∇× [A(r, θ)eφ] correspond to the toroidal and poloidal components

respectively. The mean-field MHD induction equation (see e.g. Moffatt 1978) then leads to

the following standard equations for the α-Ω dynamo problem:

∂A

∂t
+

1

s
(v · ∇) (sA) = ηp

(

∇2 −
1

s2

)

A + αB, (2)

∂B

∂t
+

1

r

(

∂

∂r
(rvrB) +

∂

∂θ
(vθB)

)

= ηt

(

∇2 −
1

s2

)

B

+ s (Bp · ∇) Ω +
1

r

dηt

dr

∂

∂r
(rB) . (3)

Here s = r sin θ, and we specify the meridional flow v, the internal angular velocity Ω, the

diffusivities ηp and ηt, and the coefficient α for the BL α-effect which describes the generation

of poloidal field at the solar surface from the decay of bipolar sunspots. Note that although

for modelling purposes the BL α-effect is mathematically similar to the traditional mean-field

α-effect due to small-scale helical turbulence, the former is fundamentally different. The BL

α-effect acts on much larger spatial (on the order of active regions or greater) and temporal

(surface flux transport) scales, and is quenched at much stronger field strengths (105G). The

profiles of Ω and α were described in Chatterjee et al. (2004) and will not be repeated here.

We will, however, describe the meridional circulation and diffusivity profiles in more detail.

2.1. Meridional Circulation

The meridional circulation is defined in terms of a streamfunction ψ(r, θ), giving the

velocity by

ρv = ∇× [ψ(r, θ)eφ] , (4)

where we assume the density stratification

ρ = C (R⊙/r − 0.95)3/2 . (5)
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The streamfunction is given by

ψr sin θ = ψ0 (r − Rp) sin

(

π(r −Rp)

R⊙ − Rp

)

×
{

1 − e−β1θǫ
} {

1 − eβ2(θ−π/2)
}

e−((r−r0)/Γ)2 , (6)

where β1 = 1.5 × 10−8 m−1, β2 = 1.8 × 10−8 m−1, ǫ = 2.0000001, Γ = 3.47 × 108 m, and

r0 = (R⊙ − Rb)/4. Here R⊙ = 6.96 × 108 m is the radius of the Sun, Rb = 0.55R⊙ is

the bottom of the simulation domain, and Rp = 0.61R⊙ is the penetration depth of the

meridional circulation. We combine the arbitrary constants C and ψ0 in the parameter

v0 = −ψ0/(0.95C) which gives, approximately, the flow speed near the surface at mid-

latitudes. It is this parameter v0 which we vary to change the circulation speed in this

study.

The circulation profile is illustrated in Figure 1 for v0 = 25 ms−1. The dots are plotted

at yearly intervals for particles moving along the streamlines shown.

2.2. Diffusion

We use different diffusivities for the toroidal and poloidal fields, defined as follows:

ηt(r) = ηRZ +
η1 − ηRZ

2

[

1 + erf

(

r − r′BCZ

dt

)]

+
η0 − η1

2

[

1 + erf

(

r − rTCZ

dt

)]

, (7)

ηp(r) = ηRZ +
η2 − ηRZ

2

[

1 + erf

(

r − rBCZ

dt

)]

+
η0 − η2

2

[

1 + erf

(

r − rTCZ

dt

)]

. (8)

Here dt = 0.025R⊙, rBCZ = 0.7R⊙, r′BCZ = 0.72R⊙, and rTCZ = 0.975R⊙. In the radiative

core we choose a low diffusivity, namely ηRZ = 2.2 × 108 cm2 s−1, representing molecular

diffusivity only since there is no turbulent convection. We always choose η1 < η2 so that the

toroidal field diffusivity ηt in the convection zone is lower than the poloidal field diffusivity ηp.

This is to model the suppression of turbulent diffusivity by strong magnetic fields, as toroidal

field tends to be strong and concentrated in localised flux tubes and therefore subject to less

diffusion (Choudhuri 2003), whereas poloidal field is weaker and subject to more diffusion.

At the surface both diffusivities increase to a high value (of the order of 1012 cm2 s−1), in

line with surface flux transport models and observational estimates. Typical profiles are

illustrated in Figure 2.
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2.3. Numerical Domain and Boundary Conditions

We solve Equations (2) and (3) in a meridional plane 0.55R⊙ < r < R⊙, 0 < θ < π/2,

representing the Northern hemisphere. This is divided into a spherical grid of 128 by 128

cells, uniformly spaced in r and θ. We use the same boundary conditions as Chatterjee et al.

(2004), except that we consider only the Northern hemisphere and set B = 0 and ∂A/∂θ = 0

at the equator (θ = π/2), thereby forcing the solution to have dipolar parity.

2.4. Example Solutions

Example solutions for two different runs are shown in time-latitude plots in Figures 3(a)

and (b), where the black lines denote contours of toroidal field strength at the base of the

convection zone (r = 0.71R⊙). This corresponds to the solar butterfly diagram, with the

strongest field located at the active latitudes and migrating equatorward during each cycle.

The background shading shows the strength of the radial field at the solar surface (r = R⊙),

which peaks at the pole several years after the toroidal field maxima (of the same sign) at low

latitudes. The two solutions in Figure 3 characterize the diffusion-dominated SCZ (Figure

3a) and advection-dominated SCZ (Figure 3b) regimes of the dynamo. In Figure 3(b) the

toroidal field shows a poleward branch at high latitude which is absent in Figure 3(a), and

also a stronger radial polar field at the surface. The cause of these differences between the

two regimes will become clear in Section 4.

