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Abstract

One of the hallmarks of the human species is our capacity for cumulative culture, in which beneficial knowledge and
technology is accumulated over successive generations. Yet previous analyses of cumulative cultural change have failed to
consider the possibility that as cultural complexity accumulates, it becomes increasingly costly for each new generation to
acquire from the previous generation. In principle this may result in an upper limit on the cultural complexity that can be
accumulated, at which point accumulated knowledge is so costly and time-consuming to acquire that further innovation is
not possible. In this paper I first review existing empirical analyses of the history of science and technology that support the
possibility that cultural acquisition costs may constrain cumulative cultural evolution. I then present macroscopic and
individual-based models of cumulative cultural evolution that explore the consequences of this assumption of variable
cultural acquisition costs, showing that making acquisition costs vary with cultural complexity causes the latter to reach an
upper limit above which no further innovation can occur. These models further explore the consequences of different
cultural transmission rules (directly biased, indirectly biased and unbiased transmission), population size, and cultural
innovations that themselves reduce innovation or acquisition costs.
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Introduction

One of the hallmarks of human culture is that it is cumulative.

Beneficial innovations are accumulated and combined over time

resulting in knowledge and technology that could not have been

invented by a single individual on their own [1,2]. While many

species exhibit culturally-transmitted regional traditions, from

chimpanzee tool using traditions [3] to birdsong dialects [4], only

humans appear able to accumulate cultural modifications in this

way [5]. This cumulative property is of huge significance: it

transforms culture into a second evolutionary inheritance system

[6–8] that is able to generate complex cultural adaptations, from

agricultural methods to medical knowledge to mass transportation

and communication technologies, that have allowed our species to

rapidly and successfully colonise virtually every terrestrial

environment on the planet [9,10]. Despite this significance, little

is known about the mechanisms and functions of cumulative

cultural evolution. Comparative studies with non-human primates

are beginning to delineate the cognitive mechanisms that underpin

the capacity for cumulative culture [5,11]. The present study

focuses on the functional aspects of cumulative cultural evolution

using analytical and simulation models, taking the capacity for

cumulative culture as a given. In particular, I focus here on a

previously unexplored constraint on cumulative cultural evolution:

the increasing cost of acquiring increasingly complex accumulated

knowledge. The following section reviews empirical studies of

cumulative culture that provide real-world dynamics against which

to compare model output, and empirical support for the claim that

cultural acquisition costs are increasing, before presenting

macroscopic (Model 1) and individual-based (Model 2) models of

constrained cumulative cultural evolution.

Empirical studies of cumulative culture
A well-documented example of cumulative cultural evolution is

seen in the growth of scientific knowledge [12]. Historians of

science have detailed how scientific knowledge has gradually

accumulated over successive generations of scientists, with each

new generation building on the advances of previous generations.

To paraphrase Isaac Newton, each new generation of scientists

can only see further by ‘‘standing on the shoulders of giants’’.

Mathematics, to which Newton himself contributed, is an

illustrative example of how scientific knowledge slowly accumu-

lates over successive generations and thousands of years. Only

after Babylonian scholars invented numerical notation and basic

arithmetic in around 2000 BC could Greek and Arab scholars

subsequently develop geometry and algebra respectively, which

then allowed Newton, Liebniz and other Europeans to invent

calculus and mechanics in the 17th century, through to present-day

mathematics [13,14].

Quantitative measures of the accumulation of scientific

knowledge can be obtained using metrics such as the number of

published papers in scientific journals, as well as more direct

indices such as the number of planets or species discovered or the

number of chemical substances created [12,15–17]. These

quantitative ‘‘scientometric’’ analyses have generally revealed an

exponential increase in scientific knowledge over time, such as that

illustrated in Figure 1A describing the number of published

abstracts in mathematics [17]. In a landmark scientometric
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publication, Price [12] showed that this exponential increase is

typical of many scientific fields and that the number of published

papers or abstracts generally doubles every 10–15 years. Yet while

Price [12] is commonly cited as having shown that scientific

knowledge increases exponentially, he also argued that this

exponential increase cannot continue indefinitely, and is likely to

be the initial part of a logistic growth curve with an eventual upper

limit, or saturation point, as shown in Figure 1B (‘‘all the apparently

exponential laws of growth must ultimately be logistic’’: ref [12],

p.30, see in particular Price’s Figure 5). Indeed, more recent analyses

of scientific accumulation have found evidence of knowledge

saturation in certain fields, such as in the discovery of new species

or planets [15]. A similar saturation has been observed for research

and development in industry [18]: despite increasing expenditure on

research and development during the latter part of the 20th century,

the number of patents produced per researcher has declined over the

same period. These recent trends necessitate a consideration of

potential constraints on cumulative cultural evolution.

