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Abstract 

The ability to perceive facial motion is important to successfully interact in social 

environments. Previously, imaging studies have investigated neural correlates of facial 

motion primarily using abstract motion stimuli. Here, we studied how the brain processes 

natural non-rigid facial motion in direct comparison to static stimuli and matched phase-

scrambled controls. As predicted from previous studies, dynamic faces elicit higher responses 

than static faces in lateral temporal areas corresponding to hMT+/V5 and STS. Interestingly, 

analyses of individually-defined, static-face-sensitive regions in bilateral fusiform gyrus and 

left inferior occipital gyrus also respond more to dynamic than static faces. These results 

suggest integration of form and motion information during the processing of dynamic faces 

even in ventral temporal and inferior lateral occipital areas. In addition, our results show that 

dynamic stimuli are a robust tool to localize areas related to the processing of static and 

dynamic face information. 
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Introduction 

Being required to understand and predict the actions of others to be able to successfully 

interact in a social environment has led our visual system to become particularly sensitive to 

human movements (for a recent review, see Blake and Shiffrar 2007). Facial motion in 

particular is a very important cue to judge other people’s actions, emotions and intentions 

towards us (Bassili 1976; Kamachi et al. 2001). In addition to this, facial motion has also 

been shown to facilitate face recognition (O'Toole et al. 2002; Pilz et al. 2006). Due to the 

familiarity and behavioral significance of facial motion, it is most likely that our visual 

system has developed mechanisms that facilitate its perception and it is also very plausible to 

assume that certain mechanisms exist that integrate invariant and changeable properties of 

faces (Haxby et al. 2000).  

Studies of biological motion, including faces, suggest that the interpretation of the 

movements and actions of others recruit specialized neural pathways (Allison et al, 2000; 

Giese and Poggio, 2003; Blakemore et al, 2001). In monkeys, neurons in the anterior part of 

the superior temporal polysensory area (STPa) were found to respond both to the form and 

the motion of bodies and heads, indicating integration of form and motion information in this 

area (Oram and Perrett 1996). In humans, involvement of the superior temporal sulcus (STS) 

in the processing of relevant and familiar types of biological motion has also been shown, 

e.g., in response to human body motion (tested using point-light displays, Bonda et al. 1996; 

Grossman et al. 2000), or to facial motion due to speech production (Campbell et al. 2001; 

Hall et al. 2005), expression of emotions (LaBar et al. 2003; Pelphrey et al. 2007) or in 

complex scenes such as movies (Bartels and Zeki 2004; Hasson et al. 2004). Additionally, 

these regions have been shown to respond to natural images of implied facial motion (Puce et 

al. 1998; Puce et al. 2003), as well as to natural images of implied body motion (Jellema and 

Perrett 2003). 
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Most of the studies investigating the neural correlates of facial motion have used 

abstract motion stimuli like implied motion from static images (Puce et al. 1998; Puce et al. 

2003), moving avatars (i.e. cartoon faces, for example Pelphrey et al. 2005; Thompson et al. 

2007), or motion stimuli that were produced by morphing a static towards an emotional face 

(LaBar et al. 2003; Sato et al. 2004; Pelphrey et al. 2007). Using such ‘unnaturally’ moving 

stimuli might not fully capture the mechanisms underlying the processing of natural facial 

motion. The controlled fMRI studies of facial motion that have used video sequences of 

natural facial motion either focused on differences between types of face motions and thus 

did not use non-face control stimuli (Campbell et al. 2001; Hall et al. 2005). A recent study 

by Fox et al., (2008) investigated differences in brain activation between static and dynamic 

stimuli using non-face stimuli as controls. They applied two localiser scans, one contrasting 

static images of faces and objects, the other one contrasting dynamic videos of faces and 

objects. Comparing these two localisers, their results suggest that dynamic localisers are 

more reliable and more selective than static localisers. Although this study showed the 

usefulness of using dynamic stimuli to localize areas related to face processing, they were not 

able to directly compare brain activation towards static and dynamic stimuli, because those 

stimuli were used in different scanning sessions. Here, we investigated brain activation in 

response to natural non-rigid face motion and directly compared it to static faces and non-

face controls, which is necessary to demonstrate how the face-processing system responds to 

dynamic as compared with static faces irrespective of low-level cues. We showed observers 

video sequences of angry and surprised faces, as well as static stimuli of the same emotions. 

As controls for low-level stimulus properties including motion, we used the phase-scrambled 

versions of both kinds of stimuli.  

 

Materials and Methods 
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Participants 

Ten observers (4 females, 6 males) from the Tübingen community volunteered as subjects for 

12€ per hour. All observers were naïve as to the purpose of the current experiment and had 

no history of neurological or psychiatric illnesses. All participants provided informed consent 

and filled out a standard questionnaire approved by the local ethics committee for 

experiments involving a high field MR scanner to inform them of the necessary safety 

precautions. 

 

Stimuli 

We used video recordings of the face of three male and five female human actors, taken from 

the Max-Planck database of moving faces (Pilz et al. 2006). For these recordings, each face 

made two expressive gestures in separate videos: Surprise and anger. The movie clips used in 

the dynamic face condition (dynamic faces) were composed of 26 frames, presented at a 

frame rate of 25 frames per sec for a total duration of 1040 ms. Figure 1 shows an example of 

all 26 frames of a video sequence (top panel). The movie clips started with a neutral 

expression and ended with the peak of the expression in the last frame. The static face images 

used in the static face condition (static faces) were the last frame of each video sequence and 

thus showed the peak of each expression; each static face was presented for 1040 ms. All 

stimuli were embedded in a background that consisted of white noise applied to every RGB 

color channel. For the dynamic stimuli, the same noise was applied to all the frames of the 

movie, i.e., the background was static.  

