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ABSTRACT

The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such
as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the
Sun’s polar field. This process (commonly known as the Babcock–Leighton mechanism) is usually modeled as
a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation
leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested
by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved
double-ring algorithm for modeling the Babcock–Leighton mechanism based on AR eruption, within the framework
of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric
formulation—which is usually invoked in kinematic dynamo models—can reasonably approximate the surface flux
dynamics. Finally, we demonstrate that our treatment of the Babcock–Leighton mechanism through double-ring
eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, rec-
onciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.
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1. INTRODUCTION

Currently, some of the best tools for understanding the so-
lar magnetic cycle are axisymmetric kinematic dynamo mod-
els and surface flux-transport simulations. On the one hand,
kinematic dynamo models (which are usually based on an ax-
isymmetric formulation) attempt to model the magnetic cycle
self-consistently by using a prescribed meridional flow, differ-
ential rotation, turbulent diffusivity, and poloidal source (see
Section 5). They have been successful in reproducing several of
the characteristics of the solar cycle (see, for example, Choud-
huri et al. 1995; Durney 1997; Dikpati & Charbonneau 1999;
Covas et al. 2000; Nandy & Choudhuri 2001; Rempel 2006;
Guerrero & de Gouveia Dal Pino 2007; Jouve & Brun 2007;
Muñoz-Jaramillo et al. 2009, MNM09 from here on; for more
information about kinematic dynamo models see the review by
Charbonneau 2005). On the other hand, surface flux-transport
simulations study the evolution of the photospheric magnetic
field by integrating the induction equation using a prescribed
meridional flow, differential rotation, and turbulent diffusivity.
There are two main differences between surface flux-transport
simulations and kinematic dynamo models: in the former the
computational domain is restricted to the surface (without im-
posing axisymmetry) and they are not self-excited, but driven
by the deposition of active region (AR) bipolar pairs. This type
of models has proved a successful tool for understanding sur-
face dynamics on long timescales (see, for example, Mackay
et al. 2002; Wang et al. 2002a; Schrijver et al. 2002) and the
evolution of the coronal and interplanetary magnetic field (see,
for example, Lean et al. 2002; Yeates et al. 2008). However,
a discrepancy exists between kinematic dynamo models and
surface flux-transport simulations regarding the relationship be-
tween meridional flow amplitude and the strength of the polar

field (Schrijver & Liu 2008; Hathaway & Rightmire 2010; Jiang
et al. 2010). On the one hand, kinematic dynamo models find that
a stronger meridional flow results in stronger polar field (Dikpati
et al. 2008); on the other hand, surface flux-transport simula-
tions find an inverse relationship (Wang et al. 2002b; Jiang et al.
2010). In this work, we improve upon the idea proposed by
Durney (1997) and further elucidated by Nandy & Choudhuri
(2001) of using axisymmetric ring doublets to model individual
ARs. We show that this captures the surface dynamics better
than the α-effect formulation and resolves the discrepancy be-
tween dynamo models and surface flux-transport simulations
regarding the relationship between meridional flow speed and
polar field strength.

2. EVOLUTION OF THE AXISYMMETRIC COMPONENT
OF THE MAGNETIC FIELD ON TIMESCALES

COMPARABLE TO THE SOLAR CYCLE

As mentioned before, kinematic dynamo models are usually
based on an axisymmetric formulation and our model is not
an exception. Given that here we introduce an improved ax-
isymmetric double-ring algorithm for modeling AR eruptions
(see below), but AR emergence is strictly a non-axisymmetric
process, it is important to study the amount of information lost
by averaging over the longitudinal dimension. We do this by
performing surface transport simulations driven by a synthetic
set of AR cycles based on Kitt Peak data using the model
of Yeates et al. (2007). We perform a regular surface flux-
transport simulation in which the bipolar ARs are distributed
all across the surface of the Sun (Case 1) and another in which
the same set of ARs is deposited at the same Carrington longi-
tude while leaving other properties (time, tilt, latitude of emer-
gence, and flux) intact (Case 2). The difference between the two
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Figure 1. Long-term evolution of the photospheric magnetic field in surface flux-transport simulations: (a) snapshot of the magnetic field at the peak of the cycle for
Case 1 (ARs deposited at all longitudes). (b) Snapshot of the magnetic field at the peak of the cycle for Case 2 (ARs deposited at a single longitude). (c) Butterfly
diagram for Case 1. (d) Butterfly diagram for Case 2. (e) Difference between the butterfly diagrams of Case 1 and Case 2. (f) Longitudinal average of the snapshots
shown in the top row, taken at the peak of the cycle.