3. Results

We have carried out a parameter-space study to investigate how the cycle duration and

amplitude in our model depend on the speed of meridional circulation and on the diffusivity

in the convection zone. In each run of the code the parameters are held constant in time,

but they are varied between different runs. Specifically, we vary the parameter v0, which

gives the maximum circulation speed, and also η2, which affects the diffusive decay and

transport of the poloidal field in the convection zone, but not the toroidal field. In all runs

we keep a surface diffusivity of η0 = 2.0 × 1012 cm2 s−1, and a toroidal field diffusivity of

η1 = 0.04 × 1012 cm2 s−1 in the convection zone. These choices approximate the fact that

turbulent diffusion is expected to be more efficient in the decay and dispersal of the weaker

poloidal field, but less so for the stronger toroidal field; the latter suppresses the convective

motions that give rise to turbulent diffusivity in the first place. The α-effect coefficient is

not varied, but is set to α0 = 30 ms−1 for each run. This particular value was chosen to
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ensure that periodic solutions could be obtained for a wide range of the parameters v0 and η2.

Each run was started from an arbitrary initial state, and then evolved until initial transients

had disappeared, leaving a steady periodic dynamo solution. Such a periodic solution was

found to exist only within a certain range of v0 for each value of η2. The cycle duration

and amplitude were then measured from the periodic solutions, in the cases where such a

solution was found.

We define the cycle duration and amplitude by considering the time evolution of the

toroidal magnetic flux Φtor in a certain region around the base of the convection zone.

Specifically, the toroidal field B(r, θ) is integrated at each time step over a region r = 0.677R⊙

to 0.726R⊙, θ = 45◦ to 80◦ (i.e., over the tachocline and latitudes 45◦ to 10◦). This magnetic

flux Φtor should be proportional to the active region magnetic flux at the solar surface,

under the assumption that more toroidal flux at the base of the convection zone leads to

more buoyant eruptions. In a steady dynamo solution the flux Φtor varies in strictly periodic

manner, with its maximum amplitude giving the “cycle amplitude”. We define the “cycle

duration” to be the interval between successive peaks of |Φtor| (half of the full dynamo

period). This is therefore equivalent to the standard definition of the 11-year solar activity

cycle, but of course the simulated periods are different.

The resulting cycle duration and cycle amplitude are plotted as functions of the circu-

lation speed v0 in Figures 4 and 5 respectively. In these figures each curve corresponds to a

different value of the diffusivity η2. The range of speeds covered by each curve indicates the

range for which the code relaxed to a steady periodic dynamo solution, up to a maximum

of v0 = 38 ms−1. In Figure 6 the cycle amplitude is plotted as a function of η2, and in this

case each curve corresponds to a different circulation speed v0.

3.1. Dependence of Cycle Period on Meridional Circulation and Diffusion

Figure 4 shows a clear inverse dependence of the cycle duration on the meridional

circulation speed v0, with faster circulation leading to shorter cycles. A least-squares fit for

the curve with η2 = 0.5×1012 cm2 s−1 gives the dependence of the cycle period on meridional

flow speed

T = 217.716 v−0.885
0 , (9)

where T is in years and v0 is in metres per second. This agrees with the T ∼ v−0.89
0 found

by Dikpati & Charbonneau (1999), and this inverse relation is a well-established result for

Babcock-Leighton dynamo models. In these models the circulation, and specifically the

equatorward counterflow at the bottom of the convection zone, is the primary determinant

of the cycle period (Nandy 2004).
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The cycle duration is only weakly dependent on the diffusivity η2. A power-law fit for the

curve with η2 = 2.0×1012 cm2 s−1 gives T = 150.745 v−0.756
0 years. The lower power of v0 here

indicates that for higher-diffusivity solutions the cycle duration is slightly less dependent on

circulation speed, presumably because flux transport by diffusive dispersal starts becoming

important. Also, it is evident from Figure 4 that, at lower circulation speeds, there is a

maximum diffusivity for which a periodic solution can exist. If there is too much diffusion

at a low circulation speed, then the poloidal field will decay too much during its transport

from high to low latitudes, thus generating insufficient toroidal field to sustain a periodic

dynamo process. The essential difference between advective and diffusive flux transport is

that the latter also reduces field strength during transport, due to diffusive decay.

3.2. Dependence of Cycle Amplitude on Meridional Circulation and Diffusion

Now we turn to the dependence of cycle amplitude on the speed of meridional circulation.

This is shown in Figure 5, where each curve corresponds to a different diffusivity η2 according

to the legend. Rather than being monotonic, the cycle amplitude first increases with v0 for

low v0 and then decreases with v0 for large v0, with a turnover at some value of v0 in between.

The location of this turnover shifts to higher speeds as the diffusivity is increased.

The dependence of cycle amplitude on diffusivity at any given circulation speed is not

entirely clear on Figure 5, but is evident in Figure 6, where cycle amplitude is plotted against

diffusivity η2. In this figure each curve corresponds to a different value of the circulation

speed v0. We see a similar behavior in that the cycle amplitude first increases with η2 for

low η2 and then decreases with η2 for high η2, with a turnover in between. If the circulation

speed is increased, then the value of η2 corresponding to this turnover also increases.