One potential constraint is that the cost of acquiring the previous

generation’s accumulated cultural knowledge increases with the

magnitude or complexity of that knowledge. It seems reasonable to

assume that more-complex knowledge, such as knowledge of

quantum physics or the knowledge required to construct computers

and space shuttles, takes longer to acquire and has greater scope for

copying error than earlier knowledge, such as knowledge of

Newtonian physics or the knowledge required to construct stone

tools. Indeed, this would seem to be inherent in the very definition of

cumulative culture: if beneficial modifications are successively built

up over time, then people in later generations will, by definition,

have more accumulated knowledge to acquire than people in earlier

generations. Assuming that people have a limited, finite amount of

time in their lives to devote to acquiring previously accumulated

knowledge, there would theoretically come a point at which so

much has to be learned that there is no time remaining for

innovation, and accumulation will cease.

This prediction rests partly on the assumption that individual

learning recapitulates history, in other words, that people learn

during their lifetimes a sequence of concepts or skills that have

previously been accumulated historically. While this assumption

may not apply to all cultural domains, certain domains of scientific

knowledge do appear to show this recapitulation. Figure 2A shows

how present-day mathematics education during a single lifetime

recapitulates the order in which concepts were discovered in

human history, from basic counting and arithmetic (invented by

Babylonian scholars in approximately 2000 BC and learned at age

5–7 in the UK) to algebra (formulated most extensively by Arab

scholars such as Al-Khwarizmi and learned at age 11–14) to

calculus and mechanics (invented by Newton and others in the late

1680s and learned at age 16–18) to measure theory (developed at

the turn of the 20th century by Lebesgue, and learned at Masters

level at a minimum age of 22). Each stage is cumulative:

Newtonian mechanics could not have been invented (and cannot

be learned) until algebra had been invented (learned), which in

turn could not have been invented (learned) without knowledge of

basic counting and arithmetic. Figure 2A shows how mathematics

appears to be particularly subject to constraints due to increasing

complexity: UK Masters-level students do not learn anything that

was originally discovered after around 1900. Note, however, that

this historical/educational sequence omits suboptimal knowledge

that temporarily hindered historical accumulation, such as the

Babylonian base-60 system (rather than the currently used base-10

decimal system), which are not learned by present-day schoolchil-

dren. These suboptimal traits are considered in Model 2 below.

Direct evidence for the increasing cost of acquiring previous

knowledge and the consequent reduction in innovation is provided

in a recent analysis by Jones [19], who found an increase over the

last century in the mean age at which Nobel prize winners made

their prize-winning contribution, and the mean age at which

inventors produced inventions that warrant entry into almanacs of

significant technological advances. Figure 2B plots the maximum

likelihood functions derived from Jones’ [19] analysis of 294

scientists/inventors, showing that the peak probability of produc-

ing a significant scientific or technological advance increased from

around 32 years of age in 1900 to approximately 38 years of age in

2000. Further analyses showed that this increase is not due to a

general increase in lifespan, and can be directly attributed to an

increasingly long training period. This can be seen in Figure 2B:

while the post-40 decline in productivity is identical for the 1900

Figure 1. Exponential growth in scientific knowledge. (A) Empirically-derived exponential growth in mathematical knowledge as measured by
the number of published abstracts in mathematics from 1868–1965. The curve shown is a best-fit to data reported in May [17], regression equation
n = 1400e0.025(t-1880). (B) Price [12] argues that exponential increases in scientific output such as those documented by May (dashed line) are actually
the initial part of a logistic growth rate (solid line), eventually reaching a saturation point due to constraints on cumulative cultural evolution.
doi:10.1371/journal.pone.0018239.g001
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and 2000 curves, the age shift occurs at the beginning of life.

Indeed, the age at which Nobel prize winners received their PhDs

increased by a mean of 4 years over this 100-year period [19].

Note also from Figure 2B the decline in absolute productivity in

2000 compared to 1900, echoing the aforementioned decline in

patents per researcher that has occurred concurrently in industry

[18]. These empirical phenomena – an increase in the length of

training required to make a significant discovery and a decrease in

productivity – suggest that increasingly complex knowledge is

becoming increasingly more costly and time-consuming to

acquire, and is consequently constraining (or may constrain in

the future) further accumulation.

Previous analyses of cumulative cultural evolution [20–24] have

modelled the population-wide increase in some measure of

‘‘cultural complexity’’ as a function of variables such as population

size, innovation rate and transmission error. These models have

generated valuable insights such as that cumulative culture will be

influenced by population size, which can explain the loss of

cultural complexity in small populations [20] and gains in cultural

complexity as a result of increasing population size [22], or that

the exponential increase in cultural complexity reported above for

scientific knowledge can be explained in terms of positive feedback

between cultural transmission and creativity/innovation [21]. A

problematic assumption of these models, however, is that they do

not incorporate the aforementioned increasing costs of increas-

ingly-complex accumulated knowledge. The present study ex-

plores the consequences of this additional ‘‘variable cultural

acquisition cost’’ assumption for cumulative cultural evolution,

first by modifying an existing macroscopic, population-based

model (Model 1), and then by constructing a more detailed

individual-based model (Model 2). The latter individual-based

model allows the explicit tracking of individuals and their cultural

traits, providing a more direct simulation of cumulative cultural

evolution and its constraints.