(A color version of this figure is available in the online journal.)

simulations is clear from the top row of Figure 1, where we show
a snapshot of the surface magnetic field at the peak of the cycle
for Case 1 (Figure 1(a)) and Case 2 (Figure 1(b)). Obviously
these cases have entirely different magnetic configurations at
the time of deposition. However, when the magnetic field is
averaged in longitude and stacked in time to create a magnetic
synoptic map (also know as butterfly diagram, Figures 1(c) and
(d)), a careful examination shows that the results are essen-
tially the same within a margin of 1% (Figures 1(e) and (f)).
The reason the simulations have identical outcomes is that the
differential rotation and the meridional flow are both indepen-
dent of longitude in the simulations. Note that non-axisymmetry
is essential for the evolution of the coronal and interplanetary
magnetic field. This result simply indicates that an axisymmetric
representation of surface dynamics is a reasonable approxima-
tion if we are only concerned with the general properties of the
magnetic field at the surface over solar cycle timescales in the
context of dynamo models.

3. MODELING INDIVIDUAL ACTIVE REGIONS AS
AXISYMMETRIC DOUBLE RINGS

The initial implementation of the double-ring algorithm
by Durney (1997) and Nandy & Choudhuri (2001) consisted
in searching the bottom of the convection zone (CZ) for

places in which the toroidal field exceeds a buoyant threshold
and placing two axisymmetric rings of constant radial flux
directly above them. This implementation had two important
deficiencies: strong sensitivity to changes in grid resolution and
the introduction of sharp discontinuities in the φ component of
the vector potential. The first necessary step to address these
problems is a careful mathematical definition of the vector
potential associated with each ring doublet, which ensures a
continuous first derivative in the computational domain. We do
so by building a separable function:

Aar(r, θ ) = K0A(Φ)F (r)G(θ ), (1)

where K0 is a constant we introduce to ensure super-critical
solutions and A(Φ) defines the strength of the ring doublet.
F (r) is defined as

F (r) =
⎧⎨
⎩

0 r < R� − Rar

1

r
sin2

[
π

2Rar
(r − (R� − Rar))

]
r � R� − Rar

,

(2)
where R� = 6.96 × 108 m corresponds to the radius of the Sun
and Rar = 0.85 R� represents the penetration depth of the AR.
This depth is motivated from results indicating that the dis-
connection of an AR flux tube happens deep down in the CZ
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Figure 2. (a) Diagram illustrating the quantities which define the latitudinal dependence of a double-ring bipolar pair. (b) Poloidal field lines of one of our double
rings including a potential field extrapolation for the region outside the Sun. The dashed line marks the location of the penetration depth Rar.

(A color version of this figure is available in the online journal.)

(Longcope & Choudhuri 2002). G(θ ), on the other hand, is
easier to define in integral form:

G(θ ) = 1

sin θ

∫ θ

0
[B−(θ ′) + B+(θ ′)] sin(θ ′)dθ ′, (3)

where B+(B−) defines the positive (negative) ring:

B±(θ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 θ < θar ∓ χ

2
− Λ

2

± 1

sin(θ )

[
1 + cos

(
2π

Λ

(
θ − θar ± χ

2

))]

θar ∓ χ

2
− Λ

2
� θ < θar ∓ χ

2
+

Λ
2

0 θ � θar ∓ χ

2
+

Λ
2

.

(4)

Here θar is the co-latitude of emergence, Λ is the diameter of
each polarity of the doublet for which we use a fixed value of
6◦ (heliocentric degrees), and χ = arcsin[sin(γ ) sin(Δar)] is the
latitudinal distance between the centers, which in turn depends
on the angular distance between polarity centers Δar= 6◦ and
the AR tilt angle γ ; χ is calculated using the spherical law of
sines (see Figure 2(a) for a diagram illustrating these quantities).
Figure 2(b) shows the axisymmetric signature of one of such
axisymmetric ARs.