The behaviour of the cycle amplitude in our model, as illustrated in Figures 5 and

6, is more complex than expected a priori. Rather than a simple linear dependence on

the circulation speed v0, there is a turnover in cycle amplitude, at a speed which changes

depending on the diffusivity in the convection zone. In the next section we investigate the

cause of this behaviour in the model.

4. Advection versus Diffusion Dominated Solar Convection Zones

The turnover of cycle amplitude as depicted in Figure 5 occurs at a higher circulation

speed v0 as the diffusivity η2 is increased. The asterisks (joined by a thin line) in Figure

7(a) show the location of this turnover as a function of η2. We may think of this line in
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the (η2, v0) plane as the dividing line between two distinct regimes of the dynamo, which we

call advection-dominated and diffusion-dominated. The advection-dominated regime corre-

sponds to high circulation speed and low diffusivity, while the diffusion-dominated regime

corresponds to low circulation speed and high diffusivity. A shift from one of these regimes

to another affects flux-transport dynamics in a way that results in contrasting dependence of

cycle amplitude on the governing parameters. Consider how the cycle amplitude varies with

v0 for a fixed value of η2, corresponding to a curve on Figure 5. In the diffusion-dominated

regime, a higher circulation speed means less time for diffusive decay of the poloidal field

during its transport through the convection zone, leading to more generation of toroidal field

and hence a higher cycle amplitude. In the advection-dominated regime, a higher circulation

speed leads to a lower cycle amplitude because there is less time to amplify toroidal field in

the tachocline (through which magnetic fields are swept through at a faster speed). It is the

balance between these conflicting influences that leads to a turnover in cycle amplitude at

some intermediate circulation speed.

The bold line in Figure 7(a) shows the transition point between the two regimes that

may be inferred from a simple balance between circulation and diffusion timescales τC and

τD. For a given circulation speed v0, we define the circulation timescale τC as the time taken

for meridional circulation to advect poloidal fields from r = 0.95R⊙, θ = 45◦ to the location

where the strongest toroidal field is formed at the tachocline (θ = 60◦). The diffusion

timescale is defined as τD = L2/η2, where L = 0.285R⊙ is the radial distance across the

convection zone from the same starting point. The two timescales are compared in Figure

7(b), where each horizontal line gives the circulation time τC for a different speed v0, and

the bold curve gives τD as a function of η2. The crossing points of horizontal lines with this

curve give the transition points between the advection dominated (τC < τD) and diffusion

dominated (τC > τD) regimes from these simple theoretical considerations – which are in

good agreement with the simulated transition points.

4.1. Magnetic Field Evolution in Advection versus Diffusion Dominated

Regimes

We now compare the poloidal and toroidal field evolution in the two regimes. Figure 8

shows the poloidal field lines for two runs, at different times through the cycle, starting from

one cycle minimum and finishing at the next cycle minimum, so that the fields reverse in sign.

The left-hand column is taken from a run with v0 = 20 ms−1 and η2 = 0.5 × 1012 cm2 s−1,

which is in the advection-dominated regime. The right-hand column is from a diffusion-

dominated run with the same v0 but with η2 = 2.0 × 1012 cm2 s−1. Figure 9 shows the
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evolution of the toroidal field for the same two runs.

The key difference between the two regimes is the rate at which the poloidal field is able

to diffuse through the convection zone, after it is generated at the surface by the Babcock-

Leighton α-effect. This is seen clearly by comparing the poloidal field evolution between 8

and 12 years in the two runs (Figures 8c/h and d/i). In the diffusion-dominated run the new

clockwise poloidal field diffuses directly down to the tachocline at all latitudes between these

two times. However, in the advection-dominated run the new poloidal field does not reach

the tachocline until the end of the cycle (16 years), and reaches the high latitudes before it

reaches the tachocline; i.e., in this case, the field evolution follows the meridional circulation

conveyor belt. There is still significant anticlockwise poloidal field remaining below the

tachocline from the previous cycle, and even a lower band of clockwise field from the cycle

before that. In the diffusion-dominated case there is only a weak band of anticlockwise field

remaining from the previous cycle at solar minimum.

This suggests that in the advection-dominated regime, poloidal fields from cycles n, n−1,

and n−2 combine to produce the toroidal field for cycle n+1, while in the diffusion-dominated

regime it is produced primarily from cycle n poloidal field, with a small contribution from

cycle n− 1.

The main difference in toroidal field evolution seen in Figure 9 is during the rising phase

of the cycle, seen at 4 and 8 years (panels b/g and c/h). In the advection-dominated regime

there are two separate regions of toroidal field generation, one region at high latitudes from

poloidal field which has been advected poleward by the meridional circulation, and a second

region at lower latitudes arising from direct diffusion of poloidal field across the convection

zone. In the diffusion-dominated case there is no strong generation of toroidal field at high

latitudes. In this case the strongest field generation occurs at mid to low latitudes, with direct

diffusion presumably being the primary means of transporting poloidal field to the base of

the convection zone (i.e., the meridional circulation conveyor belt is “short-circuited”). We

point our however that, contrary to usual expectations, diffusive flux transport still plays

a role in the advection-dominated case, and it is responsible for the complex dependence

of cycle amplitude on diffusivity in the advection-dominated regime; we explore this issue

below.