Methods

Model 1 (Macroscopic Model)
Model 1 adds the assumption of variable cultural acquisition

costs to a previous model constructed by Henrich [20]. In this

model, a population is assumed to comprise N individuals each of

whom has some level of culturally transmitted skill denoted zi

(where subscript i identifies each individual, with i = 1, 2…N). This

culturally transmitted skill might be the complexity of the toolkit

that the individual is able to manufacture or use, or the complexity

of the scientific or ecological knowledge that the individual

possesses. Each member of each new generation of N individuals

acquires their zi value from the member of the previous generation

who has the highest z value, zh (i.e. directly biased transmission:

[8]). This transmission is inaccurate, reflecting real-life difficulties

of inference and communication [25,26]. The naı̈ve individual’s zi

value is drawn from a Gumbel distribution with mode zh - a and

dispersion b. The parameter a represents systematic transmission

error that degrades the skill, while b represents unsystematic noise

in transmission that occasionally may result in an improved skill

level relative to zh. Using the Price equation [27], Henrich [20]

showed that the between-generation change in mean z value

across in the entire population, Dz, is given by:

Dz~{azb(ez ln (N)) ð1Þ

where e is the Euler-Gamma constant (e<0.577). When this

change is positive (Dz.0) then culture is said to accumulate, which

occurs when systematic transmission error a is relatively low, when

random inference b is relatively high, and population size N is

relatively large.

In order to add the assumption that increasingly complex

cultural knowledge is more costly to acquire, Eq. 1 can be

modified to make the error parameter a a linear function of the

previous generation’s accumulated skill level zt-1. This error term a
now captures both errors in transmission and the cost of acquiring

previous knowledge, both of which would increase with the

amount of knowledge that must be acquired (represented by zt-1).

The recursion therefore becomes:

Dz~{azt{1zb(ez ln (N)) ð2Þ

where zt-1 gives the accumulated cultural complexity of the

previous generation.

Figure 2. Evidence for increasing cultural acquisition costs. (A) Individual ontogeny recapitulates cultural history for mathematical
knowledge: children learn mathematical concepts in the same order that they were first invented historically. The line is a best-fit logarithmic function
with R2 = 0.97. See Text S1 and Table S1 for sources. (B) Jones’ [19] maximum likelihood functions of the probability of a scientist or inventor
producing a significant scientific or technological innovation (as measured by the awarding of a Nobel prize or entry in prominent technological
almanacs) as a function of the innovator’s age, separately for the years 1900 and 2000. Over this 100-year period the peak age of innovation has
increased by approximately 6 years, and overall innovation rates have decreased. Functions are derived from equation (3) and Table 2 in ref. [19],
recreating that paper’s Figure 4.
doi:10.1371/journal.pone.0018239.g002
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Model 2 (Individual-Based Model)
While macroscopic models such as Model 1 are useful first

approximations of the dynamics of cumulative cultural evolution,

such models have several limitations. First, conceptualising

‘‘culture’’ as a single continuous variable (e.g. z) does not reflect

the discrete basis of technological and scientific change. Historians

of science and technology typically view cultural change as the

invention and accumulation of discrete innovations, such as James

Watt’s modification of the existing steam engine by adding a

separate condensation chamber [28], the invention of retractable

landing gear in aircraft [29] or the invention of the mathematical

concepts and techniques shown in Figure 2A [13,14]. While the

net result of these innovations might be a continuous increase in

engine efficiency, aircraft speed etc., at the micro-level this

increase is step-wise and the result of discrete contributions by

specific individuals. Second, and more importantly, macroscopic

models do not typically treat cultural traits as functionally and

historically dependent, where each new innovation is dependent

on a series of previous functionally-linked modifications. James

Watt did not re-invent the steam engine from scratch, he made a

minor modification to the existing Newcomen steam engine;

algebra could only have been invented once the basic number

system was in place, and so on. Indeed, this functional and

historical dependence would seem to be the defining characteristic

of cumulative cultural evolution. The modification made to

Henrich’s [20] model above represents only a crude way of

implementing this dependence.

To investigate these more realistic properties of cumulative

culture, an individual-based model (Model 2) was constructed to

keep track of each individual’s knowledge and each discrete trait in

the population, and explicitly incorporate inter-individual cultural

transmission. Such methods have been used previously to model

the change in distribution of cultural traits such as first names and

pottery designs over time in response to drift-like random copying

and frequency-dependent cultural transmission biases [30,31]. An

individual-based model of cumulative culture by Strimling et al.

[32] represents a valuable first attempt to understand the

microevolutionary basis of this phenomenon, but does not feature

the key assumption of functionally dependent cultural traits that

are costly to acquire, nor does it produce an initial exponential

increase in knowledge.

Model 2 was implemented in C++ (code available from the

author upon request). A population of N individuals (indexed by i,

where i = 1,2,3…N) engage in cultural transmission and innova-

tion for T generations (t = 0,1,2…T). Each individual learns a set

of cultural traits that are functionally sequential, such that earlier

traits must be learned before later traits in the sequence can be

acquired. Each trait is denoted by xs, where x is an integer from 1

to X (in the simulations that follow, X is fixed at 100). These

integers can be seen as different technological modifications or

scientific ideas. The subscript s is an integer (where s = 1,2,3…‘)

indicating the functional level of that trait, with one trait per s-

level. So an individual with x1 = 42, x2 = 71 and x3 = 13 has

acquired three traits, the first labelled 42, the second 71 and the

third 13. The x3 trait cannot be learned unless the x2 trait has

already been learned, which in turn can only be learned by

individuals already knowledgeable of x1.

