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Abstract: We propose a measure of holographic information based on a causal wedge con-

struction. The motivation behind this comes from an attempt to understand how boundary field

theories can holographically reconstruct spacetime. We argue that given the knowledge of the

reduced density matrix in a spatial region of the boundary, one should be able to reconstruct

at least the corresponding bulk causal wedge. In attempt to quantify the ‘amount of informa-

tion’ contained in a given spatial region in field theory, we consider a particular bulk surface

(specifically a co-dimension two surface in the bulk spacetime which is an extremal surface on

the boundary of the bulk causal wedge), and propose that the area of this surface, measured

in Planck units, naturally quantifies the information content. We therefore call this area the

causal holographic information. We also contrast our ideas with earlier studies of holographic

entanglement entropy. In particular, we establish that the causal holographic information, whilst

not being a von Neumann entropy, curiously enough agrees with the entanglement entropy in all

cases where one has a microscopic understanding of entanglement entropy.

Keywords: AdS-CFT correspondence, Entanglement entropy

ar
X

iv
:1

20
4.

16
98

v2
  [

he
p-

th
] 

 1
3 

Ju
n 

20
12

mailto:veronika.hubeny@durham.ac.uk
mailto:mukund.rangamani@durham.ac.uk


Contents

1 Introduction 1

2 The construction 8

2.1 The holographic causal surface 8

2.2 Defining causal holographic information 12

2.3 Lightning review of holographic entanglement entropy 13

3 Holographic information 13

3.1 Causal information versus entanglement entropy 14

3.2 Concordances: when ΞA and EA coincide 18

3.2.1 1 + 1 dimensional CFTs on S1 18

3.2.2 Spherical entangling surfaces and vacuum state of CFTd 23

3.2.3 Relation between entanglement and causal holographic information 25

4 Discussion 28

A Caustics for higher-dimensional regions A 31

1 Introduction

Holography is a curious thing: while on the one hand it makes it clear that non-gravitational

quantum dynamics can in certain circumstances be reformulated as a classical gravitational

system, it obscures the precise manner of this reincarnation of the degrees of freedom. Various

attempts have been made in the past to pierce this veil of holographic mystique, a natural question

to focus on in this context is locality in the gravitational description. A-priori the mechanics of

the gauge/gravity correspondence suggests that the entire field theory path integral on the whole

maps to the bulk geometry. It is however interesting to ask how much of the bulk geometry is

‘known’ to a given part of the boundary field theory. Motivated by this question we are led to a

new measure of holographic “information”, which we dub causal holographic information, χ.

To motivate the discussion, let us step back and consider a quantum field theory defined on

a d-dimensional Lorentzian background Bd with a prescribed non-dynamical metric γµν . This

– 1 –



background is rigid, and we will for simplicity assume that it admits a foliation by spacelike

Cauchy slices ΣB on which we can prescribe initial data and subsequently evolve. The holographic

picture asserts that given the path integral on the background Bd, we can find an asymptotically

locally AdS geometry Md+1 whose boundary ∂Md is in the conformal class of Bd and we will

typically conflate these d dimensional geometries. Classical gravitational dynamics onMd+1 has

as its hologram the entire path integral (in the planar limit) of the dual field theory.

Now let us consider a specific Cauchy slice ΣB and focus on a particular spatial region A ∈ ΣB

and ask: what part of the bulk is A supposed to be cognizant of? Even though we believe the

holographic reconstruction of spacetime is non-local, it nevertheless seems implausible that the

specific region A would be aware of the entire bulk geometry.1 Rather, it seems natural that

there is information regarding a certain subset of the bulk that is contained in quantum operators

localized to within A (or at least within the boundary region whose physics is fully determined

by A); we want to quantify what this measure is. Instead of building up this notion directly,

which would require specifying a plausible reconstruction of the bulk, we proceed in reverse. We

first observe that certain bulk constructs are very ‘natural’, and then try to understand them

from the field theory point of view.

Let us start by asking the following bulk question: given some asymptotically-AdS bulk

spacetime, and a specific spatial region A on the boundary, what is the ‘most natural’ bulk region

that one can associate to A? The answer of course depends on what we mean by natural. We

could take the viewpoint that in a Lorentzian spacetime, causal relations are in some sense more

basic and therefore natural than the geometry. But even without explicitly elevating the causal

structure above geometry, it is clear that causal structure is an important characteristic of the

spacetime. Not only is it fully covariant, but it is also invariant under conformal transformations.

It is therefore tempting to define a ‘natural region’ associated to A purely by causal relations. In

particular, we can rephrase our question as: what is the minimal non-trivial bulk (co-dimension

0) region associated to A purely by causal relations? We now argue that such a region is the

causal wedge, �A.

The most natural causal sets pertaining to a given region are the domain of dependence

D and the domain of influence J , indicated in Fig. 1. As the terminology suggests, domain of

influence J of some region is the set of all spacetime points which can be causally influenced

by or influence events in that region, while the domain of dependence D is the much smaller

set of spacetime points which must be causally influenced by or influence events in that region.

We distinguish future and past domains of the region by whether they lie to the future or past

of that region. Moreover, one can consider such sets to be confined purely to the boundary, or

alternately to pertain to the full bulk. These are all the ingredients needed for specifying the

1 One useful point to keep in mind is that the field theory observables could be used to probe a region of the

bulk spacetime which is larger than the region that can be reconstructed using the data in A. Moreover, we also

remark here that we will refrain from assuming any analyticity property of the bulk geometry. For if one were

to do so, then one could trivially reconstruct the entire bulk using the knowledge of an arbitrarily small open

neighborhood.
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Fig. 1: Illustration of the causal sets D and J associated with a 1-dimensional spacelike region A. The

future (past) domain of dependence D±[A] is the set of points which are fully determined by future

(past) evolution of the ‘initial data’ on A. The future (past) domain of influence J±[A] is the set

of points which can be causally influenced by (or can influence) A.

region of interest, �A. We define these notions precisely in §2; for now we simply motivate the

construction.

How can we construct a minimal d + 1 dimensional bulk region from a d − 1-dimensional

spatial region A on the boundary? Clearly, both bulk and boundary domains of influence of

A are infinite sets. Their union is likewise infinite, while their intersection is just the region A
itself, so none of these provides a good starting point. On the other hand, the bulk domain of

dependence of A is only the region A itself, which doesn’t extend into the bulk.2 This leaves

us with the boundary domain of dependence of A, which we’ll denote by ♦A. This is a finite

d-dimensional region on the boundary, and we will use this boundary region to construct the

bulk region of interest �A. While the bulk domain of dependence of ♦A is still only ♦A, and

the bulk domain of influence of ♦A is still infinitely extended, the intersection of future and past

domains of influence of ♦A is now a non-trivial bulk region which nevertheless does not extend

infinitely far into the bulk. This is our region �A, called the causal wedge of ♦A. For orientation

we refer the reader to Fig. 2 of the next section, where we explain the technical construction.

Having constructed a d+ 1 dimensional bulk region �A associated with a d− 1 dimensional

boundary regionA, let us go one step further, and ask whether there is likewise a d−1 dimensional

bulk ‘surface’ naturally associated to A, as this may provide a more useful (albeit more limited)

quantity related to A. We can again answer in the affirmative, by building on the construction

of �A: keeping to only causally-defined quantities, we define the surface of interest ΞA as the

(bulk) intersection of the boundaries of the past and future domains of influence of ♦A. The

boundaries are null surfaces in the bulk which end on the boundary of ♦A, so their intersection is

a spacelike co-dimension 2 bulk surface which is anchored on the AdS boundary at ∂A, and for

static geometries lies entirely within the same time slice3 as A. More generally, ΞA corresponds to

2 As follows immediately from the definition we give in §2, the domain of dependence of a given region trivializes

to just the region whenever that region has co-dimension greater than 1.
3 For static bulk geometries, we use the natural time slices defined by the time translation symmetry, i.e.

– 3 –



a surface within �A which reaches deepest into the bulk.4 We will call ΞA the causal information

surface for reasons we indicate below.

So far, we have used only causal relations to single out two bulk quantities naturally associ-

ated to the boundary region A, namely the causal wedge �A and the causal information surface

ΞA. Let us now include the information contained in the bulk geometry, and try to distill some

minimal non-trivial information about these bulk regions which might characterize A. The most

natural quantities which pertain to �A and ΞA are the proper spacetime volume and proper

area, respectively. Since both bulk regions extend out to the boundary, both of these quantities

are a-priori infinite; however we can usefully consider how the divergence depends on A, and

moreover there is a natural way to regulate them (see for e.g., [1, 2]). Since A and ΞA have the

same dimensionality, we will focus on the quantity corresponding to the proper area of ΞA; we

will dub this causal holographic information and denote it by χA.

We have now motivated all the bulk quantities we wish to consider. To summarize, we have

argued, using only causality, that the causal wedge �A is the smallest non-trivial d+1-dimensional

bulk region specified by A, while a related d − 1 dimensional surface most naturally associated

with A is the causal information surface ΞA, which has proper area χA. Given the simple and

fundamental nature of the construction from the bulk point of view, the main question we wish

to pose is: What is the meaning of the bulk region �A and the number χA from the point of view

of the CFT?

There are two complementary reasons to consider this question, one motivated from the

gravity side and one from the CFT side. From the bulk standpoint, understanding what kind of

CFT quantity corresponds to �A would give us crucial insight into how bulk causality is encoded

in the dual field theory, which may in turn elucidate the emergence of dynamical spacetime from

the field theory. On the other hand, if χA characterizes some useful CFT quantity, calculating

it by using the bulk construction may be the most efficient way to study it.

Let us then turn to the field theory side. What are the ‘natural’ quantities associated to

a region A from the boundary standpoint? One set of quantities which immediately springs to

mind is the entanglement entropy SA which is the von Neumann entropy, or more generally the

Renyi entropies S
(n)
A [3], of the reduced density matrix ρA

SA = −Tr(ρA log ρA) ; S
(n)
A =

1

1− n
log [Tr(ρnA)] , (1.1)

with the latter encapsulating the moments of the density matrix ρA. The reduced density matrix

is obtained by carrying out the path integral over fields supported in the complement ΣB\A
of the region A. Let us take a brief detour to remind the reader of the significance of these

quantities.

orthogonal to the timelike Killing field.
4 In fact, among the restricted set of surfaces anchored on ∂A and lying entirely within the boundary of �A,

ΞA an extremal surface.
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Entanglement entropy and Renyi entropies have been of much interest in quantum informa-

tion and quantum field theory literature and they have been studied extensively in the holographic

context following the remarkable proposal of Ryu and Takayanagi to compute the holographic

entanglement entropy [1, 2]. This proposal which is remarkable in its simplicity, associates SA to

the area of a bulk minimal spacelike co-dimension two surface EA (at constant time) anchored

on the boundary ∂A of the desired region A. For states that are not static, we need to relax

the minimality constraint and work rather with extremal surfaces as originally described in [4].