4.2. The Role of Diffusive Flux Transport

We have thus far identified the turnover in cycle amplitude to lie at the transition point

between advection-dominated and diffusion-dominated regimes of the dynamo. Within the
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umbrella of this model, this maximum in the amplitude is understood to be a balance

between the time available for toroidal field amplification and the time available for poloidal

field decay. Figure 6 shows how the cycle amplitude varies with the diffusivity η2 for a fixed

circulation speed v0. We see that there is a turnover in cycle amplitude for some value

of η2, with lower diffusivities corresponding to the advection-dominated regime, and higher

diffusivities to the diffusion-dominated regime. In the diffusion-dominated regime, which is

only reached for lower speeds v0 in Figure 6, the cycle amplitude decreases with increasing

diffusivity. This is expected due to increased cancellation and decay of the poloidal field.

However, in the advection-dominated regime, the cycle amplitude increases as the diffusivity

η2 is increased. This initially seems counter-intuitive, but we show here that it is caused by

the influence of direct diffusive flux transport of poloidal field across the convection zone.

This direct diffusion (from the solar surface to the base of the SCZ) was visible in

the poloidal field evolution plots shown in the previous section; we now demonstrate its

quantitative effect as η2 is varied, by comparing the poloidal field strength |Bp| at the base

of the convection zone (r = 0.715R⊙) with that at the solar surface (r = R⊙). We take

the ratio |Bp(base)| / |Bp(top)|, using the peak value of |Bp| at each location during the

solar cycle. This ratio is plotted in Figure 10, measured at latitudes 30◦ and 60◦, and

for two different circulation speeds. Thin lines correspond to v0 = 30 ms−1, where the

dynamo is in the advection-dominated regime for the whole range of η2 shown. Thick lines

correspond to v0 = 20 ms−1, for which the dynamo changes between the two regimes at

about η2 = 1.1 × 1012 cm2 s−1.

Consider first the behaviour at 30◦ latitude (solid lines in Figure 10). Here the curves

for both v0 have positive slope, which implies that a greater proportion of poloidal field

from the surface reaches the bottom of the convection zone as η2 is increased. Thus direct

diffusive flux transport at lower latitudes always acts to increase the amount of poloidal field

reaching the base of the convection zone. Nearer to the pole, at 60◦ latitude (dashed lines

in Figure 10), the behaviour is different. Here the ratio decreases as η2 is increased, both

for the curve with v0 = 30 ms−1 and in the diffusion-dominated regime for v0 = 20 ms−1.

In the advection-dominated regime for v0 = 20 ms−1 however, the ratio first increases with

η2. This suggests a more complex relation between the surface and tachocline poloidal fields

at high latitude, with competing influence from both diffusive and advective flux transport.

This is expected because the downflow in the circulation is located at high latitudes.

The analysis presented in this section supports the idea that direct diffusive transport of

poloidal field across the convection zone, especially around mid-latitudes, is responsible for

the trend of increasing cycle amplitude with increasing diffusivity, found in the advection-

dominated regime. Although such diffusive transport acts to increase cycle amplitude in
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both regimes, diffusion also causes the poloidal field that is being transported by meridional

circulation to decay, cancelling with field from the previous cycle that is stored below the

tachocline. Thus diffusion also has a negative effect on cycle amplitude. It is this negative ef-

fect which dominates at higher diffusivities, forcing the dynamo into the diffusion-dominated

regime where cycle amplitude decreases with increasing diffusivity.

5. Persistence of Memory: Cycle-to-Cycle Correlations in Advection versus

Diffusion Dominated Regimes in a Stochastically Forced Dynamo

It is expected that the memory of a flux-transport dynamo is much longer in the

advection-dominated regime than in the diffusion-dominated regime, and solar cycle pre-

dictions have been based on this expectation (Dikpati & Gilman 2006; Jiang et al. 2007).

However, a detailed comparative analysis of persistence of memory in these different regimes

under the umbrella of the same model had not been previously performed. Our analysis

in the previous section has brought us closer to understanding the flux transport dynamics

(in these two regimes) that is the physical basis for any memory mechanism. In this sec-

tion, we consider how the persistence of this memory differs between the two regimes, by

looking at the correlation between peak polar and toroidal fields of subsequent cycles. Since

the simulations considered earlier relaxed to a regular periodic cycle, we cannot use these

to study correlations between different cycles. Therefore, we now introduce self-consistent

fluctuations in the cycle properties by means of a stochastically varying α-effect, and explore

the resulting correlations between different cycles.

5.1. Stochastic Fluctuations

We introduce fluctuations in the model by varying the coefficient α0 of the α-effect (see

Chatterjee et al. 2004 for the full expression). We set

α0 = αbase + αfluc σ(t; τcor), (10)

where αbase = 30 ms−1 is the mean value, αfluc = 30 ms−1 gives the maximum amplitude

of the fluctuations (corresponding to the 200% level), and σ is a uniform random deviate

selected from the interval [−1, 1], with a new value after each coherence time τcor. Although

for our purposes this is essentially a device for changing the cycle properties from one cycle

to the next, there is a strong physical basis for stochastic variations in α which have been

invoked in several previous studies (Choudhuri 1992; Hoyng 1993; Ossendrijver et al. 1996;

Charbonneau & Dikpati 2000; Mininni & Gómez 2002). Our model uses a Babcock-Leighton
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α-effect where poloidal field is generated at the surface from the decay of tilted active regions

(Babcock 1961; Leighton 1969). Thus stochastic variations in the α coefficient are natural,

because it arises from the cumulative effect of a finite number of discrete flux emergence

events (active region eruptions with varying degrees of tilt).