In order to track cumulative increases in complexity in the

population, each trait xs is assigned a ‘‘trait fitness’’ of zx which

describes that trait’s effectiveness (in the case of technological

inventions) or veracity (in the case of scientific theories). Note that

these are cultural measures of fitness rather than genetic measures;

we are concerned here with changes in cultural traits over time

rather than genes, and it is assumed that cultural traits have no

bearing on survival or reproduction of individuals. The fitness of

each trait within a single s-level is drawn independently from an

exponential distribution as in Rendell et al. [33], such that there

are always a small number of very effective modifications and a

large number of minimally effective or neutral modifications.

Following [33], the values drawn from the exponential distribution

with rate parameter equal to 1 are squared, doubled and rounded

to integers. Roughly half of these values have zero fitness,

representing non-viable attempts at a solution, with a small

number of highly effective traits with fitness around 50. This

assumption of multiple, difficult-to-find solutions that vary in their

effectiveness is likely to apply to many real-life technological or

scientific domains [34].

Trait fitness (zx) is distinguished from ‘‘individual fitness’’, Zi,

which is the sum of the fitnesses of all learned traits known by an

individual i at every s-level up to the highest one learned, smax:

Zi~
Xs~smax

s~1

zs ð3Þ

For example, the three traits listed above, x1, x2 and x3, might

have trait fitnesses of z1 = 24, z2 = 9 and z3 = 48 respectively. The

individual who has learned these three traits (and only these three

traits, such that their smax = 3) therefore has an individual fitness of

Zi = 81. The mean cultural complexity of a population at time t is

denoted Zt and calculated as the mean of all N individuals’ Zi

values, allowing a comparison with the equivalent measure of

mean cultural complexity, zt, used in Model 1.

During each generation the population is replaced with N naive,

unknowledgeable individuals. Note that there is no differential

reproduction of individuals given that we are interested in cultural

rather than genetic change. Each individual has an ‘‘effort budget’’

of l, which represents the total amount of effort that an individual

can devote in their lifetime to learning cultural traits (either

individually or socially), representing the constraint on accumu-

lation introduced in the macroscopic model above. Every

individual of the new generation goes through an initial stage of

copying from the previous generation (i.e. oblique cultural

transmission: [35]). Three alternative copying rules were imple-

mented: directly biased, indirectly biased and unbiased transmis-

sion [8]. For indirect bias, new individuals copy all of the traits

exhibited by the single individual in the previous generation who

has the highest individual fitness, Zi. For direct bias, new

individuals go through each s-level achieved by at least one

member of the previous generation and copy the trait with the

highest trait fitness, zx. Indirect bias involves copying successful

individuals, whereas direct bias involves copying effective traits.

Both are plausible copying rules [8]: copying successful individuals

is a quick and cheap way of acquiring effective behaviour but may

involve the acquisition of some suboptimal traits, whereas direct

bias is more likely to result in the acquisition of the most effective

traits but with greater time and cost (although these costs were not

directly simulated in the present model). This distinction cannot be

easily explored in the macroscopic model of Henrich [20], nor in

Model 1 above, because individuals and traits are not explicitly

tracked. Finally, for unbiased transmission, new individuals copy

all of the traits of a randomly-selected member of the previous

generation. While probably unrealistic with respect to real-life

scientific and technological change, this provides a baseline for

assessing the effectiveness of the two non-random biases.

Copying, whether directly biased, indirectly biased or unbiased,

incurs a cost cs per trait, where cs is measured in effort units. This

Constraints on Cumulative Culture
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cost is fixed for every trait irrespective of the fitness of the trait, so a

trait of fitness z = 50 is just as costly to acquire as a trait of fitness

z = 5. This is a simplifying assumption based on the intuition that

there does not seem to be any systematic correlation between ease

of learning and trait fitness. In some cases suboptimal traits, such

as the base-60 system or Roman numerals, appear to be more

difficult to learn than higher-fitness traits such as the base-10

system or Arabic numerals. In other cases optimal traits, such as

Darwinian evolutionary theory, appear more difficult to learn than

suboptimal traits, such as teleological or Lamarckian evolutionary

theories [36,37]. In the absence of any systematic or empirically

determined correlation, a fixed and fitness-independent cost was

employed.

Copying proceeds until the learner either (i) learns all of the

traits available from the previous generation (either from the most

successful individual in the case of indirect bias, collated across all

individuals in the case of direct bias, or from a randomly selected

individual in the case of unbiased transmission) or (ii) runs out of

effort budget. If the learner has any effort budget remaining after

copying then innovation occurs. During innovation, the learner

randomly selects one of the cultural traits (from 1 to X) at the first

s-level at which no trait has yet been acquired by that individual. If

the trait selected is viable (i.e. its associated fitness is greater than

zero) then the individual successfully learns that trait, otherwise

another trait is chosen at that s-level. The assumption that traits

with fitness of zero are not learned and thus not accumulated is

intended to capture the cumulative aspect of culture, where only

effective traits are built upon.