This latter construction also allows one to make contact between covariant entropy bounds in

gravitational theories captured by light-sheets [5] and entanglement entropy.

While this proposal has not been derived from first principles in general, there is mounting

evidence that it is correct. The first attempt to derive the minimal surface proposal was made in

[6], which was critically examined in [7], who pointed out some loopholes in the above derivation.5

More recently in a beautiful analysis [8] demonstrated that the holographic minimal surface

prescription can indeed be derived for spherical entangling regions in flat space i.e., for ∂A =

Sd−2 ⊂ Rd−1 = ΣB by using a conformal transformation to map the reduced density matrix to a

thermal density matrix and finally computing the latter using black hole entropy as is standard

in AdS/CFT (Renyi entropies were computed using this trick in [9]).

Based on the discussion above it would seem that we’ve identified the object of interest:

couldn’t the causal holographic information χA associated with A be just identified with the

corresponding entanglement entropy SA?6 This is more subtle than one might naively imagine;

indeed we will argue that the answer is “not in general”: as we will see in explicit examples, the

causal information surface ΞA does not in general coincide with the extremal surface EA, and

correspondingly the causal holographic information χA is not equivalent to the entanglement

entropy SA.

However, even though these quantities do not coincide in general, there are specific situations

in which they do agree. Rather remarkably, such situations are precisely the ones in which we

can actually compute the entanglement entropy directly in the CFT! In particular, in all cases

where one is able to compute entanglement entropy in quantum field theories from first principles

independently of the strength of quantum interactions, the surfaces EA and ΞA agree. We believe

that this curious agreement is more than mere coincidence, and points to an underlying relation

between these quantities. Moreover, as we will argue below, our causal construction provides a

certain bound on the entanglement entropy.

Emboldened by this observation, we can speculate why does χA in some sense characterize

5 In particular the derivation of [6] proceeds by using the replica trick to relate the computation of entanglement

entropy to computation of a partition function on a multi-sheeted geometry built from ΣB\A which is evaluated

in turn using saddle point techniques. The issue pointed out by [7] is that the putative saddle point does not

correspond to a true solution to all equations of motion and in particular fails to reproduce known results for

Renyi entropies.
6 The idea of using entanglement in field theory to understand how a holographically dual spacetime can

emerge has been discussed in [10–12].
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the ‘information content’ in A. Since the causal wedge �A corresponds to the set of bulk points

which can both influence and be influenced by the boundary region ♦A which is determined

solely by A, it is tempting to propose that the bulk region �A can be reconstructed from A more

easily than the rest of the bulk geometry. For example, one might imagine that one ‘creates’ a

local bulk observer by acting with a local CFT operator in the early part of ♦A. Having thus a

field theory ‘handle’ on such an observer, one lets that observer explore the bulk spacetime and

eventually come back to the boundary, having collected information about the traversed region

of the bulk. If one restricts that the observer return to the boundary within ♦A, the amount of

spacetime that may be thusly probed is precisely the causal wedge �A.

How many independent ‘bits’ of information can an ensemble of such observers collect?

Naively, one might imagine that, by bulk locality, every spacetime point is independent, so that

the total information should scale with the spacetime volume. However, this is not correct in

a gravitational theory, which is famously governed by the holographic principle [13, 14]. More-

over, although �A extends in time, if we know the bulk field equations, we could reduce the

information in �A to just initial data on a spacelike slice in the bulk extending between the AdS

boundary and ΞA, since for known boundary conditions on AdS boundary, �A is in fact the

bulk domain of dependence for such an initial data slice. (After all, we are already using the

CFT evolution on the boundary in our starting assumption that the physical data specified on

A automatically determines physics in the full boundary domain of dependence ♦A.) Combining

these two reductions, one is left with just A and the causal information surface ΞA. It is then

natural to ascribe the information contained in A to the area of ΞA in Planck units, namely χA.

A related observation which one can make is the following: consider the computation of

correlation functions for gauge invariant boundary operators inserted within ♦A in Lorentzian

AdS/CFT. Since these correlation functions can be obtained by taking the boundary limit of

appropriate bulk correlation functions [15] (see also [16] for recent discussions), and since the

latter are sensitive to the bulk causal structure, it follows that the information contained in the

causal wedge should be sufficient to compute the boundary correlators of interest. This point

has been made precise in the detailed analysis of [17], which shows that the boundary correlation

functions may be determined solely by the bulk path integral over �A.

Having motivated the surface ΞA and its associated information measure χA, we proceed to

show that in general this measure of information is however not a von Neumann entropy. In par-

ticular, it fails in certain calculable circumstances to satisfy an important convexity requirement

known as strong sub-additivity. Nevertheless, we argue that χA provides an upper bound on the

entanglement entropy. We note in passing that in fact, the Renyi entropies introduced in (1.1)

also fail to be sub-additive.

One way to motivate the causal wedge construction and understand the coincidence of the

holographic information surface ΞA with the extremal surface EA in suitably symmetric regions,

is to note that such symmetric regions (which we review in §3) are the ones which allow maximal

entanglement between the degrees of freedom localized in A and its complement. One piece of
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supporting evidence in favor of this notion comes from the recent investigations of [18], who

showed that the reach of the extremal surfaces is maximal for such symmetric regions.7 For

special states such as the vacuum, one can make a stronger statement. From a field theoretic

standpoint one can understand this by noting that the density matrices associated with such

regions can be converted to a thermal density matrix by a conformal transformation as for

example discussed in [8]. This suggests that in a suitable conformal frame the degrees of freedom

in the region A under consideration are indeed maximally entangled with the rest of the field

theoretic degrees of freedom. This is related to the fact that black hole entropy encodes the

maximal amount of information one can pack in a given region. In terms of information content,

they should then enable us to reconstruct the maximal amount of the bulk spacetime.8

Some of the above observations were already made in [4] where the construction of the

surface ΞA was proposed and investigated as a potential candidate for a covariant formulation

of entanglement entropy. It was also noted there that for certain special cases the result for

χA disagrees with the result for entanglement entropies extrapolated from free field theories,

while the minimal (or more generally extremal) surfaces interpolate more cleanly from the weak

coupling result to the holographic domain of strong coupling, and further speculated that χA

bounds the entanglement from above.

The organization of this paper is as follows: we begin in §2 by presenting the basic causal

construction of the surfaces and regions of interest and further lay out our proposal for the causal

holographic information. We then examine the circumstances where χA and SA agree in §3 and

explain in what manner might χA correspond to the maximal information contained in a local

region of the field theory. We conclude with a discussion of various aspects of our proposal

and open questions in §4. As our discussion involves various regions in both the bulk and the

boundary we collect the definitions of these in a Table 1 for quick reference.

Note added: While this manuscript was under preparation, the articles [19] and [20] appeared

on the arXiv which have some overlap with our considerations. In [19] the authors argue that the

region of the bulk that should be holographically described by a boundary spacetime region is

given by the causal construction based on covariant entropy bounds and light-sheet constructions

(for the boundary region). On the other hand [20] consider various constraints on the region of

the bulk that can be constructed from the field theory density matrix and suggest that such a

bulk region could be larger than the causal wedge. We thank Mark van Raamsdonk for sharing

the results of [20] with us prior to publication and for many useful discussions.

7 The statement needs a qualifier: at fixed area of the boundary region A, the shape of A which maximizes

the reach of the corresponding extremal surface into the bulk is the round ball. In [18] this was shown for static

planar geometries, but we expect it to remain true for sufficiently slow variations of the bulk geometry.
8 We would like to thank Don Marolf for insightful comments on this issue.
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Fig. 2: Illustration of various causal sets associated with the boundary region A (color online). AdS

boundary is the plane at z = 0 on the right; the bulk extends to the left of this plane. The region

A is the red segment at z = 0, t = 0. The future and past bulk domains of influence of A are

bounded by yellow and green surfaces respectively, and future and past boundaries of the bulk

causal wedge �A are indicated by the red and blue surfaces respectively. Their intersection with

the AdS boundary encloses the boundary domain of dependence ♦A, and their intersection with

each other (light-blue curve) corresponds to the causal information surface ΞA. For simplicity we

illustrate these constructs in Poincare AdS; the causal wedge in global AdS3 appears in Fig. 4(a)

(which shows A corresponding to half the circle; causal wedge of any other interval would be

obtained simply by translating one of the null planes with respect to the other).

2 The construction

We begin in this section by outlining the basic construction of the causally motivated surface

ΞA. Readers who are familiar with the notions of domains of dependence and causal wedges

might prefer to skip directly to §3 where we describe some of the properties of the construction,

consulting Fig. 2 or Table 1 for our notation.