To compare the two regimes we consider two runs, both with η2 = 1.0 × 1012 cm2 s−1.

The circulation speed v0 is kept constant throughout each run, and only the α effect is varied.

Run 1 has v0 = 15 ms−1, so is diffusion-dominated, while run 2 has v0 = 26 ms−1 and is

advection-dominated. The coherence time τcor is set to 2.3 years in run 1 and 1.5 years in run

2, so as to keep the ratio of the former to the cycle duration roughly the same in each case.

We note that although the exact value of the coherence time is not important for our study

(and is introduced just as a means to enable sufficient fluctuations), the timescale – on the

order of a year – is chosen to reflect that the BL α-effect is a result of surface flux transport

processes (diffusion, meridional circulation and differential rotation) which can take up to a

year to generate a net radial (component of the poloidal) field from multiple flux emergence

events (Mackay et al. 2004).

5.2. Correlation Analysis

In this section we compare the peak surface radial flux Φr for cycle n with the peak

toroidal flux Φtor for cycles n, n+ 1, n+ 2, and n+ 3. The toroidal flux is defined as before

by integrating B(r, θ) over the region r = 0.677R⊙ to 0.726R⊙, θ = 45◦ to 80◦. The radial

flux Φr is found by integrating Br(R⊙, θ) over the solar surface between θ = 1◦ to 20◦, (i.e.,

latitudes 70◦ to 89◦). Note that the peak toroidal flux precedes the peak surface radial flux

for the same cycle, which has the same sign. The poloidal field then produces the toroidal

field for cycle n+ 1 with the opposite sign. We measure the correlation of the surface radial

flux for cycle n with the toroidal flux of different cycles, comparing the absolute value of

each total signed flux.

Both runs were computed for a total of 275 cycles with fluctuating α0, so as to produce

meaningful statistics for each of the dynamo regimes. The results are illustrated in Figures

11 and 12 as scatter-plots of Φtor for different cycles against Φr(n). The (non-parametric)

Spearman’s rank correlation coefficient rs is given above each plot, along with its significance

level. The correlation coefficients are summarised in Table 1, where the Pearson’s linear

correlation coefficient rp is also given for comparison. Although the latter is less reliable, as

it assumes a linear relation, it agrees well with rs in each case.

The results show a clear difference between the two regimes. The advection-dominated
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regime shows significant correlations at all 4 time delays, apparently suggesting that the

memory of past poloidal field survives for at least 3 cycles; however, more on this later. The

diffusion-dominated regime has a strong correlation only between Φr(n) and Φtor(n + 1),

suggesting that the dominant memory relates to just a one cycle time-lag, although very

weak correlations are also found with Φtor(n) and Φtor(n+ 3).

In both regimes the strongest relation is the positive correlation between Φr(n) and

Φtor(n + 1). This is to be expected as this is the more deterministic phase of the cycle

– where toroidal fields (of cycle n + 1, say) are inducted from the older cycle n poloidal

field via the relatively steady differential rotation. Note however that the two fluxes do not

have to be directly coupled, in that the two fluxes may be positively correlated because

they are both created from the mid-latitude poloidal field of cycle n (generated by the α-

effect). The polar flux Φr(n) arises through poleward meridional transport of the cycle n

poloidal field, while the toroidal flux Φtor(n + 1) is generated from cycle n poloidal field

that is diffusively transported across the convection zone. This is particularly the case in

the diffusion-dominated regime. Nonetheless, even this indirect scenario suggests that the

strongest correlation should in fact be between the cycle n poloidal field and cycle n + 1

toroidal field in this class of α-Ω dynamo models.

The other phase of the cycle, in which the poloidal field is generated by the α-effect, is

inherently more random due to the fluctuating α-effect in these runs. Nevertheless, there is

a strong positive correlation between Φtor(n) and Φr(n) in the advection-dominated regime,

while this correlation is largely absent in the diffusion-dominated regime. This we attribute

to the relatively stronger role of advective flux transport in the advection-dominated regime

– which implies that a larger fraction of the original toroidal flux that has buoyantly erupted

is transported to the polar regions by the circulation. In effect therefore, the advection-

dominated regime allows correlations to propagate in both phases of the cycle, whereas the

diffusion-dominated case allows correlations to propagate only in the poloidal-to-toroidal

phase. The other correlation is broken in the diffusion-dominated regime because the advec-

tion is short-circuited by direct diffusion, which transports flux downwards and equatorward

– where it is cancelled by oppositely signed flux from the other hemisphere. This explains

how the correlations can survive for multiple cycles in the advection-dominated regime, but

not in the diffusion-dominated regime.

6. Conclusion

Significant uncertainties remain in our understanding of the physics of the solar dynamo

mechanism, implying that prediction of future solar activity based on physical models is a
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challenging task. Here we have demonstrated how a flux-transport dynamo model behaves

differently in advection and diffusion dominated regimes. Such differences, amongst others,

have previously led to conflicting predictions of the amplitude of Cycle 24. Dikpati et al.