Innovation, whether successful or unsuccessful, incurs a cost ci

per trait, where ci is measured in effort units. This is again a

simplifying assumption, but is intended to reflect the notion that

inventors/scientists do not possess the foresight to know in

advance which innovations will be most effective [38], and so

may expend effort and time on ultimately fruitless lines of

research. Innovation proceeds for every successive s-level until the

learner runs out of effort budget. It is assumed that the cost of

innovation is higher than the cost of copying (ci.cs), as is standard

in cultural evolution models and reflecting the intuition that it is

easier to learn something from someone else than invent it from

scratch. The first generation undergoes innovation but not

copying.

Finally, in order to explore the positive consequences of

increasing complexity, and in particular to explore the reasons

for exponential growth in cultural complexity discussed above, it is

assumed that both ci and cs may also decrease in proportion to the

mean level of cultural complexity in the population, Zt. The

proportionality constants mi and ms determine the rate at which

these costs decrease. Each individual of generation t therefore has

a modified ci of c�i = (ci - miZt-1) and a modified cs of c�s = (cs - ms
�ZZt-1),

with the constraints c�i $1 and c�s $1 (otherwise learning becomes

costless and accumulation continues to infinity). The assumption

that the cost of innovation, ci, decreases with cultural complexity

reflects the idea that certain innovations, such as new instruments,

methods or techniques, can increase the likelihood of making

further advances. For example, Schummer [16] showed that the

exponential growth in the number of chemical substances created

by chemists over the last 200 years has been driven endogenously in

this manner, such as when a new substance is created using a

particular reaction mechanism and this reaction mechanism is then

applied to other substance classes to create further substances,

rather than as a result of exogenous factors such as an increase in the

number of active chemists (i.e. N in this model) or funding

expenditure. The assumption that the cost of copying, cs, decreases

with cultural complexity is intended to reflect the invention of new

means of communication such as the printing press or the internet

which make it easier to acquire beneficial cultural traits from the

previous generation. This assumption is less empirically-support-

able, and these changes may be more appropriately seen as

exogenous rather than endogenous (e.g. there is no sense in which

the printing press resulted from mathematical knowledge of the 15th

century). However, rather than introducing a novel exogenous

process, this is examined here endogenously in a parallel manner to

the reduction in innovation costs.

Results

Model 1 (Macroscopic Model)
Fig. 3 shows the cultural accumulation over time of the original

Henrich [20] model as well as the modified Model 1 in which

cultural accumulation is constrained by complexity-dependent

acquisition costs. While the original model exhibits a linear

increase in cultural complexity continuing to infinity, the modified

model reaches a stable equilibrium value of cultural complexity of

zmax. Setting Dz = 0 and rearranging Eq. 1 gives this equilibrium

value as :

zmax~
b

a
(ez ln (N)) ð4Þ

This simple addition to Henrich’s [20] model, one that appears

quite plausible on the logical and empirical grounds discussed

above, predicts that cumulative cultural evolution should reach

some stable upper limit as the knowledge accumulated becomes

too complex to successfully acquire and build upon in each

generation. It does not, however, generate the initial exponential

increase in knowledge shown above to be typical of real-life

cultural change.

Model 2 (Individual-Based Model)
The constraints on learning inherent in the individual-based

Model 2 imposed via the l, ci and cs terms generated upper limits

(denoted �ZZmax as above) on the amount of cultural complexity that

can be attained (Figure 4), similar to those observed in the

Figure 3. Cultural accumulation over successive generations in
Henrich’s [20] original unconstrained model (Eq. 1) and in the
constrained Model 1 (Eq. 2). Parameters: N = 100, a = 0.2, b = 0.05.
doi:10.1371/journal.pone.0018239.g003

Constraints on Cumulative Culture
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modified macroscopic model above (Figure 3). As shown in

Figure 4, the copying rule affects the magnitude of the maximum

cultural complexity that is attained, with direct bias resulting in

higher �ZZmax than indirect bias, which in turn results in higher �ZZmax

than unbiased transmission. This is because direct bias involves the

selection of traits of the highest fitness at every s-level separately,

whereas indirect bias allows suboptimal traits to accumulate when

they are exhibited by individuals who nevertheless have the

highest overall individual fitness. This hitch-hiking effect is

explored further below.