2.1 The holographic causal surface

Consider a d+1-dimensional, asymptotically locally AdS spacetime, which we take to be causally

well-behaved. We will refer to this bulk geometry asM and its timelike boundary as ∂M, taken

to be in the conformal class of a fixed background B which itself is a d-dimensional Lorentzian

manifold with a fixed metric. Since we will want to consider points on the boundary as part

of the bulk spacetime, we will also define the closure of M, denoted M̄ = M ∪ ∂M, to be

the spacetime including its boundary. For definiteness we will consider globally static boundary

geometries B, which admit a well defined foliation by fixed-time Cauchy slices; ΣB will denote a

typical spacelike leaf of such a foliation. Let us further pick the region A of interest to be a closed
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Notation Meaning & dimen- open / bulk /

Definition sionality closed boundary

M asymptotically locally AdS spacetime d+ 1 open bulk

M̄ bulk spacetime including its boundary d+ 1 closed bulk+bdy

conformal boundary of M
∂M or B & background for QFT d open boundary

foliated by constant time slices

ΣB spacelike Cauchy slice on B d− 1 boundary

A spacelike region contained in ΣB d− 1 closed boundary

∂A boundary of A (aka entangling surface) d− 2 boundary

J±(p) bulk domain of influence (including p) d+ 1 closed∗ bulk+bdy

{ q ∈ M̄ | ∃ γ±p→q ∈ M̄}
J±B (p) boundary domain of influence (including p) d closed boundary

{ q ∈ B | ∃ γ±p→q ∈ B }
D±B [S] boundary domain of dependence d closed boundary

{ q ∈ B | ∀ γ∓q ∈ B, γ∓q ∩ S 6= ∅ }
C ± “caustics” which determine D±B [A] d− 2 closed boundary

{ q ∈ D±B [A] | (J∓B (q) ∩D±B [A])\q = ∅ }
♦A causal development of A within B d closed boundary

D+
B [A] ∪D−B [A] = J−B [C +] ∩ J+

B [C −]

�A bulk causal wedge of ♦A d+ 1 closed∗ bulk+bdy

J−[♦A] ∩ J+[♦A] = J−[C +] ∩ J+[C −]

∂M(�A) boundary of the causal wedge in bulk d bulk

∂�A\B
∂+(�A) future null boundary of the causal wedge d bulk

∂−(�A) past null boundary of the causal wedge d bulk

EA extremal surface in bulk anchored on ∂A d− 1 bulk

ΞA causal information surface d− 1 bulk

∂+(�A) ∩ ∂−(�A)

ΨA minimal-area surface on ∂M(�A) d− 1 bulk

Table 1: Definition of the various regions and surfaces relevant to our construction.

simply-connected sub-region on ΣB. The boundary of A, which clearly is likewise contained in

the leaf ΣB, is denoted9 as ∂A. We are interested in the following question: given field theory

operators localized in A, how much of the bulk spacetimeM is accessible holographically to this

region?

The basic ingredients in our construction are causally defined domains, in particular domain

9 The surface ∂A is also sometimes referred to as the entangling surface.
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of dependence and domain of influence. In order to define these in a self-contained manner,

we will first introduce the concept of causal curves; for a more detailed treatment, see e.g. [21].

A causal curve γ is by definition a nowhere-spacelike (i.e., locally timelike or null) connected

curve, either in the (extended) bulk, γ : R → M̄, or confined to the boundary, γ : R → B.

We take γ (written without any subscript) to be maximally extended, in the sense that it can’t

just end inside the spacetime. One step in our construction will also require us to distinguish

future- and past- directed causal curves. To that end, we define γ+
p to be the future-directed

causal curve starting at p, and similarly γ−p the past-directed causal curve starting at p (which is

also a future-directed causal curve ending at p). We will further denote a future-directed causal

curve from a point p to a point q (which need not be distinct) in the spacetime by γ+
p→q = γ−q→p.

Existence of such a curve guarantees that q is in the future of p (or equivalently p is in the past

of q).

To make this notion more precise, we will denote the bulk future domain of influence of a

point p by the standard notation J+(p) (and similarly denote past domain of influence of a point

p by J−(p)). These characterize the bulk regions which can be influenced by (or influence) the

event p, respectively. Technically, they consist of all points which lie in causal future (past) of p,

i.e.,

J+(p) = { q ∈ M̄ | ∃ γ+
p→q ⊆ M̄} and J−(p) = { q ∈ M̄ | ∃ γ−p→q ⊆ M̄} (2.1)

Since the point p is included in J±(p), these are typically10 closed sets. We can extend this notion

to pertain to a region rather than a single point: a domain of influence of a given region S is

simply the union of the domains of influence for all points in that region, J+[S] = ∪p∈SJ+(p),

etc.. In particular, we can consider J±[A] (where A is taken as a set in the extended bulk

spacetime M̄), as illustrated in Fig. 2.

If we restrict attention to the boundary spacetime B only, with p ∈ B, causal curves on the

boundary determine the boundary domain of influence of p, which we’ll denote by J±B (p), with

the obvious extension to boundary regions, such as J±B [A]. In particular, J±B (p) is defined as

in (2.1) with M̄ replaced by B. Although points p ∈ J+
B [A] can be influenced by A, they are

not determined by A. The latter set is more restricted, and corresponds to the boundary future

domain of dependence D+
B [A], defined as the set of boundary points from which any past-directed

causal curve on the boundary necessarily intersects A, i.e.

D+
B [A] = { q ∈ B | ∀ γ−q ⊆ B, { γ−q ∩ A} 6= ∅ } . (2.2)

Similar construction applies to the boundary past domain of dependence D−B [A]. The full bound-

ary domain of dependence of A is then defined as

♦A = D+
B [A] ∪D−B [A] . (2.3)

10 A possible caveat is that under certain exotic (and rather unphysical) situations, J±(p) need not be closed,

but rather may only be clopen. This could happen for example in a spacetime with some point on the light cone

of p excised; however such situations are not physically relevant to our considerations, and we will therefore ignore

them.
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Specification of initial conditions in A fully determines the physics in the entire ♦A.

We can now proceed to define the bulk causal wedge �A as the set of bulk points which lie

in both future and past domains of influence of ♦A, where ♦A ⊂ B ∈ M̄,

�A = J−[♦A] ∩ J+[♦A] . (2.4)

In fact the argument of J± can be reduced significantly: instead of the full ♦A, we only need

to consider the future-/past-most parts of ♦A whose past/future boundary domains of influence

contain the entire ♦A. We’ll denote these as C + and C −, respectively, so that we can write

♦A = J−B [C +] ∩ J+
B [C −] =⇒ �A = J−[C +] ∩ J+[C −] . (2.5)

Although we can take the left equality as the defining relation for C ±, we can also define C ±

more explicitly by

C + = { p ∈ ♦A | (J+
B (p) ∩ ♦A)\p = ∅ } and C − = { p ∈ ♦A | (J−B (p) ∩ ♦A)\p = ∅ }

(2.6)

Technically, C ± correspond to caustics11 of the ingoing null geodesics emanating normal to the

entangling surface ∂A, and their construction and properties are discussed in greater detail in §A.

In general, they form (possibly branched) co-dimension 1 surfaces on the boundary of ♦A (so they

are (d− 2)-dimensional), but in special cases they can degenerate to lower-dimensional surfaces.

In the most symmetric case of A being the round ball, corresponding caustics degenerate to a

single point, which we denote by C + = q∧ and C − = q∨. In this special case, the causal wedge

�A may be thought of as generated by Rindler horizons of bulk observers starting at q∨ or ending

at q∧, so that �A = I−[q∧] ∩ I+[q∨]. This definition has a number of conceptual and technical

advantages (since we are dealing with Rindler horizons), but we stress that except for d = 2, this

describes a highly-non-generic case.

Rindler horizons are by definition null surfaces; but it is true more generally that the bound-

ary of a causal set (such as J± or D±) is a null surface and is in fact generated by null geodesics

(except possibly at a set of measure zero corresponding to the caustics of these generators). For

our bulk causal wedge �A, it will similarly be true that its boundary in the bulk (i.e. with the

AdS boundary itself removed), which we’ll denote by ∂M(�A), is composed of two null surfaces,

∂+(�A) and ∂−(�A), which intersect along a spacelike surface ΞA,

∂M(�A) = ∂+(�A) ∪ ∂−(�A) and ΞA = ∂+(�A) ∩ ∂−(�A) . (2.7)

Hence the surface ΞA is a spacetime co-dimension two bulk surface, which is by construction

anchored on the entangling surface ∂A of the selected region A, i.e. ∂(ΞA) = ∂A.

One can also consider the set of all spacelike surfaces lying in ∂M(�A) and pinned at ∂A.

From these spacelike surfaces, we take the one with the minimal area. We denote this minimal

11 Here we define caustic as set of intersections of null generators. Sometimes these are also referred to as

“crossover”, while “caustic” is reserved for crossover of neighboring generators only; however, we will not need to

adopt such refinements here.
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surface by ΨA. So we have

ΨA ⊆ ∂M(�A) ⊆M , ∂(ΨA) = ∂A . (2.8)

We claim that in fact the two definitions given above coincide ΨA = ΞA. This can be easily seen

as follows: Consider any surface ΥA ⊆ ∂M(�A). We can obtain this surface from ΨA by flowing a

certain distance λ along the null generators. Let us for the moment assume that ΥA lies along the

future-directed null generators of ∂+(�A); then we can perform a constant rescaling of the affine

parameter of each null generator individually, such that ΥA lies at constant affine parameter λ0

along the future-directed null generators of ∂M(�A). Now, we know that the expansion of the null

generators of ∂M(�A) cannot be negative towards the boundary (otherwise the generators would

caustic, contradicting the fact that they reach the boundary along the null surface ∂M(�A)). This

means that the area of constant λ slices of ∂M(�A) must be monotonically increasing function of

λ; in particular, Area(ΥA) ≥ Area(ΨA). Same argument would apply for ΥA lying on ∂−(�A),

as the past-directed null generators again expand towards the boundary. If ΥA lies partly on

∂+(�A) and partly on ∂−(�A), then we can separate ΨA into domains, separated by ΥA ∩ ΨA,

and run the argument for each domain separately. Hence in all cases, any surface ΥA cannot have

smaller area than ΨA, which means that ΨA is the minimal surface on ∂M(�A), i.e. ΨA = ΞA.

We note in passing that the construction does not depend on a choice of coordinates, but

only on physically meaningful quantities: causal relations in the spacetime. This ensures that

we can apply the same construction even for time dependent bulk geometries. More importantly

this works in any theory of dynamical gravity satisfying sensible energy conditions; for instance

higher derivative theories of gravity that have attracted some interest recently will admit exactly

the same conditions since the construction is predicated on causal relations alone.

Before moving on, let us note that the causal construction of the surface ΞA described above

was originally considered in [4] in the context of holographic entanglement entropy. This surface

was called Z in that work which also erroneously declared it to be the maximal area surface. As

we shall see later, the area of spacelike surfaces measured along ∂M(�A) at fixed affine parameter

of the null generators increases as we move away from ΞA towards the boundary, implying that

there are indeed surfaces with larger area than that of ΞA on ∂M(�A).

2.2 Defining causal holographic information

Having constructed the surface ΞA we define the following measure of holographic information

associated with the region A:

χA =
Area(ΞA)

4GN

(2.9)

We want to claim that χA provides a lower bound on the information regarding the bulk that

the region A has. The causal nature of the construction which guides our intuition makes this

plausible, but it would be useful to have a first-principles proof of this statement.
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A-priori it seems plausible that χA is some functional of the reduced density matrix ρA.