4. RECREATING THE POLOIDAL FIELD

Given that the accumulated effect of all ARs is what regener-
ates the poloidal field, we need to specify an algorithm for AR
eruption and decay in the context of the solar cycle. On each so-
lar day of our simulation, we randomly chose one of the latitudes
with fields higher than a buoyancy threshold of Bc = 5 × 104 G
at the bottom of the CZ (r = 0.71 R�) and calculate the amount
of magnetic flux present within its associated toroidal ring. The
probability distribution we use is not uniform, but is restricted
to observed active latitudes. We do this by making the probabil-
ity function drop steadily to zero between 30◦ (−30◦) and 40◦
(−40◦) in the northern (southern) hemisphere:

P (θ ) ∝
(

1 + erf

[
θ − 0.305π

0.055π

]) (
1 − erf

[
θ − 0.694π

0.055π

])
.

(5)

We then calculate the corresponding AR tilt, using the local field
strength B0, the calculated flux Φ0, and the latitude of emergence
λ. For this we use the expression found by Fan et al. (1994):

γ ∝ Φ1/4
0 B

−5/4
0 sin(λ), (6)

reducing the magnetic field of the toroidal ring from which
the AR originates. In order to do this, we first estimate how
much magnetic energy is present on a partial toroidal ring (after
removing a chunk with the same angular size as the emerging
AR). Given that this energy is smaller than the one calculated
with a full ring, we set the value of the toroidal field such that
the energy of a full toroidal ring filled with the new magnetic
field strength is the same as the one calculated with the old
magnitude for a partial ring. Finally, we deposit a double ring
(as defined in Section 3) with these calculated properties, at the
chosen latitude.

5. THE KINEMATIC MEAN-FIELD DYNAMO MODEL

We perform dynamo simulations to explore how the double-
ring formulation compares to the near surface α-effect formula-
tion. In particular, we focus on the relationship between merid-
ional flow speed and polar field strength. Our model is based on
the axisymmetric dynamo equations:

∂A

∂t
+

1

s
[vp · ∇(sA)] = η

(
∇2 − 1

s2

)
A + α0f (r, θ )F (Btc)Btc

(7)

∂B

∂t
+ s

[
vp · ∇

(
B

s

)]
+ (∇ · vp)B = η

(
∇2 − 1

s2

)
B

+ s([∇ × (Aêφ)] · ∇Ω) +
1

s

∂(sB)

∂r

∂η

∂r
, (8)

where A is the φ component of the vector potential (from
which Br and Bθ can be obtained), B is the toroidal field
(Bφ), vp is the meridional flow, Ω is the differential rotation,
η is the turbulent magnetic diffusivity, and s = r sin(θ ). The
second term on the right-hand side of Equation (7) corresponds
to the poloidal source in the mean-field formulation. In this
formulation, α0 is a constant that sets the strength of the source
term and is usually used to ensure super-critical solutions;
α(r, θ ) captures the spatial properties of the Babcock–Leighton



No. 1, 2010 DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS L23

Double-ring Algorithm α-effect Formulation

(a) (b)

(c) (d)

Figure 3. Comparison between surface dynamics as captured by the double-ring algorithm (left column) and the α-effect formulation (right column). The top row
shows the evolution of the surface magnetic field in the form of synoptic maps—the color map is saturated to enhance the visibility of the field at mid to low latitudes.
The bottom row shows a snapshot of the poloidal components of the magnetic field taken at solar max. The solid contours correspond to clockwise field lines, the
dashed contours correspond to counterclockwise field lines. The thick dashed lines mark the location of the tachocline.

(A color version of this figure is available in the online journal.)

(BL) mechanism: confinement to the surface, observed active
latitudes, and latitudinal dependence of tilt, while F (Btc) adds
nonlinearity to the dynamo by quenching the source term for
values of the toroidal field at the bottom of the CZ Btc that
are too strong or too weak. More information about this source
can be found in MNM09. Note that for simulations using the
double-ring algorithm, this term is not present in the equations
(α0 = 0).