Maximum complexity �ZZmax also increases with population size,

N (Figure 5A), replicating Henrich’s [20] finding that larger

populations can support greater cultural complexity. More

individuals in the population mean that rare high-fitness cultural

traits are more likely to be discovered during innovation, resulting

in higher complexity. Figure 5B shows, for direct bias, a

logarithmic relationship between N and �ZZmax until the latter

plateaus at around N = 100 for these parameter values. This

indicates that adding more individuals to the population has the

greatest effect at relatively low values of N. At relatively high

values of N, adding more individuals has little effect because all

high-fitness traits have already been discovered. The point at

which further increases in N have no effect is roughly equal to X,

the number of alternative trait values at each s-level. When N$X

then it is likely that at least one individual will discover the optimal

trait at that level, and further increases in N have little effect. As

X = 100 here, the point at which this occurs in Figure 5B is when

N$100. Figure 5B shows that a similar logarithmic relationship

plus plateau also occurs for indirect bias, but it takes larger

populations (around N = 1000 in this case) to reach the point at

which a further increase in N has no effect on complexity. N has no

effect when transmission is unbiased, because a randomly-selected

member of the previous generation is no more likely to exhibit

traits with high fitness when populations are large compared to

when they are small.

The maximum cultural complexity attainable, �ZZmax, should also

depend on the relative magnitudes of ci, cs and l, given that lower

costs relative to the total effort budget should allow individuals to

learn more cultural traits. Figure 6 shows the relationships

between �ZZmax and these three variables, separately for directly,

indirectly and unbiased transmission. To understand these

relationships, we can assume that �ZZmax correlates with the

maximum number of traits that can be accumulated, smax. It is

shown in Text S2 that

smax~
l{ci

cs

ð5Þ

Equation 5 says that smax, and by extension �ZZmax, should show a

positive linear relationship with l, a negative linear relationship

with ci and an inverse power relationship with cs. Figure 6A shows

that the first prediction for l is upheld for all three transmission

rules. Figure 6B shows that ci exhibits a negative linear relationship

with �ZZmax as predicted for direct bias and unbiased, but not for

indirect bias where low values of ci produce lower �ZZmax than

expected. Figure 6C shows that cs fits the expected inverse power

relationship for all three transmission rules.

The initial increase in �ZZmax at low values of ci under indirect bias

shown in Figure 6B appears counterintuitive: why does increasing

the cost of innovation initially cause an increase in the maximum

cultural complexity attained? Time-step analyses indicated that

this was because indirectly biased cultural transmission with low

innovation costs allows suboptimal cultural traits to accumulate.

Indirectly biased transmission means that the individual with the

highest mean complexity score is copied by the next generation.

When ci is low then a single individual can discover several traits

during the innovation stage. If this best individual has acquired

several traits at once, then although some of those traits will be of

high complexity (given that the individual has the highest mean

fitness in the population), some may be of low complexity. When

the subsequent generation copies all traits of the best t-1 individual,

this may include several of these low fitness traits. Given that traits

are functionally dependent, earlier low fitness traits cannot be

improved upon once they become accumulated, and thus reduce

the eventual maximum accumulated cultural complexity. As ci

increases, individuals can acquire fewer traits in a their lifetime,

and high fitness individuals are less likely to also have (and

transmit) low-fitness traits. This hitch-hiking effect also explains

why indirect bias results in lower maximum cultural complexity

than direct bias, as shown in Figure 4.

Finally, consider the case where the cost of innovation ci and the

cost of cultural transmission cs both decrease in proportion to the

mean cultural complexity of the previous generation (Zt-1)

according to proportionality constants mi and ms respectively.

When mi and ms are sufficiently large, then cultural complexity can

increase to high values even at normally prohibitively high values

of ci and cs, as shown in Figure 7 for both direct (Figure 7A) and

indirect (Figure 7B) bias (unbiased transmission failed to produce

take-offs). In both cases, cultural complexity shows a gradual initial

increase as the costs of learning slowly fall, before increasing

rapidly and then reaching the constraint imposed by the

requirement that c�i $1 and c�s $1. These curves resemble the

logarithmic curve shown in Figure 1B that is argued to represent

real-life technological and scientific accumulation. From Figure 7

it can be seen that mi and ms do not behave in exactly the same

way. First, increasing mi causes cultural complexity to take off

earlier than the same increase in ms. Second, whereas for direct

bias (Figure 7A) the magnitude of mi and ms do not affect the final

maximum complexity �ZZmax, for indirect bias (Figure 7B) a

Figure 4. Time series of mean cultural complexity over time in
Model 2 indicating that complexity reaches a maximum
equilibrium Zmax. Three alternative copying rules are shown:
unbiased transmission (new individuals copy the cultural traits of a
randomly selected member of the previous generation), indirectly
biased transmission (new individuals copy the cultural traits of the
member of the previous generation who had the highest individual
fitness) and directly biased transmission (new individuals copy the
cultural traits with the highest trait fitnesses across the entire previous
generation). Parameters: N = 100, ci = 10, cs = 5, l = 1000, mi = ms = 0; all
results are the average of 100 independent runs.
doi:10.1371/journal.pone.0018239.g004
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relatively large mi reduces �ZZmax, compared to the same increase in

ms. This is because of the aforementioned accumulation of

suboptimal traits that is permitted by indirect bias (see

Figure 6B): if mi is large then ci will decrease quickly, and a single

individual will be able to acquire multiple traits some of which will

be suboptimal.