After all, the knowledge of ρA is sufficient to compute field theory observables in ♦A. However,

we will see later that generically χA 6= χAc , where Ac is the complementary region to A. This

happens even for pure states of the entire system on ΣB, for which the spectrum of eigenvalues

of ρA and ρAc are identical. These observations might lead one to conclude that χA cannot be

determined by knowledge of ρA alone,12 which manifestly contradicts the original assertion that

ρA determines observables in the ♦A and thence in �A. However, we are overlooking the fact

the entanglement spectrum (i.e., set of eigenvalues) of ρA only determines the reduced density

matrix up to unitary transformations. It is therefore possible that we can deduce χA from ρA,

though the precise nature of this dependence and an intrinsic field theoretic definition of χA is

an interesting open question which we leave for the future.

2.3 Lightning review of holographic entanglement entropy

The computation of holographic entanglement entropy also requires specification of some region

A on a spatial slice and is defined in terms of the von Neumann entropy of the reduced density

matrix ρA, see (1.1). If the entire state of the quantum field theory is static, then the reduced

density matrix is time-independent; relatedly the bulk holographic dual spacetime is also static.

For these situations, we can compute the entanglement entropy using the minimal surface pre-

scription of [2]. However, we can be more general, and consider states that have non-trivial time

dependence, so that the density matrix is not time-independent. In such cases the foliation by

spacelike surfaces ΣB which exists on the rigid field theory background B does not necessarily

extend to the bulk in a unique way. As a result, it does not suffice to consider minimal surfaces,

but rather as explained in [4] one looks at extremal surfaces EA which is an extremum of the

area functional (these surfaces were denoted as W in [4]). This extremal surface is anchored on

the boundary ∂A of the region A and the entanglement entropy is given as13

SA =
Area(EA)

4GN

(2.10)

3 Holographic information

We now have at hand two different constructions in the bulk associated with the given boundary

region A. Both the causal wedge �A (and therefore its associated co-dimension two causal

information surface ΞA) as well as the extremal surface EA are constructed covariantly, without

any preferred choice of bulk foliation etc.. We now proceed to explain some of the features of

the causal construction, focussing on its relation to the extremal surface in particular.

12 We thank Hong Liu for alerting us to this possibility.
13 At this point we are restricting attention to two derivative theories of gravity in the bulk. If higher derivative

curvature terms are present in the bulk then we need to consider a suitably generalized functional as has been

discussed in [22, 23]. Similar considerations should also apply to χA.
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3.1 Causal information versus entanglement entropy

Let us first address the following question: why is it that ΞA is not the correct candidate to

compute entanglement entropy of the dual field theory? The basic argument for this was already

presented in Appendix A of [4] which we now review.

First of all, let us note that the causal construction depends on the causal structure of the

bulk spacetime M and thus is oblivious to the conformal structure of the bulk metric. This in

particular means that the causal construction in pure AdSd+1 geometries in the Poincaré patch

with the metric

ds2 =
−dt2 + dx2 + dz2

z2
(3.1)

is the same as the construction of causal wedges in flat spacetime Rd,1, restricted to the half-space

z > 0. For instance, if we take A to be a strip-like region of width w:

A = {x : |x1| ≤
w

2
, xi ∈ R, for i = 2, . . . , d− 1} (3.2)

one can check that ΞA is simply given by the half-cylinder [4]

ΞA = {(x, z) : z2 + x2
1 =

(w
2

)2

, z > 0, xi ∈ R, for i = 2, . . . , d− 1} (3.3)

On the other hand, the minimal surface EA is a more complicated surface constructed in [1],

defined by:

dz

dx1

=

√
(z∗)2(d−1) − z2(d−1)

zd−1
, z∗ =

Γ
(

1
2(d−1)

)
√
π Γ
(

d
2(d−1)

) w

2
(3.4)

where z∗ corresponds to the depth (maximal radial coordinate) to which this surfaces reaches.

Written more explicitly (cf. eg. [18]), one can express x(z) explicitly as

± x(z) =
zd

d z∗d−1 2F1

[
1

2
,

d

2(d− 1)
,
3d− 2

2d− 2
,
z2(d−1)

z
2(d−1)
∗

]
− z∗

√
π Γ
[

3d−2
2d−2

]
dΓ
[

2d−1
2d−2

] . (3.5)

The easiest way to confirm that the two surfaces, ΞA and EA, cannot coincide when d > 2

is to note that in particular they reach to different depth in the bulk. Whereas the causal

information surface ΞA always reaches only to z
(Ξ)
∗ = w/2, the reach of the extremal surface

depends on dimensionality of the surface, and is given by (3.4), where it can be easily confirmed

that the coefficient of w/2 is always greater than 1 for any d > 2 and increases with d; in other

words, the extremal surface reaches deeper than the causal information surface. (In d = 2 the

two expressions coincide since both surfaces are one-dimensional and correspond to a spacelike

geodesic anchored at the endpoints of A.)

Likewise, it is easy to check that χA and SA differ. Evaluating the areas for two surfaces we

find:

χA = 2 ceff

(
2L

w

)d−2
√

1− 4 ε2

w2 2F1

(
1

2
,
d

2
,
3

2
, 1− 4 ε2

w2

)

= 2 ceff L
d−2

 1

(d− 2)

1

εd−2
+

fd−4

w2 εd−4
+ · · ·+

 f0 d odd

fa
wd−2 log

(
w
ε

)
d even

 (3.6)
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which turns out to contain logarithmically divergent terms for even d. Here we define ceff = `d−1

4GN
,

with ` being the AdSd+1 scale, as a measure the effective central charge of the dual field theory.14

L is an infra-red regulator we introduced to compute the area along the non-compact directions

of the strip by restricting |xi| ≤ L for i 6= 1, while ε is a UV cut-off introduced to extract

the divergent terms in the area. The coefficients fi are easily obtained by expanding out the

hypergeometric function. On the other hand we find that the minimal surface area leads to

SA =
ceff

d− 2

2

(
L

ε

)d−2

−

2
√
π Γ

(
d

2(d−1)

)
Γ
(

1
2(d−1)

)
d−1 (

L

w

)d−2

 (3.7)

which only contains a finite piece apart from the divergent part proportional to the area of the

strip. The main observation made in [4] was that the result (3.7) was similar in structure to the

result obtained in free gauge theories, while (3.6) contains extra divergent pieces.15 For instance,

in the case d = 4, we have footnote

SA = ceff L
2

(
1

ε2
− 0.32

w2

)
, χA = ceff L

2

(
1

ε2
− 2

w2
+

4

w2
log
(w
ε

))
(3.8)

while free N = 4 SYM gives [1]

Sfree
A = ceff L

2

(
1

ε2
− 0.49

w2

)
. (3.9)

The absence of the logarithmically divergent term in the free result and the area of the minimal

surface suggests that the strong coupling answer for the holographic entanglement entropy is

given by the minimal surface prescription, and not the causal construction.

This argument however does not take into account potential strong coupling effects that can

arise and perhaps induce subleading divergent terms in entanglement entropy. Thus far there is

no explicit computation in a strongly coupled theory that can independently assert the absence

of such terms.

However, we can formulate a more robust argument for why the causal construction cannot

give the entanglement entropy in general. There are two basic observations we will employ to

establish this result.

1. Causal information of region A and its complement: Let us consider a QFT in a pure

state |Ψ〉. We pick a time-slice ΣB and on this slice and mark off the region A. We then have

14 The central charge is usually defined more conventionally as c = 1
4π ceff taking into account the conventional

normalization of the Einstein-Hilbert action. For N = 4 SYM we have for instance ceff = N2

2π .
15 The difference in the divergence structure of the area of the surfaces ΞA and EA can be traced to the

fact that they approach the boundary differently. While both surfaces have to hit the boundary normally since

the spacetime is asymptotically AdS, the subleading pieces differ due to the different geometric constructions,

producing a relative bending between them. This raises the question whether one should compare the two answers

with a regulator that accounts for the relative bending as opposed to the rigid UV cut-off which we have employed

above. We thank Juan Maldacena for discussions on this issue.
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Ac A

ΞAΞAc

EA

Fig. 3: Sketch to illustrate the fact the causal information surfaces ΞA and ΞAc for a region A and its

complement Ac have to lie closer to the respective boundary regions than the common extremal

surface EA = EAc .

the complement of the region Ac = ΣB\A, whose reduced density matrix could be computed by

integrating out the degrees of freedom in A. Since the total state is pure, it follows from the

definition of the entanglement entropy that SA = SAc . This is easily shown to be true for the

extremal surface construction, since there is a single extremal surface EA = EcA in the bulk that

lies anchored on the boundary ∂A which is the common boundary of both A and Ac.16

However, for the causal construction there is an asymmetry generically between the causal

wedges of the regions A and Ac.17 The basic point is quite simple and the main idea is sketched in

Fig. 3, set in the more natural context of global AdS. Consider e.g. a static asymptotically global

AdS geometry with a gravitational potential well. By the Gao-Wald theorem [25], within a fixed

time set by the size of ♦A, the null geodesics which define the causal wedge cannot reach as far

from the AdS boundary as they could in the pure AdS spacetime. But in pure global AdS, the

causal information surfaces for a circular region A and its complement would coincide.18 Hence

for any physical deformation of AdS, the causal information surfaces would shift, ΞA towards the

boundary where A is located, and Ξc
A towards the boundary where Ac is located, as indicated in

Fig. 3. Moreover, due to caustics in ♦A for any other shaped region in d > 2, the corresponding

16 In making this argument, we use the fact that pure states in the field theory correspond to horizon-free

geometries in the bulk; thus the homology constraint described in [24] plays no role in our discussion.
17 This argument was developed together with Mark van Raamsdonk.
18 The reason is apparent from Fig. 4(a), where the null boundaries of the causal wedge for A corresponding

to half the circle are shown. These are Rindler horizons, and due to the large symmetry Rindler horizons from

any other point would look the same. In particular, to construct causal wedge for any other circular region (i.e.

shorter interval in Fig. 4(a)), we can simply time-translate one of the null planes with respect to the other. But

in pure AdS, the same null plane acts both as the past boundary of A’s causal wedge and as the future boundary

of Ac’s causal wedge, since null geodesics through AdS all reconverge at the same antipodal null-translated point.