In order to integrate these equations, we need to prescribe
four ingredients: meridional flow, differential rotation, the
poloidal field regeneration mechanism, and turbulent magnetic
diffusivity. For the differential rotation, we use the analytical
form of Charbonneau et al. (1999) with a tachocline centered at
0.7 R� whose thickness is 0.05 R� and we use the meridional
flow profile defined in MNM09. This meridional flow better
captures the features present in helioseismic data, especially
the latitudinal dependence. We use an amplitude of 20 m s−1

for the results shown in Figure 3 and a variable amplitude for
the results shown in Figure 5 (see below). We use a double
stepped diffusivity profile as described in MNM09. It starts
with a diffusivity value ηbcd = 108 cm2 s−1 at the bottom of the
CZ, jumps to a value of ηcz = 1011 cm2 s−1 in the CZ, and then
to a value of ηsg = 1012 cm2 s−1 in the near-surface layers. The

first step is centered at rcz = 0.71 R� and has a half-width of
dcz = 0.015 R� and the second step is centered at rsg = 0.95 R�
and has a half-width of dsg = 0.025 R�.

For the poloidal field regeneration mechanism, we use the
improved ring-doublet algorithm described above, using a
value of K0 = 400, in order to insure super-criticality (for a
meridional flow of 30 m s−1). For those simulations which use
an α-effect formulation, we use the non-local poloidal source
described above (more information in MNM09) using a value of
α0 = 0.25, in order to insure super-criticality (for a meridional
flow of 30 m s−1).

6. ADDRESSING THE DISCREPANCY BETWEEN
KINEMATIC DYNAMO MODELS AND SURFACE

FLUX-TRANSPORT SIMULATIONS

In order to have a net accumulation of unipolar field at the
poles, it is necessary to have an equal amount of flux cancella-
tion across the equator. Since the meridional flow is poleward in
the top part of the CZ, it essentially acts as a barrier against flux
cancellation by sweeping both positive and negative AR polar-
ities toward the poles resulting in weak polar fields. This leads
to an inverse correlation between flow speed and polar field
strength which is accurately captured in surface flux-transport
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Figure 4. Diagram for the evolution of the meridional flow amplitude with
respect to the sunspot cycle: each solar cycle N has a unique meridional flow
strength vn which is randomly chosen between 15 and 30 m s−1. Additionally,
the polar field strength Br of cycle N is measured at the end of it.

(A color version of this figure is available in the online journal.)

simulations. Contrarily, dynamo simulations in typically used
parameter regimes obtain an opposite relationship that is not
consistent with the above physics. This is because if there is al-
ready a strong separation of flux, a fast meridional flow will lead
to an enhancement of the polar field due to flux concentration.
This unrealistically strong separation is typical of kinematic
dynamo models that use a non-local α-effect BL source (see
Figure 3(c)). The reason is that by increasing the vector poten-
tial A proportionally to the toroidal field B at the bottom of the
CZ (Equation (7)), one creates strong gradients in the vector
potential above the edges of the toroidal field belt; this ends
up immediately producing a poloidal field which is as large in
length scale as the toroidal field itself, circumventing the whole
process of flux transport by circulation and diffusion. Figure 3
illustrates this fundamental difference. The top row shows the
evolution of the surface magnetic field for a dynamo model us-
ing the double-ring algorithm (Figure 3(a)) versus one using the
α-effect formulation (Figure 3(b)). The different ways in which
each formulation handles the surface dynamics are evident.
The double-ring simulation clearly shows a mixture of po-
larities and small-scale features which migrate to the poles
(very much like the observed evolution of the surface mag-
netic field). On the other hand, the mean-field formulation only
shows two large-scale polarities whose centroids drift apart as
the cycle progresses. The bottom row depicts a snapshot of the
poloidal field for the double-ring algorithm (Figure 3(c)) and the
α-effect formulation (Figure 3(d))—both snapshots taken at so-
lar max. Here the presence of small-scale features and a mixture
of polarities is evident for the double ring, whereas the α-effect
formulation only shows a large-scale magnetic field with two
polarities. It is clear that although the large-scale internal field
is similar for both, the double-ring algorithm does a much better
job of capturing the surface dynamics.