Discussion

The aim of this study was to explore a potentially important

constraint on cumulative cultural evolution: the increasing costs of

acquiring increasingly complex accumulated knowledge. It was

suggested that as more, and more complex, knowledge is

accumulated over successive generations, it will become increas-

ingly time-consuming and difficult for each new generation to

successfully acquire this accumulated knowledge. In principal,

there may come a point at which acquisition is so costly that no

time is left for innovation, and accumulation ceases. Evidence was

reviewed from quantitative analyses of the history of science and

technology to support the potential existence of such increasing

acquisition costs: first, the acquisition of accumulated knowledge

by an individual was shown to recapitulate the historical

accumulation of that knowledge, such that later generations have

more to acquire than earlier generations; second, while scientific

and technological knowledge is known to have increased

exponentially over time, certain domains have shown recent

slowdowns in the rate of innovation; and third, the mean age at

which scientists and inventors make significant contributions to

their fields has increased over the last century and this increase can

be directly attributed to a longer training period, supporting the

assumption that acquisition of prior knowledge is becoming

increasingly difficult and time-consuming. Two theoretical models

were then presented that explored the consequences of increasing

cultural acquisition costs on cumulative cultural evolution. Model

1 extended an existing macroscopic model of cumulative cultural

evolution, finding as expected that making acquisition costs

dependent on mean population-wide cultural complexity created

upper limits on the amount of cultural complexity that can be

attained. Model 2 explored this further using individual-based

methods in which discrete traits, individuals and transmission

paths are explicitly simulated. Here, assuming that individuals

have a finite lifetime ‘‘effort budget’’ to devote to either acquiring

prior knowledge or innovating new knowledge again produced

upper limits on the maximum cultural complexity that can be

attained, at which point the entire effort budget is spent acquiring

prior knowledge with none left over for further innovation.

The magnitude of this upper limit was shown in Model 2 to

depend on several parameters, each of which has potential

implications for the study of real-life cumulative cultural evolution.

First, as in previous models [20,22], larger populations supported

higher maximum cultural complexity. However, this only

occurred up to the limit set by the acquisition costs, above which

further increases in population size had no effect (i.e. the plateau in

Figure 5B). This is because lifetime learning capacity is an

individual characteristic, and is (in this model) unaffected by the

number of other individuals in the population. Excessive cultural

acquisition costs may therefore constitute a limiting factor on

cultural complexity operating independently of demographic

constraints. The observation that the number of new patents

issued has exhibited a constant or even declining growth rate

during the latter part of the 20th century despite an exponential

increase in the number of active researchers [18] may constitute

evidence of this independence, and warrants further investigation.

Second, directly biased cultural transmission, where individuals

copy the most effective cultural traits exhibited across the entire

previous generation, allowed higher cultural complexity to

accumulate than indirectly biased cultural transmission, where

individuals copy all of the traits of the single individual from the

previous generation who has the highest total knowledge. This in

turn permitted higher complexity than unbiased transmission,

where individuals copy all of the traits of a single randomly-chosen

individual. In general, while unbiased transmission (i.e. random

copying) might explain changes in the distribution of certain

cultural traits [30], cumulative cultural evolution requires direct or

indirect bias. The disadvantage of indirect bias over direct bias is

that indirect bias allows suboptimal traits to accumulate when

exhibited by the most-knowledgeable individual. Somewhat

counter-intuitively, this was most likely to occur at low innovation

costs (see Figure 6B). This is because low innovation costs allow

individuals to invent several traits in a single lifetime; while the

most knowledgeable individual will have mostly high-fitness traits,

Figure 5. Interaction between population size and cultural complexity in Model 2. (A) Time series of mean cultural complexity over time in
Model 2 at different population sizes, N, under the assumption of direct bias. (B) Relationship between maximum cultural complexity Zmax and N for
direct bias, indirect bias and unbiased transmission, and with N plotted on a logarithmic scale. For direct bias, maximum cultural complexity Zmax

increases logarithmically with N up to N = 100 (line is a logarithmic best-fit with R2 = 0.991 for N#100), after which it plateaus. For indirect bias, a
similar logarithmic increase followed by a plateau occurs to that under direct bias, but the values of Zmax are lower and the plateau occurs at higher
values of N (around N = 1000; line is a logarithmic best-fit with R2 = 0.994 for N#1000). For unbiased transmission, N has no effect on Zmax.
Parameters: ci = 10, cs = 5, l = 1000, mi = ms = 0, all results are the average of 100 independent runs.
doi:10.1371/journal.pone.0018239.g005
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some may be suboptimal, and under the assumption of indirect

bias these suboptimal traits are copied by subsequent generations

along with the optimal traits. High innovation costs mean that

individuals can only invent a few or a single trait in their lifetimes,

maintaining a closer correlation between trait and individual

fitness. With respect to real-life scientific and technological change,

we might ask whether past or present educational and appren-

ticeship systems better resemble either direct or indirect bias.