Since the two null planes (future and past boundaries of either region’s causal wedge) always intersect on a single

surface; this surface is simultaneously ΞA and ΞcA.
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causal information surfaces would likewise retreat towards the boundary, even for pure AdS,

whenever A is not the round ball. Thus, in general, ΞA and Ξc
A differ, so there is no reason for

χA and χAc to be the same.

To see an explicit example, for simplicity in the context of flat boundary, let us again consider

the strip discussed above; but in order to keep both A and its complement finitely extended in at

least one direction, let the x1 direction be compactified, say x1 ∼ x1 +R. This means we should

consider the boundary theory on Rd−2,1 × S1 and let |Ψ〉 be the corresponding vacuum state.

Its bulk dual is then again Poincaré AdSd+1, but now with the x1 direction compactified. Now

consider the strip-like region (3.2) as the region A, so that the complement is simply the strip

with a longer arc of length R − a. In this case, it is easy to see that the causal developments

of the two regions are different: ♦A 6= ♦Ac . This per se is not sufficient to guarantee that the

surface of interest ΞA and ΞAc are different (as we saw above, for the example of pure global

AdS). However, for these strip like regions, it is easy to show that the surfaces ΞA and ΞAc are

completely different. The former is given by a half-cylinder (3.3) with circumference a while the

latter is a half-cylinder with circumference R−a. Using (3.6) we then clearly see that χA 6= χAc .

We have already commented on the implications of this observation in §2.2.

2. χ is not sub-additive: A further issue with χA is that it does not satisfy an appropriate

convexity property, called strong sub-additivity [26]. Usually this is written for two regions A1

and A2 and demands that

SA1 + SA2 ≥ SA1∪A2 + SA1∩A2

SA1 + SA2 ≥ SA1\A2 + SA2\A1 (3.10)

Strong sub-additivity is a property that is satisfied naturally by any von Neumann entropy of a

density matrix, and in particular holds for the reduced density matrix.

Let us turn to the holographic constructions: for static states in the field theory, using the

minimal surface prescription of [1], a very elegant proof of holographic entanglement entropy

being sub-additive was given by [24]. This construction relies on the fact that the surfaces of

interest in the static case are minimal surfaces and uses this to fact to derive the inequality

(3.10) by a simple deformation argument. On the other hand, the extremal surfaces relevant for

time-dependent states have not been amenable to a derivation of sub-additivity; while we expect

that holographic entanglement entropy given by extremal surface area does satisfy (3.10), such

result has eluded proof to date.

However, it is possible to show that the causal holographic information cannot satisfy (3.10),

by explicitly constructing counter-examples. Focusing again on the simple case of strip-like

regions, now overlapping, we can easily find the relevant ingredients. Let A1 and A2 be strip-like

regions (3.2) for a field theory on Rd−1,1, defined as

A1 = {x : −
(
a1 +

x0

2

)
≤ x1 ≤

x0

2
, xi ∈ R, for i 6= 1}

A2 = {x : −x0

2
≤ x1 ≤

(
a2 +

x0

2

)
, xi ∈ R, for i 6= 1} , (3.11)
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so that A1 is a strip of width x0 + a1 and A2 is a strip of width x0 + a2, while A1 ∪A2 has width

x0 +a1 +a2 and A1∩A2 has width x0 respectively. It is then easy to write down the expressions

for the causal information for each of the regions in question and check that the sub-additivity

property (3.10) is not satisfied. For instance in d = 4, we would require that

F (a1 + x0) + F (a2 + x0)− F (a1 + a2 + x0)− F (x0) > 0 , F (x) =
1

x2
log
(x
ε̃

)
(3.12)

(where ε̃ is a rescaled cutoff which we can take to be some small number). This inequality is

clearly violated (choose for example for x0 = a1 = a2). This adds further evidence that the causal

information is not a von Neumann entropy for a general density matrix. This per se does not

imply that χA cannot be thought of as a measure of information: for e.g., the Renyi entropies

(1.1) which capture the moments of the reduced density matrix, likewise fail to be sub-additive.

3.2 Concordances: when ΞA and EA coincide

Thus far we have established that the causal holographic information χ, whilst being very natu-

rally related to the spatial region of interest in the boundary, lacks properties to make it a well

behaved notion of (von Neumann) entropy. So the natural question is why do we bother with

this concept? Clearly, entanglement entropy is a more natural object which we can associate

directly to the reduced density matrix. However, as we have already suggested in §1, there is

a sense in which we expect that the bulk causal wedge �A is the minimal bulk region which

should be reconstructable from the data on A. It seems then natural from the bulk gravitational

viewpoint to consider χA as encoding the amount of information (of a certain type) contained

in the region A.

Before we get to our justification for using χ as a measure of information about the bulk

spacetime, let us pause to explain some situations where there is an explicit agreement between

χA and SA. These examples provide some interesting insight into the nature of χ.

3.2.1 1 + 1 dimensional CFTs on S1

The first class of examples we have at our disposal are 1 + 1 dimensional CFTs. We tabulate the

three density matrices of interest and their corresponding holographic dual geometries in Table

2. In the field theory we denote the Hamiltonian generator by H and the angular momentum

Case CFT density matrix Holographic duals

(a). CFT vacuum global AdS3 (3.13)

(b). Thermal density matrix static BTZ geometry (3.14)

(c). Grand canonical density matrix rotating BTZ spacetime (3.15)

Table 2: Density matrices of interest in the 1 + 1 dimensional CFT.
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along S1 by J . The geometries of relevance for the cases considered in Table 2 are given to be:

|Ψ〉 = |0〉 : ds2 = −
(
r2 + 1

)
dt2 +

dr2

r2 + 1
+ r2 dϕ2 (3.13)

ρ = e−β H : ds2 = −
(
r2 − r2

+

)
dt2 +

dr2

r2 − r2
+

+ r2 dϕ2 (3.14)

ρ = e−β (H−Ω J) : ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2 dr2

(r2 − r2
+)(r2 − r2

−)
+ r2

(
dϕ+

r+ r−
r2

dt
)2

(3.15)

with

β =
2π

r+

(3.16)

for the static BTZ geometry and

β (1± Ω) =
2π

r+ ± r−
≡ β± (3.17)

for the rotating BTZ spacetime.

We take the CFT to live on a circle of radius unity and further take the region A to be an

arc of length 2ϕ0:

A = {(t, ϕ) | t = 0, ϕ ∈ (−ϕ0, ϕ0)} . (3.18)

For such states with the choice of the region detailed above, we actually have a microscopic

understanding of entanglement entropy. Using the replica trick, the entanglement entropy in

cases (a) and (b) was originally obtained in [27], while this argument was subsequently generalized

to case (c) in [4]. In all cases the computation relies on mapping the computation of Tr(ρnA) into

the computation of the two point function of a twist operator.

Let us quickly review the holographic computation of entanglement entropy in these cases.

For the static situations in the vacuum or the thermal density matrix, we can use the minimal

surface prescription of [1]; in this low dimension the minimal surface is simply a geodesic. It is a

simple matter to show from the geodesic equation that the bulk geodesic of interest is given by

(a). EA : t = 0 , r2(ϕ) =
cos2 ϕ0

sin2 ϕ0 cos2 ϕ− cos2 ϕ0 sin2 ϕ
(3.19)

(b). EA : t = 0 , r2(ϕ) = r2
+

cosh2(r+ ϕ0)

sinh2(r+ ϕ0) cosh2(r+ ϕ)− cosh2(r+ ϕ0) sinh2(r+ ϕ)
(3.20)

For the stationary situation of the grand canonical density matrix one still looks for spacelike

geodesics anchored at the end-points of the region A (3.18); as described in [4] this can be

obtained efficiently by passing to new coordinate where the metric (3.15) is brought to Poincaré

AdS3 form. To be specific, consider the coordinate transformation,

w± =

√
r2 − r2

+

r2 − r2
−
e(r+± r−) (ϕ±t) ≡ X ± T

z =

√
r2

+ − r2
−

r2 − r2
−
er+ ϕ+r− t (3.21)
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which recasts (3.15) into the form:

ds2 =
dw+ dw− + dz2

z2
. (3.22)

It is now easy to obtain the extremal surface of interest in (3.15) by boosting the Poincaré AdS3

geodesics.19 It turns out the desired spacelike geodesics live on a co-dimension one spacelike

hypersurface of the bulk spacetime given by

(c). γ w+ − γ−1w− = constant , γ2 =
sinh(r+ − r−)ϕ0

sinh(r+ + r−)ϕ0

(3.23)

in the Poincaré coordinates. The explicit expression for the geodesic is unilluminating and so we

refrain from writing it down.

Now we turn to the computation of the causal holographic information. In all the three

situations of interest, the boundary geometry is a Lorentzian cylinder R× S1. For the region A
in (3.18) the causal domain of dependence on the boundary is simply the diamond shaped region

♦A = {(t, ϕ) | t ≤ |ϕ0 − ϕ| , ϕ ∈ (0, ϕ0) ∪ t ≤ |ϕ0 + ϕ| , ϕ ∈ (−ϕ0, 0)} (3.24)

The computation of the bulk causal wedge associated with (3.24) is straightforward; in fact we

only need information about the Rindler horizons associated with this causal wedge for the rest

of the computation. We use the symmetries of the problem to realize that we simply need to

construct the past light cone from the top of ♦A i.e, from (t = ϕ0, ϕ = 0) to obtain ∂+(�A) and

the future light cone from the bottom of ♦A, i.e., from (t = −ϕ0, ϕ = 0) to obtain ∂−(�A). These

can be done by explicitly writing bulk null geodesics emanating from these points. However, now

we have to treat the three geometries in turn; the results of the construction outlined below are

illustrated in Fig. 4 where we have explicitly plotted the causal wedges for the three cases in the

AdS cylinder.

(a). For global AdS3 parameterizing the geodesics by their conserved angular momentum j we

obtain:

t(r) = ϕ0 −
π

2
+ tan−1

√
(1− j2) r2 `−2 − j2 (3.25)

ϕ(r) =
π

2
− tan−1

√
(1− j2) r2 `−2 − j2

j
(3.26)

Inverting and substituting to obtain both r and ϕ in terms of t for any j, we get

∂+(�A) : r2(t, j) =
cot2 (ϕ0 − t) + j2

1− j2
, ϕ(t, j) =

π

2
− tan−1

(
cot (ϕ0 − t)

j

)
(3.27)

Similar expression for ∂−(�A) can be written down by simply flipping the starting point of the

geodesics to the point (−ϕ0, 0).