(2006) use an advection-dominated model to predict a much stronger cycle than Cycle 23,

whereas Choudhuri et al. (2007) use a diffusion-dominated model to predict a much weaker

cycle. The latter prediction is somewhat similar in spirit to the precursor methods (Schatten

2005; Svalgaard et al. 2005), which use the polar field at cycle minimum to predict the

amplitude of the following cycle. Owing to the lack of observations of conditions inside the

convection zone, opinions differ as to whether the real solar dynamo is weakly or strongly

diffusive (e.g. Dikpati & Gilman 2006; Jiang et al. 2007).

We find that for low circulation speeds v0 (in the diffusion-dominated regime), the cycle

amplitude is an increasing function of v0, as in the observations of Hathaway et al. (2003).

However, the amplitude curve has a turnover point and is a decreasing function of v0 at

higher v0 (in the advection-dominated regime), opposite to the observed correlation. When

the diffusivity in the convection zone is increased, the location of this turnover moves to

a higher v0. Our extensive analysis shows that this turnover corresponds to the transition

between the diffusion and advection dominated regimes. In the diffusion-dominated regime,

faster circulation means less time for decay of the poloidal field, leading to a higher cycle

amplitude, whereas in the advection-dominated regime diffusive decay is less important and

a faster circulation means less time to induct toroidal field, thus generating a lower cycle

amplitude. If the observed statistics of the past 12 cycles as reported by Hathaway et al.

(2003) reflect a true underlying trend, then our results imply that the solar dynamo is in

fact working in a regime which is dominated by diffusive flux transport in the main body

of the SCZ (although the cycle period is still governed by the slow meridional circulation

counterflow at the base of the SCZ). This conclusion supports the analysis of Jiang et al.

(2007).

Through a correlation analysis in a stochastically forced version of our model, we have

also explored the persistence of memory in the solar cycle for both the diffusion-dominated

and advection-dominated regimes. It is this memory mechanism which is understood to lead

to predictive capabilities in α-Ω dynamo models with spatially segregated source regions

for the α and Ω effects. This understanding is based on the finite time delay required for

flux transport to communicate between these different source regions. We find that the

polar field of cycle n correlates strongest with the amplitude (toroidal flux) of cycle n+ 1 in

both the regimes. In the diffusion-dominated regime this is the only significant correlation,

indicative of a one-cycle memory only. However, in the advection-dominated case, there are

also significant correlations with the amplitude of cycles n, n + 2, and n + 3. In contrast

to the correlations that we infer, Charbonneau & Dikpati (2000) found that the strongest
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correlation in their advection dominated model was with a two-cycle time lag. Since such

correlations lead to predictive capabilities, and obviously seem to be model and parameter-

dependent as suggested by our results, such a correlation analysis should be the first step

towards any prediction, the latter being based on the former. In hindsight, however, both

Dikpati et al. (2006) – who use an advection-dominated model and inputs from multiple

previous cycles, and Choudhuri et al. (2007) – who use a diffusion-dominated model and

input from only the past cycle to predict the next cycle, appear to be have made the correct

choices within their modelling assumptions.

Note that the memory mechanism in our advection-dominated case appears to have a

different cause than that implied by Dikpati & Gilman (2006), who invoke the survival of

multiple old-cycle polar fields feeding into a new cycle toroidal field. All of the surviving

correlations in our advection-dominated regime (Figure 12) are positive; they do not alternate

in sign. This alternation in sign would be expected if bands of multiple older cycle poloidal

field survive in the tachocline – odd and even cycle poloidal fields would obviously contribute

oppositely because of their alternating signs. In that case we would expect the absolute value

of Φr(n) to correlate positively with Φtor(n+1) and Φtor(n+3) and so on, but negatively with

Φtor(n + 2) and Φtor(n + 4) and so on, as evident in the results of Charbonneau & Dikpati

(2000, Figure 9; after accounting for the fact that they use signed magnetic fields). Rather,

in the advection-dominated regime of our model, the correlations appear to persist simply

because fluctuations in field strength are passed on in both the poloidal-to-toroidal and

toroidal-to-poloidal phases of the cycle, as evidenced by the correlation between amplitude

and polar flux of cycle n. In a recent analysis, Cameron & Schüssler (2007) find that the

predictive skill of a surface flux transport model – similar in spirit to the advection-dominated

dynamo model of Dikpati et al. (2006) – is contained in the input information of sunspot

areas in the declining phase of the cycle. They argue that memory of multiple past cycles, in

the form of surviving bands of poloidal field (its surface manifestations in their case), need

not be the only reason behind the predictive capability of the advection-dominated dynamo

model of Dikpati et al. (2006). Our analysis of the advection-dominated regime supports

this suggestion of Cameron & Schüssler (2007).

Coming back to the diffusion-dominated regime, our comparative analysis indicates

that in this case, the memory of past cycles is governed by downward diffusion of poloidal

field into the tachocline – which primarily results in a one-cycle memory. The fact that

diffusion is an efficient means for transporting flux is often ignored, especially in this era of

advection-dominated models; however, we find that diffusive flux transport is quite efficient.

The identification of this one cycle memory in our stochastically forced model contradicts

Dikpati & Gilman (2006) – who claim that prediction is not possible in this regime. As long

as the source regions are spatially segregated, and one of the source effects is observable and
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the other deterministic, flux transport α-Ω dynamos will inherently have predictive skills no

matter what physical process (i.e., circulation, or diffusion, or downward flux-pumping) is

invoked to couple the two regions. We may also point out that in the context of cycle-to-

cycle correlations, downward flux pumping (Tobias et al. 2001) would have the same effect

as diffusion in that it also acts to short-circuit the meridional circulation conveyor belt. So

although downward flux pumping differs from diffusive transport because in the latter case

the fields may reduce in strength due to decay, the overall persistence of memory is expected

to be similar if diffusive flux transport was replaced or complemented by downward flux

pumping.