Newton’s studies of alchemy or Darwin’s theory of pangenesis

might represent suboptimal traits potentially copied by subsequent

generations via indirect bias due to the overall success of their

progenitors. If the primary mode of cultural transmission was

indirect bias, then we might predict that such suboptimal traits

may have hindered scientific progress more than commonly

assumed, as subsequent generations wasted effort in acquiring

these traits and devoted less time to innovation. It is also possible

that the scientific method contains formal mechanisms (e.g.

anonymous peer review) for avoiding the accumulation of

suboptimal traits via indirect bias. On the other hand, the

awarding of honours (e.g. Nobel prizes) to single individuals may

encourage a prestige-based form of indirect bias. Experimental

laboratory studies of cultural transmission have shown that people

willingly employ indirect bias in preference to individual learning,

and that neutral traits can consequently be copied along with

functional traits when both are exhibited by successful models

[39,40]. Further experiments might test more systematically the

conditions under which people engage in direct and indirect bias

when acquiring knowledge and skills accumulated by previous

(cultural) generations of participants in the lab, such as in response

to the aforementioned innovation costs. Further models and

experiments may also add the assumption that direct bias is

intrinsically more costly than indirect bias, because it requires

surveying the entire population on a trait-by-trait basis rather than

copying the single most-successful individual, or that suboptimal

traits can be returned to by later generations and improved.

Third, maximum cultural complexity increased with lifetime

effort budget, and decreased with increasing costs of both

innovation and cultural acquisition (Figure 6). Although such

quantities are somewhat abstract, recent scientometric analyses

have shown that they may be measured with some degree of

accuracy, such as Jones’ [19] quantification of an individual’s

lifetime innovation potential, and the decrease in this potential

over the last century due to longer training periods (see Figure 2B).

The length of training period, for example, might be seen as

equivalent to cs in Model 2 and measured in time. Further

scientometric studies for different domains and over longer time

periods might yield parameter estimates that can be used to

predict the specific course of future cultural change, and perhaps

even estimate when the upper limits observed in the present model

might be reached.

Finally, adding the assumption that innovation costs and

acquisition costs may both decrease with accumulated complexity

generated an initial exponential increase in cultural complexity

(Figure 7) that resembles real-life patterns of scientific and

technological change [17,21]. However, the eventual upper limit

remained due to the assumption that learning always comprises

some cost. The first assumption that innovation costs decrease with

complexity was intended to capture the notion that certain

innovations, such as new techniques or instruments, make further

discoveries more likely. There is evidence from the history of

science that new techniques may increase the likelihood of further

innovation in this way [16]. The second assumption that

acquisition costs also decrease with complexity was intended to

represent innovations such as formal education systems, the

printing press or the internet, that reduce the cost of cultural

acquisition. This assumption is less empirically supportable, and

such phenomena may be more appropriately modelled in the

future as exogenous. Nevertheless, the S-shaped curves shown in

Figure 7 resemble the logistic growth pattern proposed by Price

[12] to describe real-life scientific and technological change

(Figure 1B), and show that such patterns can be obtained from a

Figure 6. The effect on maximum cultural complexity Zmax of
varying (A) lifetime effort budget l (with constant ci = 10, cs = 5),
(B) innovation cost ci (with constant cs = 1, l = 100), and (C)
copying cost cs (with constant ci = 10, l = 100). Circles indicate
direct bias, crosses indicate indirect bias and triangles indicate unbiased
transmission. Lines show best-fit functions, in (A) showing a positive
linear relationship between Zmax and l for direct bias (R2 = 0.999),
indirect bias (R2 = 0.991) and unbiased transmission (R2 = 0.998); in (B)
showing a negative linear relationship between Zmax and ci for direct
bias (R2 = 0.995) and unbiased transmission (R2 = 0.999), but for indirect
bias only for larger ci values (for ci.30, R2 = 0.990), with lower ci values
generating lower Zmax values than expected (no best-fit line drawn);
and in (C) showing an inverse power law relationship between Zmax

and cs for direct bias (R2 = 0.997), indirect bias (R2 = 0.997) and unbiased
transmission (R2 = 0.992). Other parameters: N = 100, X = 100, mi = ms = 0,
all results are the average of 100 independent runs.
doi:10.1371/journal.pone.0018239.g006
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set of standard yet minimal assumptions about transmission

dynamics and trait distributions developed by cultural evolution

researchers [8,35]. Further historical studies might test the

additional prediction that innovations which reduce the cost of

further innovation (i.e. mi) will generate faster and earlier

exponential increases in complexity than innovations that reduce

the cost of acquisition (i.e. ms).

A limitation of the present models is their unilinearity, with only

a single sequential lineage of cultural traits. In reality, cultural

evolution is multilinear [41,42], with several concurrent lines of

scientific investigation or technological lineages existing simulta-

neously. Indeed, a major source of innovation is likely to be the

recombination of traits from different lineages [43], which has

been suggested to result in an exponential increase in cultural

complexity [44]. This was demonstrated analytically by Enquist et

al. [21], although that model did not feature the constraints

introduced here. Future models might explicitly simulate multiple

cultural lineages and within-generation, cross-lineage recombina-

tion, in addition to the constraints explored here, in order to

provide a better theoretical foundation for cumulative cultural

evolution and to guide future historical and experimental studies of

this phenomenon.
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