19 On the Poincaré disc (3.22) spacelike geodesics on a constant T slice are half-circles parametrized by their

radius h: (X −X∗)2 + z2 = h2.
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(a) (b) (c)

Fig. 4: Illustration of the causal wedges �A in three dimensional asymptotically globally AdS3 spacetimes.

The three figures correspond to the three geometries described in Table 2. For convenience we

have chosen the region A to be a half of the boundary S1, i.e., ϕ0 = π. At the intersection of the

∂+(�A) and ∂−(�A) lies the causal information surface ΞA which as we discuss in the text is the

same as the extremal surface EA in these examples. Note that for the static spacetimes (a) and

(b) which correspond to AdS3 and the static BTZ geometry, the surfaces at a fixed time slice t = 0

as shown, while for the stationary rotating BTZ geometry (c), this surface dips above and below

the t = 0 slice in the bulk. [Note that for ease of visualization, we have changed the viewpoint

between the three plots. Also, note that the ‘seams’ are just numerical glitches.]

Finally, to obtain the surface ΞA we realize that all we need to do owing to the symmetries

of the geometry is to look at the spacelike surface at t = 0 on ∂M(�A). Essentially one inverts

the second expression to obtain j in terms of ϕ: j = cotϕ0 tanϕ, and substitutes back into r to

get ΞA:

(a). ΞA : t = 0 , r2(ϕ) =
cos2 ϕ0

sin2 ϕ0 cos2 ϕ− cos2 ϕ0 sin2 ϕ
(3.28)

which indeed agrees with the minimal surface (3.19).

(b). For the static BTZ geometry one can proceed along similar lines. The null geodesics of

interest (emanating from (ϕ0, 0)) are given by:

t(r) = ϕ0 +
1

2r+

ln

√
(1− j2) r2 + j2 r2

+ − r+√
(1− j2) r2 + j2 r2

+ + r+

(3.29)

ϕ(r) =
1

2r+

ln

√
(1− j2) r2 + j2 r2

+ + j r+√
(1− j2) r2 + j2 r2

+ − j r+

(3.30)

which determines ∂+(�A). Again using the symmetries we realize the the past and future

Rindler horizons must intersect at t = 0. Then setting t = 0 above and solving for j =

coth(r+ϕ0) tanh(r+ϕ) then leads to the desired co-dimension two surface:

(b). ΞA : t = 0 , r2(ϕ) = r2
+

cosh2(r+ ϕ0)

sinh2(r+ ϕ0) cosh2(r+ ϕ)− cosh2(r+ ϕ0) sinh2(r+ ϕ)
(3.31)
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which as advertised agrees with the extremal surface (3.20).

(c). Finally, for the rotating BTZ spacetime (3.15) we use the mapping to the Poincaré coordi-

nates (3.21). Since the boundary domain of dependence is still given by (3.24) we simply need

to determine the light cones from the points (w±, z) = (e± (r+±,r−)ϕ0 , 0) which is easily done since

the geometry (3.22) is conformally flat. The boundary of the causal wedge in the bulk is given

by

∂+(�A) :
(
w+ − e(r++r−)ϕ0

) (
w− − e(r+−r−)ϕ0

)
+ z2 = 0 (3.32)

and ∂−(�A) is simply obtained by replacing ϕ0 → −ϕ0 above. The surface ΞA lies at the

intersection of ∂+(�A) and ∂−(�A) which in particular means that it lies on a co-dimension one

hypersurface in the bulk

(c). sinh(r+ − r−)w+ − sinh(r+ − r−)w− = − sinh(2 r−) , (3.33)

which is indeed the boosted surface (3.23) on which the extremal surface EA lies. One can further

go on to show that ΞA in fact coincides with EA. As is clear from the plot in Fig. 4(c), in the

non-static case the surfaces ΞA = EA do not lie on a fixed time slice, even when A lies on one at

the boundary.

In all three geometries we thus see that the extremal surface relevant for entanglement

entropy coincides with the causally motivated surface. To a certain extent this is to be expected

for the black hole spacetimes given that the surfaces coincide for the pure AdS3 spacetime, owing

to the fact that the latter are locally AdS3. Given this information, we can also conclude from

previous computations that:

(a). SA = χA =
ceff

3
log

(
2ϕ0

ε

)
(3.34)

(b). SA = χA =
ceff

3
log

[
β

π ε
sinh

(
2π ϕ0

β

)]
(3.35)

(c). SA = χA =
ceff

6
log

[
β+ β−
π2 ε2

sinh

(
2π ϕ0

β+

)
sinh

(
2π ϕ0

β−

)]
(3.36)

Before proceeding further with the discussion we should note that the agreement between

SA and χA does not extend to other states or density matrices of 1 + 1 dimensional CFTs. The

general argument from a holographic perspective was motivated above and has previously been

given more explicitly in [4], which we simply quote here without further proof. Given that static

rotationally symmetric states of a 1+1 CFT on a cylinder are dual to static asymptotically AdS3

geometries of the form:

ds2 = −f(r) dt2 + h(r) dr2 + r2 dϕ2 (3.37)

If we are interested in the entanglement entropy, then we simply compute the area of a minimal

surface at a constant t slice, in particular noting that such a minimal surface is insensitive to the

redshift function f(r). On the other hand, the causal construction requires us to construct light-

cones in the bulk spacetime which care about the metric functions (up to an overall conformal
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factor, which we can gauge-fix to be r2). It then follows that the surface ΞA for a given region A
cares about the redshift factor. More specifically, the minimal radius reached by EA is given by

the conserved angular momentum J along the ϕ direction, while the minimum radius reached

by the causal surface ΞA depends on both f(r) and h(r). In particular, in order for EA and ΞA

to coincide, the spacetime (3.37) would minimally need to satisfy∫ ∞
r0

r0

√
h(r)

r
√
r2 − r0

2
dr =

∫ ∞
r0

√
h(r)√
f(r)

dr (3.38)

where the LHS is an expression for the angle ϕ0 reached by a constant-t spacelike geodesic which

passes through r0 at t = 0, ϕ = 0, whereas the RHS corresponds to the time at which a radial null

geodesic at ϕ = 0 which starts from r = r0 at t = 0 reaches the boundary r = ∞ – this would

be q∧ for D+
B [A] with A = ϕ ∈ {−ϕ0, ϕ0}, so that t(q∧) = ϕ0. Note that (3.38) is automatically

satisfied for f(r) = 1
h(r)

= r2 +α for any α – as demonstrated above for AdS3 and BTZ; however,

it is certainly not true in full generality. For example one can easily check that (3.38) is not

satisfied for e.g. f(r) = 1
h(r)

= r2 + 1 − α
r2

, just to pick a random example. This was already

explained in Appendix A.2 of [4].

3.2.2 Spherical entangling surfaces and vacuum state of CFTd

Our next set of examples concerns conformal field theories in d > 2. The theories are taken to

live either in Minkowski spacetime Rd−1,1 or on the Einstein Static Universe (ESU) Sd−1 × R.

The regions of interest are a spherical ball in flat space and a slice of the sphere at constant

latitude in the ESU:

(i). B = Rd−1,1 : A =
{

(t, ~x) | t = 0, ρ2 ≤ a2
}
, ~x = {ρ,Ωd−2} (3.39)

(ii). B = Sd−1 × R : A = {(t, θ,Ωd−2) | t = 0, |θ |≤ θ0} (3.40)

where we find it convenient to introduce polar coordinates on Rd−1. The dual geometries for the

two cases are of course Poincaré AdSd+1 and the global AdSd+1 respectively, for which we use

the metrics:

(i). ds2 =
−dt2 + dz2 + dρ2 + ρ2 dΩ2

d−2

z2
(3.41)

(ii). ds2 = −
(
1 + r2

)
dt2 +

dr2

1 + r2
+ r2

(
dθ2 + sin2 θ dΩ2

d−2

)
(3.42)

For these cases the causal structure of the boundary is simple and one can easily ascertain the

domain of dependence ♦A. In the flat spacetime example, we simply need the cone over the

spherical ball, while in the ESU we can use the flat metric in the two dimensional (t, θ) plane to

chart out the causal development.

(i). ♦A = {(t, ρ,Ωd−2) | t ≥ 0 , t+ ρ ≤ a ∪ t ≤ 0 , ρ− t ≤ a , Ωd−2 arbitrary} (3.43)

(ii). ♦A = {(t, θ,Ωd−2) | t ≤ |θ0 − θ| , θ ∈ (0, θ0) ∪ t ≤ |θ0 + θ| , θ ∈ (−θ0, 0),Ωd−2 arbitrary}
(3.44)
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Once again let us recall the computation of entanglement entropy in these cases. The min-

imal surface prescription can be easily used here to compute SA [2]; for case (i) it is simply a

hemisphere, while for the ESU we will be able to explicitly construct the geodesic congruences

of interest by integrating the geodesic equations using the SO(d− 1) symmetry at our disposal.

The results are

(i). EA : t = 0 , z2 + ρ2 = a2 , Ωd−2 arbitrary (3.45)

(ii). EA : t = 0 , r2(θ) =
cos2 θ0

sin2 θ0 cos2 θ − cos2 θ0 sin2 θ
, Ωd−2 arbitrary (3.46)

More importantly, as originally deduced in [28] and subsequently elaborated in [8], these two

situations are special. In these circumstances the reduced density matrix ρA can be mapped by

a unitary transformation into a thermal density matrix. The argument in fact relies on the fact

that the interior of the domain of dependence ♦A in the two cases can be mapped to a hyperbolic

cylinder Hd−1×R by a conformal transformation (or equivalently to the static patch of de Sitter

spacetime dSd). The same conformal transformation acts as a unitary transform on the density

matrix; its effect is simply to convert the reduced density matrix into a thermal one.