In summary, our analysis has served both to explore the diffusion dominated and ad-

vection dominated regimes within the framework of a BL type dynamo, and to demonstrate

how the memory of the dynamo may be different in these two regimes. Based on our analysis

we assert that diffusive flux transport in the SCZ plays an important role in flux transport

dynamics, even if the dynamo cycle period is governed by the meridional flow speed. In

fact, the observed solar cycle amplitude-period dependence may arise more naturally in the

diffusion-dominated regime, as discussed earlier. Taken together therefore, we may conclude

that diffusive flux transport is a significant physical process in the dynamo mechanism and

this process leads primarily to a one-cycle memory which may form the physical basis for

solar cycle predictions, if other physical mechanisms involved in the complete dynamo chain

of events are well understood. Separate, detailed examinations of these other related physical

mechanisms will be performed in the future.
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Bonanno, A., Elstner, D., Rüdiger, G., & Belvedere, G. 2002, A&A, 390, 673

Cameron, R., & Schüssler, M. 2007, ApJ, 659, 801

Charbonneau, P. 2005, Living Rev. Sol. Phys., 2, 2,

http://solarphysics.livingreviews.org/Articles/lrsp-2005-2/

Charbonneau, P., & Dikpati, M. 2000, ApJ, 543, 1027

Charbonneau, P., St-Jean, C., & Zacharias, P. 2005, ApJ, 619, 613

Chatterjee, P., & Choudhuri, A. R. 2006, Sol. Phys., 239, 29

Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A, 427, 1019

Choudhuri, A. R. 1992, A&A, 253, 277

Choudhuri, A. R. 2003, Sol. Phys., 215, 31

Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Phys. Rev. Lett., 98, 131103

Choudhuri, A. R., Schüssler, M., & Dikpati, M. 1995, A&A, 303, L29

Dikpati, M., & Charbonneau, P. 1999, ApJ, 518, 508

Dikpati, M., de Toma, G., & Gilman, P. A. 2006, Geophys. Res. Lett., 33, 5102

Dikpati, M., & Gilman, P. A. 2006, ApJ, 649, 498

Durney, B. R. 1995, Sol. Phys., 160, 213

Durney, B. R. 2000, Sol. Phys., 196, 421

Hathaway, D. H. 1996, ApJ, 460, 1027

Hathaway, D. H. 2005, in ASP Conf. Ser. 346, Large-scale Structures and their Role in Solar

Activity, ed. K. Sankarasubramanian, M. Penn, & A. Pevtsov (San Francisco, ASP),

19

http://solarphysics.livingreviews.org/Articles/lrsp-2005-2/


– 21 –

Hathaway, D. H., Nandy, D., Wilson, R. M., & Reichmann, E. J. 2003, ApJ, 589, 665

Hoyng, P. 1993, A&A, 272, 321

Jiang, J., Chatterjee, P., & Choudhuri, A.R. 2007, MNRAS, submitted

Knobloch, E., Tobias, S. M., & Weiss, N. O. 1998, MNRAS, 297, 1123
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Mininni, P. D., & Gómez, D. O. 2002, ApJ, 573, 454

Moffatt, H. K. 1978, Magnetic Field Generation in Electrically Conducting Fluids (Cam-

bridge: Cambridge Univ. Press)

Nandy, D. 2004, in Proceedings of SOHO 14/GONG 2004, Helio- and Asteroseismology:

Towards a Golden Future, ed. D. Danesy (ESA SP-599), 241

Nandy, D., & Choudhuri, A. R. 2001, ApJ, 551, 576

Nandy, D., & Choudhuri, A. R. 2002, Science, 296, 1671

Nandy, D., &, Martens, P.C.H. 2007, Adv. Space Res., in press

Ossendrijver, A. J. H., Hoyng, P., & Schmitt, D. 1996, A&A, 313, 938

Ossendrijver, M. 2003, A&A Rev., 11, 287

Parker, E. N. 1955, ApJ, 121, 491

Schatten, K. 2005, Geophys. Res. Lett., 32, 21106

Schüssler, M., & Schmitt, D. 2004, A&A, 421, 349

Sheeley, N. R. 1991, ApJ, 374, 386

http://solarphysics.livingreviews.org/Articles/lrsp-2005-1/


– 22 –

Solanki, S. K., Krivova, N. A., Schüssler, M., & Fligge, M. 2002, A&A 396, 1029

Svalgaard, L., Cliver, E. W., & Kamide, Y. 2005, Geophys. Res. Lett., 32, 1104

Tobias, S. M. 1997, A&A, 322, 1007

Tobias, S. M., Brummell, N. H., Clune, T. L., Toomre, J. 2001, ApJ, 549, 1183

Wang, Y.-M., Lean, J., & Sheeley, N. R. 2002, ApJ, 577, L53

Wilmot-Smith, A. L., Martens, P. C. H., Nandy, D., Priest, E. R., & Tobias, S. M. 2005,

MNRAS, 363, 1167

Wilmot-Smith, A. L., Nandy, D., Hornig, G., & Martens, P. C. H. 2006, ApJ, 652, 696

Yoshimura, H. 1978, ApJ, 226, 706

This preprint was prepared with the AAS LATEX macros v5.2.