6.1. Polar Field Strength versus Meridional Flow Speed

In order to study the relationship between meridional flow
and polar field strength, we perform simulations in which
we randomly change the meridional flow amplitude from one
sunspot cycle to another (between 15 and 30 m s−1). This is
illustrated in Figure 4 where a series of sunspot cycles is plotted
along with their associated meridional flow. We then evaluate
the correlation between the amplitude of the meridional flow

of a given cycle and the polar field strength Br at the end of
it. Since we want to evaluate the relative performance of the
double-ring algorithm as opposed to the non-local BL source,
we perform the same simulation for both types of sources.
Aside from the varying meridional flow amplitude and the
poloidal source, the rest of the ingredients are the same. It
is important to note that partly due to difficulties in tracking
the exact occurrence of solar minimum, the two hemispheres
eventually drift out of phase in long simulations—sometimes
this phase difference leads to quadrupolar solutions which often
go back to the observed dipolar solution. This parity issue only
appears when the meridional flow is changed at solar minimum:
if there are no variations, or if the variation takes place at solar
maximum, the cycle is always locked in phase with dipolar
parity. Nevertheless, to compare our simulations with surface
flux-transport models, we change the flow speed only at solar
minimum. To be consistent, we accumulate statistics only from
cycles in which the two hemispheres are in dipolar phase. The
statistics performed for both types of source contain about 200
sunspot cycles.

The values of polar field we find using the kinematic dynamo
simulations are of the order of 10 kG which is a common feature
of dynamo models, which are successful in simulating the strong
toroidal field necessary to produce sunspots and sustain the so-
lar cycle (Dikpati & Charbonneau 1999; Chatterjee et al. 2004;
Jiang & Wang 2007; Jouve et al. 2008). Recent high-resolution
observations of the polar region have now confirmed the ex-
istence of such strong kilo-Gauss unipolar flux tubes (Tsuneta
et al. 2008). Figure 5 shows the results of both simulations.
We find a weak positive correlation between meridional flow
and polar field strength for the simulations using the non-local
α-effect formulation (Figure 5, top), which is in general agree-
ment with the results of Dikpati et al. (2008). On the other hand,
the simulations using the double-ring formulation distinctively
show a negative correlation (Figure 5, bottom), in agreement
with surface flux-transport simulations (Wang et al. 2002b).
This clearly establishes that the discrepancy between the mod-
els is resolved by introducing the double-ring algorithm and
that the double-ring formalism does a better job at capturing the
observed surface magnetic field dynamics than the non-local
α-effect formalism.

7. CONCLUDING REMARKS

In the first half of this work, we perform surface flux-transport
simulations to test the validity of the axisymmetric formula-
tion of the kinematic dynamo problem. Our results suggest
that this axisymmetric formulation captures well the surface
flux dynamics over spatial and temporal scales that are rele-
vant for the solar cycle. Building upon this, we introduce an
improved version of the double-ring algorithm to model the
Babcock–Leighton mechanism for poloidal field regeneration
in axisymmetric, kinematic dynamo models. We show that this
new double-ring formulation generates surface field evolution
and polar field reversal which is in close agreement with obser-
vations. Additionally, we find that this improved treatment of
the Babcock–Leighton process generates an inverse relationship
between meridional flow speed and polar field strength—which
is suggested by simple physical arguments and also predicted by
surface flux-transport simulations. This resolves the discrepancy
between kinematic dynamo models and surface flux-transport
simulations regarding the dynamics of the surface magnetic
field. Since the latter drives the evolution of the corona and
the heliosphere, our work opens up the possibility of coupling
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Figure 5. Relationship between randomly varying meridional flow speed and polar field strength for simulations using the mean-field formulation (top row) vs.
simulations using the double-ring algorithm (bottom row). The polar field strength (in Gauss) is represented by the maximum amplitude of the polar radial field (Br)
attained during solar minimum. The relationship between the above parameters is determined by the Spearman’s rank correlation coefficient. Top row: correlation
coefficient, r = 0.325; confidence, p = 99.99%. Bottom row: r = 0.625, p = 99.99%.

(A color version of this figure is available in the online journal.)

dynamo models of the solar cycle with coronal and heliospheric
field evolution models.
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Jiang, J., Işik, E., Cameron, R. H., Schmitt, D., & Schüssler, M. 2010, ApJ, 717,

597
Jiang, J., & Wang, J. X. 2007, MNRAS, 377, 711
Jouve, L., & Brun, A. S. 2007, A&A, 474, 239
Jouve, L., et al. 2008, A&A, 483, 949
Lean, J. L., Wang, Y., & Sheeley, N. R. 2002, Geophys. Res. Lett., 29, 240000
Longcope, D., & Choudhuri, A. R. 2002, Sol. Phys., 205, 63
Mackay, D. H., Priest, E. R., & Lockwood, M. 2002, Sol. Phys., 209, 287
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