Once we have converted the computation of the entanglement entropy to the computation

of a thermal partition function we have simplified things considerably. Not only can one do the

computation of the latter in free theories (see for example [29]), but in the holographic context

one can use the knowledge of the thermal state for a CFT on Hd−1 × R being given by the

hyperbolic black hole as described originally in [30]. This strategy was used in [8] to prove the

minimal surface holographic entanglement entropy proposal of [1]. The essential point of note is

that the conformal map on the boundary, which corresponds to a bulk diffeomorphism, takes the

minimal surface relevant for the entanglement entropy computation onto the bifurcate Killing

horizon of the hyperbolic black hole. The bifurcation surface of the Killing horizon being directly

relevant for the computation of the thermal entropy of the field theory on the hyperbolic cylinder,

one can clearly see that the the entanglement entropy in the original conformal frame is captured

by the extremal surface.

Having understood the entanglement entropy in these cases, let us tackle the causal holo-

graphic information. We have already constructed the boundary domain of dependence for the

regions of interest in (3.43) and (3.44). We now need the bulk causal wedge associated to these

regions in the geometries (3.41) and (3.42) respectively.

(i). Let us start with the CFT on Rd−1,1; using the conformal flatness of the metric (3.41) we

ignore the overall z−2 and just write down the bulk light-cone emanating from the top tip of the

boundary cone ♦A, i.e., from t = a , ρ = 0. This immediately leads to:

∂+(�A) :

{
(t, ρ,Ωd−2, z) | z =

√
(a− t)2 + ρ2, Ωd−2 = arbitrary

}
(3.47)

Similarly the future Rindler horizon from the bottom tip of the cone i.e., from t = −a , ρ = 0

is obtained by t → −t above. The causal wedge �A itself is the entire bulk region sandwiched
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between the past and future Rindler horizons and the boundary. With this information at hand, it

is easy to find the bulk co-dimension two surface relevant for the causal holographic information.

This is simply the surface at t = 0 which lies and the intersection of the past and future Rindler

horizons and is easily seen to be a hemisphere:

(i). ΞA : t = 0 , z2 + ρ2 = a2 , Ωd−2 arbitrary (3.48)

(ii). We now turn to the case of the CFT on the ESU and a region that is a segment of

the spatial sphere. The domain of dependence on the boundary is given by (3.44) and the

causal construction of the bulk region proceeds along the same lines as outlined in the global

AdS3 example earlier. In particular, we simply look for past/future null geodesic congruences

emanating from t = ±θ0 which are SO(d − 1) symmetric. These congruences can be easily

understood in the three dimensional geometry spanned by constant Ωd−2 sections of (3.42). The

geodesic congruence from the top t = θ0 spans the surface

∂+(�A) : r2(t, j) =
cot2 (θ0 − t) + j2

1− j2
, θ(t, j) =

π

2
− tan−1

(
cot (θ0 − t)

j

)
, Ωd−2 = arbitrary

(3.49)

where j parameterizes the different curve in the congruence. From this expression, we can see

that the causal holographic surface of interest is simply:

(ii). ΞA : t = 0 , r2(θ) =
cos2 θ0

sin2 θ0 cos2 θ − cos2 θ0 sin2 θ
, Ωd−2 arbitrary (3.50)

which indeed agrees with the extremal surface (3.46).

3.2.3 Relation between entanglement and causal holographic information

We have thus far seen that while χA does not generically qualify to be an entropy, it curiously

agrees with the holographic entanglement entropy in all cases where there is a microscopic un-

derstanding/derivation of the latter. We conjecture that this concordance is a result of these

specific states and regions capturing the maximal information available in the field theory and

therefore SA contains as much information as χA.

To push this further, let us also highlight another example wherein the two constructions

agree.20 Consider a field theory living on a black hole background. We can either imagine this in

the brane-world context, where we have induced gravity coupled to the field theory as discussed

in [31], or simply let the black hole be a rigid gravitational background for the field theory as

described for instance in [32]. To keep things simple we shall for the moment demand that

the field theory in the region outside the black hole is in its vacuum state; this would be the

analog of the Boulware vacuum discussed in the case of asymptotically flat black holes. The bulk

duals for such Boulware states of four dimensional holographic field theories in the Schwarzschild

background have been numerically constructed in [33].

20 We thank Roberto Emparan for pointing this out to us.
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Since the background geometry on which the field theory lives has a black hole metric, there

is natural region which we can consider, viz., the region interior to the brane-world/boundary

black hole. The field theory degrees of freedom on either side of the horizon are entangled with

each other and this entanglement entropy can be easily shown to be captured by the area of the

bulk black hole horizon that ends on the brane/boundary [31] (such bulk black holes were called

black droplets in [32]). The key point to note is that the bulk horizon is by itself an extremal

surface; thus establishing a link between entanglement and black hole entropies in these induced

gravity set-ups. Furthermore, since we have taken the field theory outside to be in the vacuum

state, it also follows that the entanglement entropy of the spatial region outside the black hole

is given by the area of the bulk black hole horizon in Planck units. This will be the region A we

focus on.

For the purposes of our discussion all we need to know is the fact that the spatial region

outside the black hole horizon on the boundary has as its causal wedge the exterior region of

the bulk black hole spacetime. In particular, in this example the boundary of the bulk causal

wedge �A is simply the black hole horizon in the bulk geometry. From this it follows that the

causal extremal surface of interest is the bulk bifurcation surface and indeed χA is also given

by the bulk black hole horizon area. Hence we once again have a situation in which the causal

holographic information agrees with the entanglement entropy. Note that this was predicated

upon our insisting that the state of the field theory in the region outside the boundary black hole

is the vacuum state. One could have considered a density matrix in the region outside, say for

example the thermal density matrix, but that would give rise to more complicated entanglement.

The bulk dual for such situations is also more involved, for it contains either a droplet and a

second bulk horizon or a single connected horizon in the bulk (the black funnel), depending on

the characteristics of the black hole [32].

The moral of our handful of examples seems to be that when the degrees of freedom in A
are maximally entangled with the degrees of freedom in the complement Ac one ensures that

χA = SA. To flesh this out further, let us imagine for a moment that the boundary theory

can be viewed as a quantum system with a finite dimensional Hilbert space associated with the

region A. Since the region is entangled with its complement Ac we have to ask how best can

we entangle the degrees of freedom in A with those in Ac and thus maximize the entropy of the

reduced density matrix ρA. For the finite dimensional gedanken system under consideration it is

clear that we can at most have an entropy given by the thermal entropy. The best entanglement

is achieved when we correlate degrees of freedom in A as we would in the construction of the

thermofield double of the Hilbert space associated with A. Specifically, it does not matter if we

can enlarge the system Ac arbitrarily; entanglement is saturated when Ac is similar in size to A.

Let us now turn from such special situations to the generic case. For arbitrary (physically

sensible) state and arbitrary regionA, we conjecture that we can bound21 SA by χA, and moreover

21 Here we use the terminology bound in the sense of an inequality between two quantities, both of which

depend on the state, rather than in the more typical sense of one variable quantity always being smaller than a

pre-specified number.
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bdy

•
p

Sα

Sβ

bdy

ΞA

EA

ΞÃ

ÃA

•
p

Fig. 5: Sketch accompanying the argument in main text for why the extremal surface EA cannot

lie closer to the boundary than the causal information surface ΞA. Left: we argue that at p,

Θα < Θβ. Right: impossible situation, since it contradicts the physical requirement that ΘΞÃ
≥ 0

and ΘEA = 0 everywhere.

that the causal holographic information surface ΞA lies outside of (i.e. closer to the boundary

than) the entanglement entropy (extremal) surface EA. We can understand these statements as

follows.

In a static geometry, both ΞA and EA lie on the same time slice by symmetry, and moreover,

out of all surfaces on that time slice, EA is defined to be the one with minimal area, so by definition

SA ≤ χA. For general time-dependent configurations, the argument is not as straightforward,

but we nevertheless expect that in physically reasonable situations this inequality will continue

to hold.

We now sketch an argument in support of this assertion.22 We first establish a relation

between the relative position of two surfaces anchored on the same boundary region ∂A and

the expansion Θ along null normals to these surfaces. Specifically, Θ is the expansion of the

null geodesic congruence emanating from the surface of interest and we are only interested in the

outgoing congruence (either future/past directed), i.e., the congruence that reaches the boundary

(or terminates in a caustic along the way).

We start by observing that given two surfaces, Sα and Sβ which are tangent at some point

p as shown in left panel of Fig. 5, such that Sα is more bent towards the ‘outward’ direction, the

expansion of Sα at p must be smaller than that of Sβ,

Θα < Θβ , (3.51)

since the bending makes the null normals converge more. Using this observation, we proceed to

construct a proof by contradiction. Suppose we had a situation where ΞA was located further

from the boundary than EA, as in the right panel of Fig. 5. Then there must exist a boundary

region Ã ⊂ A such that the causal information surface corresponding to this smaller region ΞÃ
just touches EA, i.e. is tangent at some point p. Since ΞÃ by definition lies on the boundary of

22 Related observations have been made independently by Aron Wall.
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the causal wedge �Ã (so that the null normals must reach the boundary – i.e. must extend to

infinite affine parameter without encountering caustics), the causal information surface ΞÃ must

have non-negative expansion, ΘΞÃ
≥ 0. But that would force the expansion for an extremal

surface to be strictly positive at the point where the two surfaces are tangent, ΘEA(p) > 0 by

(3.51). This is a contradiction, since by construction, the expansion for an extremal surface must

vanish everywhere, as proved in [4]. Hence we conclude that in order for EA to be an extremal

surface (i.e. ΘEA = 0) and ΞA to be a causal holographic information surface (i.e. ΘΞA ≥ 0),

the causal holographic information surface ΞA must either lie closer to the boundary than (or at

best coincide with) the extremal surface EA.

This solidifies our expectation that the causal information cannot be any smaller than the

entanglement entropy, since the former corresponds to the area of a surface located closer to the

boundary where the warp factor is larger, leading to greater area, SA ≤ χA.

4 Discussion

The primary issue that motivated the present discussion is how much information is there about

the bulk in a given spatial region of the field theory. To make this question sharper, we imagine

that one has access to a suitable algebra of observables of the field theory localized to the region

A in question and that one is also equipped with the knowledge of the reduced density matrix ρA.

Armed with this information, one can predict the quantum development of ρA in the boundary

domain of dependence ♦A. The question then is: what part of the bulk should one hope to

reconstruct given such data on the boundary?