– 23 –

0.6 0.7 0.8 0.9 1.0
r (Rsun)

−25

−20

−15

−10

−5

0
v θ (

m
s−

1 )

Fig. 1.— Streamlines of the meridional circulation profile in our model (left), and latitudinal

velocity profile across a radial cut at θ = 45◦ (right). Dots on the streamlines show yearly

positions for particles with v0 = 25 ms−1, starting from the squares at θ = 45◦ and moving

anti-clockwise.
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Fig. 2.— Example diffusion profiles as a function of r for the toroidal (ηt) and poloidal (ηp)

fields. The dotted line shows the location of the tachocline. Here η0 = 2.0 × 1012 cm2 s−1,

η1 = 0.04 × 1012 cm2 s−1, and η2 = 1.0 × 1012 cm2 s−1.
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Fig. 3.— Two example solutions: (a) with v0 = 20 ms−1 and η2 = 2.0 × 1012 cm2 s−1

(characterizing a diffusive flux-transport dominated SCZ); and (b) with the same v0 but

η2 = 0.5× 1012 cm2 s−1 (characterizing an advective flux-transport dominated SCZ). In each

case black lines are contours of toroidal field B at the base of the convection zone (solid lines

for positive values, dashed for negative). The grayscale in the background shows surface

radial field strength Br(r = R⊙), with white for positive and black for negative. The same

contour levels are used in both plots.
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Fig. 4.— Dependence of cycle duration on the meridional circulation speed v0. Each line

style corresponds to a different value of η2 (the poloidal diffusivity in the convection zone)

as given in the legend.
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Fig. 5.— Dependence of cycle amplitude on the meridional circulation speed v0. Each line

style corresponds to a different value of η2 (the poloidal diffusivity in the convection zone)

as given in the legend.
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Fig. 6.— Dependence of cycle amplitude on the poloidal diffusivity η2 in the convection

zone. Each line style corresponds to a different value of the meridional circulation speed v0,

as given in the legend.
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Fig. 7.— Transition between the advection-dominated and diffusion-dominated regimes. In

(a) asterisks indicate the flow speeds v0 corresponding to turnover of cycle amplitude for fixed

values of η2 (inferred from the simulations shown in Figures 5 and 6). The bold line shows

the transition point that may be inferred from simple theoretical comparison of circulation

and diffusion timescales. Panel (b) shows the diffusion timescale τD as a function of η2 (bold

line), and circulation timescales τC for selected speeds v0 (horizontal lines), as defined in the

text.
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Fig. 8.— Comparison of poloidal fields in advection-dominated (left column/panels a to e)

and diffusion-dominated (right column/panels f to j) regimes. Each row corresponds to a

time through the solar cycle, running from one cycle minimum to the next. Solid lines show

clockwise field lines and dashed lines show anti-clockwise field lines. Also indicated is the

base of the SCZ at 0.71R⊙.
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Fig. 9.— Comparison of toroidal field in advection-dominated (left column/panels a to

e) and diffusion-dominated (right column/panels f to j) regimes. Each row corresponds

to a different time through the solar cycle, running from one cycle minimum to the next.

Grayscale contours show toroidal field strength, with black corresponding to the strongest

negative field and white to the strongest positive toroidal field. Also indicated is the base of

the SCZ at 0.71R⊙.
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Fig. 10.— Ratio of poloidal field |Bp| at base of convection zone (r = 0.715R⊙) to that at

the surface (r = R⊙), measured as a function of diffusivity at latitudes 30◦ (solid lines) and

60◦ (dashed lines). Thick lines correspond to runs with v0 = 20 ms−1 and thin lines to runs

with v0 = 30 ms−1.
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Fig. 11.— Cycle-to-cycle correlations in the diffusion-dominated regime (run 1), between

radial flux Φr(n) and (a) toroidal flux Φtor(n), (b) Φtor(n + 1), (c) Φtor(n + 2), and (d)

Φtor(n + 3). The Spearman’s rank correlation coefficient is given along with its significance

level for 275 cycles. All magnetic fluxes are in units of 1025 Mx.
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Fig. 12.— Cycle-to-cycle correlations in the advection-dominated regime (run 2), between

radial flux Φr(n) and (a) toroidal flux Φtor(n), (b) Φtor(n + 1), (c) Φtor(n + 2), and (d)

Φtor(n + 3). The Spearman’s rank correlation coefficient is given along with its significance

level for 275 cycles. All magnetic fluxes are in units of 1025 Mx.
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Table 1. Cycle-to-cycle correlations

Φr(n) for run 1 Φr(n) for run 2

(diffusion-dominated) (advection-dominated)

rs rp rs rp

Φtor(n) 0.185 99.8% 0.287 0.653 100.0% 0.778

Φtor(n + 1) 0.737 100.0% 0.706 0.805 100.0% 0.851

Φtor(n + 2) -0.040 49.1% 0.028 0.356 100.0% 0.546

Φtor(n + 3) 0.195 99.9% 0.202 0.237 100.0% 0.417

Φtor(n + 4) 0.036 44.5% 0.056 0.183 99.8% 0.357

Φtor(n + 5) 0.107 92.3% 0.073 0.214 100.0% 0.316

Note. — Correlation coefficients and significance levels for peak surface

radial flux Φr versus peak toroidal flux Φtor for 275 cycles from stochas-

tically forced dynamo simulations.
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