As we have argued, a very natural region from the bulk standpoint is the bulk causal wedge

�A associated with the region A. This region is composed of all points in the bulk which can

both influence and be influenced by some part of ♦A, the latter being the boundary region which

is fully determined by A. The causal wedge �A is therefore defined purely by causal relations,

and we believe that this inherent simplicity translates to correspondingly natural (albeit perhaps

not as readily apparent) construct in the dual field theory. It seems natural to expect that �A
gives the minimal spacetime volume that should be reconstructable from the data contained in

A, since we can imagine ‘observers’ sent from the field theory being able venture into this region

and returning to the boundary within ♦A. More specifically, we are suggesting that the reduced

density matrix ρA (which is more naturally associated with the full ♦A rather than just A) can

be used to recover the bulk geometry at least in �A. As we have stressed at various points, it

may be possible to reconstruct more of the bulk geometry; here we have proposed what we think

is the conservative option.

In the bulk, the causal wedge is bounded by two null surfaces, whose intersection is a bulk

co-dimension two surface which we dubbed causal information surface, denoted by ΞA. This is

a special surface within �A: it reaches deepest into the bulk and has extremal area among all

surfaces on ∂M(�A). It is also anchored on our entangling surface ∂A on the boundary. We
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proposed to associate the area χA of the causal information surface ΞA (measured naturally

in Planck units analogously to the Bekenstein-Hawking formula) to a certain measure of the

information contained in A – hence the name causal holographic information. We argued that

χA serves to bound the entanglement entropy SA of the reduced density matrix from above.

Nevertheless, χA is not a von Neumann entropy, as it fails to satisfy the sub-additivity condition.

However, in certain special circumstances where the degrees of freedom in A are maximally

entangled with those outside, we have further shown that χA agrees with the entanglement

entropy.

These features then appear to suggest that χA should be viewed as a lower bound on the

information about the bulk spacetime carried by the given region. In other words, it is natural to

conjecture that the minimal information contained in the region A is measured by χA. At first

this seems somewhat counter-intuitive, since we have said that χA ≥ SA. So why is it a lower

bound on the ‘information content’?23 To understand this point, let us note that there exist

situations where field theory observables are sensitive to a larger region of the bulk spacetime

(assuming a suitable notion of analyticity in the bulk).24 For instance, field theory correlation

functions, even with the operator insertions restricted to lie in ♦A, can be sensitive to the bulk

outside the causal wedge when we evaluate them using a geodesic approximation. Similarly, the

entanglement entropy is computed by the area of an extremal surface which typically reaches

deeper into the bulk (which motivates the inequality SA ≤ χA). We then seem to be missing

information about such regions outside the causal wedge when we characterize the information

by χA and thus it seems natural to think of χA as providing a lower bound on the information

contained within a given region on the boundary.

There is an additional subtlety which enters our considerations. While it seems natural to

ask which surface reaches deeper into the bulk, we should be aware that statements such as

χA ≥ SA should be interpreted with care owing to the fact that both quantities are divergent.

Also from explicit computations of §3 it is clear that in some simple cases χA is divergently

larger than SA (see (3.8)). One might be tempted to make the comparison more meaningful

by suitably regulating the two quantities. However, this is not as straightforward as one might

imagine.25 The most obvious way to regulate the areas is by background subtraction. Given

A and some state (or more generally a density matrix) of the field theory |ψ〉 we can consider

Sreg
A = SA(|ψ〉)− SA(|0〉) and χreg

A = χA(|ψ〉)− χA(|0〉), where we have taken the vacuum state

| 0〉 as our reference state to perform the subtraction. The utility of such a subtraction is that

we should be rid of the divergent parts of the two quantities. A-priori it is not clear that χreg
A

will continue to be larger than Sreg
A . In fact, preliminary investigations of certain simple cases

seem to suggest that χreg
A < Sreg

A . If this were to be established more firmly one could view it

23 In interest of clarity let us remark that we are being necessarily vague about the notion of information here.

To flesh this out more would require a detailed specification of the reconstruction procedure itself, which is of

course a notoriously difficult problem.
24 The importance of assuming analyticity was stressed in particular in [34]. In analytic spacetimes it is possible

to approximate the correlation functions via a suitable geodesic approximation.
25 We thank Hong Liu for useful discussions on this issue; see also [35].
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as more intuitive support of the speculation that χA is the minimal information available in the

field theory.

One should perhaps emphasize that in the above discussion, χA served merely to quantify

the amount of information in A – it did not itself specify the actual information. However, we

can elevate our construction to extract more useful information about the bulk geometry. In

particular, instead of considering just a single quantity, χA, we can imagine that we have access

to infinitely many, more refined, quantities, namely χQ corresponding to all subregions Q ⊂ A. It

is then an interesting question whether the knowledge of this particular set of quantities allows us

to reconstruct the full bulk geometry within �A. For static spherically symmetric spacetimes, the

answer is almost certainly yes, since the amount of information to recover (namely two functions

of one variable) is much smaller than the information available in {χQ} (one function of several

variables). This naive counting would in fact suggest that {χQ} should provide access to the

bulk geometry within �A for more general configurations as well; we however leave the explicit

reconstruction as an interesting problem for the future.

Let us also note that there is a sense in which the knowledge of {χQ} with Q ⊂ A provides

an easier way to reconstruct the geometric data of the bulk than by using, say, the entanglement

entropy. For simplicity, let us consider static bulk spacetimes. If we use the entanglement

entropy of the reduced density matrix ρA, and restrict to the conventional Hamiltonian evolution

in ♦A, then it is not easy to reconstruct the time component of the metric (the redshift factor).

This is because the bulk dual of SA is characterized by extremal surfaces which are localized

on a single time slice in the bulk and therefore are insensitive to gtt. On the other hand, since

the causal construction depends on the full bulk metric, it in particular depends on the time

component as well. Naively, in constructing �A we seem to miss one degree of freedom, the

conformal factor, since for purposes of discussing causal relation we can work in a conformally

rescaled spacetime. However, in our definition of χA we reinstate the conformal factor, since we

are required to measure the proper spacetime area of ΞA. Thus armed with knowledge of χA we

could in principle extract the bulk metric more easily within �A.

Finally, it is worth emphasizing that there are two distinct notions pertaining to ‘bulk infor-

mation’ that we have been discussing, and while it is tempting to conflate the two, it is a-priori

not clear that they are equivalent. On the one hand, we have talked about actual reconstruction

of the bulk spacetime, and on the other, the ability to probe the bulk. By the latter we simply

mean the existence of a CFT observable which is sensitive to the bulk physics, though it may not

carry enough information to fully determine the physics. We believe that it should be possible

to reconstruct more than the causal wedge, though how much more is unclear. It would be

interesting to ask how to use the ideas presented herein to actually carry out the reconstruction

and to understand the utility of the causal construction in greater detail; we hope to report on

these issues in the future.
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A Caustics for higher-dimensional regions A

In 1+1 dimensional CFT, the region A is an interval and therefore the domain of dependence ♦A
has a single future tip q∧ and single past tip q∨, as apparent from the left panel of Fig. 1. This

fact makes the definition of the corresponding bulk causal wedge �A particularly convenient, as

its boundary ∂M(�A) is expressible in terms of two Rindler horizons. This convenient charac-

terization however does not generically carry over to higher dimensions. For an arbitrary region

A in 2 or more spatial dimensions, the future and past boundary domains of dependence D±B [A]

will not end by a single tip, but rather a co-dimension one set, which we refer to as caustic. Here

we explore these caustics a bit more, in the case of d = 3.

Let us consider 2 + 1 dimensional boundary, so that the region A is 2-dimensional, and

correspondingly its boundary (also referred to as the entangling surface) ∂A is a closed curve in

R2. Let us parameterize it by λ ∈ [0, 1], and denote

∂A(λ) = (x(λ), y(λ)) (A.1)

where x(0) = x(1) and y(0) = y(1). Now we want to characterize the boundary of the future

and past domains of dependence of A, in order to specify ♦A. Since the boundary spacetime

is static, D+
B [A] and D−B [A] are symmetric to each other, so it suffices to consider just D+

B [A].

Being as causal set, its boundary is generated by future-directed null geodesics from ∂A which

emanate orthogonally to ∂A. The locus of points where these null geodesics intersect is called a

caustic. Such a caustic terminates the boundary of ♦A, since further continuation of these null

geodesics does not lie within ♦A. Moreover, we can in fact characterize ♦A by specifying the set

of all caustics C + (which by symmetry also determines C −), as

♦A = I−∂ [C +] ∩ I+
∂ [C −] . (A.2)

In general, a caustic for a 2-dimensional null surface will occur along a 1-dimensional spacelike

curve, which may branch and terminate. For the special case of A being a round disk, these
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Fig. 6: Examples of caustics (top cyan curves) C + on D+
B [A] for various shapes of the boundary region

A (enclosed by the bottom red curves). For nearly-circular ellipse, C + is very short (and would

degenerate to a point for circular region); as the ellipse gets more elongated, the caustic arc

stretches.

caustics degenerate to a single point q∧. However, any other shape of A will have more than a

single point in C ±.

To determine C ± explicitly for a given region A, we proceed as follows. For λ increasing in

anti-clockwise manner, the inward-pointing spatial normal to ∂A of unit norm at each λ is given

by

ψ(λ) =
1

n(λ)
(−y′(λ), x′(λ)) , where n(λ) =

√
x′(λ)2 + y′(λ)2 (A.3)

which yields the following generators, parameterized by t and labeled by λ:

kλ(t) =

(
t , x(λ)− t y

′(λ)

n(λ)
, y(λ) + t

x′(λ)

n(λ)

)
(A.4)

The caustics occur when kλ1(t) = kλ2(t) for some λ1, λ2 and t. While this is difficult to calculate in

general, we can easily find caustics in specific examples. The behaviour of caustics for ellipsoidal

region A is illustrated in Fig. 6.

Let us make a few remarks about the location and structure of caustics. For smooth ∂A,

caustics don’t extend all the way down to t = 0 at which A is located. They only extend to

minimal time given by the smallest radius of curvature of ∂A. Moreover, they should form a

connected tree-like structure. The maximal time to which they can reach is bounded from above

by the maximal extent of A; however for elongated regions this is a very weak bound. For

example, for rectangular regions, the maximal time reached by C + is given by half the width,

rather than the length, of the rectangle. This in turn puts a bound on the bulk extent of �A.
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