 As control stimuli, we generated phase-scrambled versions of dynamic (dynamic 

scrambled) and static (static scrambled) faces. Researchers have often used objects or 

fragmented face images as a comparison to face images to investigate areas related to face 

processing (Kanwisher et al. 1997; Kanwisher et al. 1998). We decided to use phase-
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scrambled versions of our stimuli as controls, because fragmented images are constituted 

more of higher spatial frequencies, resulting from the cardinal axes (i.e., edges) that are 

produced by dividing a relatively smooth picture like a face into randomly rearranged squares 

(Sadr and Sinha 2004). Phase-scrambled stimuli have been used successfully in recent 

neuroimaging studies (Eger et al. 2004; Kovacs et al. 2006; Jacques and Rossion 2007; 

Rousselet et al. 2007). It has been shown that, especially for face recognition, the frequencies 

around 8-16 cycles across the face are particularly important (Costen et al. 1996; Näsänen 

1999; Morrison and Schyns 2001). Spatial frequencies also seem to interact with the 

recognition of previously learned static and dynamic images (Pilz et al. 2008), suggesting that 

they contain important information about the identity of the face. In addition, it has been 

shown that the FFA processes high and low spatial frequencies differently (Vuilleumier et al. 

2003; Gauthier et al. 2005; Rotshtein et al. 2007). Using fragmented images as a contrast 

would have changed our results as a function of spatial frequency content in the phase-

scrambled images. Therefore, it was of high importance to preserve the frequency structure of 

our original stimuli. Furthermore, we wanted to use a type of control stimuli that worked 

equally well for both dynamic and static faces in controlling for their respective low-level 

stimulus properties. Phase-scrambling is ideal, because its effect on both static and dynamic 

faces is very comparable (keeping the spatial frequency content constant while eliminating 

recognizable shapes).  

Phase-scrambling of our images was accomplished as follows. For each independent 

RGB color channel, the images were transformed into amplitude and phase components using 

the Fourier transform. Noise patterns were generated by inverse Fourier transform of the 

original amplitude spectrum of the image but with a random phase spectrum. For the movies, 

the same random phase spectrum was used for each frame of a given movie but the 
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amplitudes were those of the original frames. This resulted in control movies that were not 

flickering.  

 

------------------------------ 

Insert Figure 1 about here 

------------------------------ 

 

Design and Procedure 

There were 5 conditions in the experiment: fixation, static faces, static scrambled, dynamic 

faces, and dynamic scrambled. The observer’s task was a one-back matching task, i.e., they 

had to press a button whenever two identical stimuli sequentially appeared on the screen. We 

used a block design with 24 blocks, each composed of 6 stimuli which were presented every 

3 seconds. Blocks were history-matched, i.e., every condition was preceded by each 

condition equally often. Given that there were 16 different face stimuli in total (8 identities 

times 2 expressions) and 6 stimuli per block, the probability of a stimulus repetition was 

about 0.31 per block; i.e., each subject would on average encounter about 6 targets 

distributed across conditions. 

 Observers lay supine on the scanner bed. The stimuli were back projected onto a 

projection screen situated behind the observers' head and reflected into their eyes via a mirror 

mounted on the head coil. The projection screen was 140.5 cm from the mirror, and the 

stimuli subtended a maximum visual angle of approximately 9.0° (horizontal) x 8.3° 

(vertical). A JVC LCD projector with custom Schneider-Kreuznach long-range optics, a 

screen resolution of 1280 pixels x 1024 pixels and a 60 Hz refresh rate were used. The 

experiment was run on a 3.2 GHz Pentium 4 Windows PC with 2GB RAM and an NVIDIA 

GeForce 7800 GTX graphics card with 256 MB video RAM. The program to present the 
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stimuli and collect responses was written in Matlab using the Psychtoolbox extensions 

(http://www.psychtoolbox.org) (Brainard 1997; Pelli 1997). We used a magnet-compatible 

button box to collect subjects’ responses (The Rowland Institute at Harvard, Cambridge, 

USA). 

 

Image Acquisition 

All participants were scanned at the MR Centre of the Max Planck Institute for Biological 

Cybernetics, Tübingen, Germany. All anatomical T1-weighted images and functional 

gradient-echo echo-planar T2*-weighted images (EPI) with BOLD contrast were acquired on 

a Siemens TIM-Trio 3T scanner with an 8-channel phased-array head coil (Siemens, 

Erlangen, Germany). The imaging sequence for functional images had a repetition time of 

1920 ms, an echo time of 40 ms, a flip angle of 90°, a field of view of 256 mm x 256 mm and 

a matrix size of 64 pixels x 64 pixels. Each functional image consisted of 27 axial slices. 

Each slice had a thickness of 3.0 mm x 3.0 mm x 2.5 mm with a 0.5 mm gap between slices. 

Volumes were positioned to cover the whole brain based on the information from a 13-slice 

parasagittal anatomical localizer scan acquired at the start of each scanning session. For each 

observer, between 237 and 252 functional images were acquired in a single session lasting 

approximately 7.5 min, including a 8 sec blank period at the beginning of the run. The first 

four of these images were discarded to allow for equilibration of T1 signal. A T1-weighted 

anatomical scans was acquired after the functional runs (MPRAGE; TR = 1900 msec, TE = 

2.26 msec, flip angle = 9°, image matrix = 256 mm [Read direction] x 224 mm [Phase], 176 

slices, voxel size = 1x1x1 mm, scan time = 5.59 min). 

 

fMRI Data Pre-processing 
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Prior to any statistical analyses, the functional images were realigned to the first image and 

resliced to correct for head motion. The aligned images were then normalized into a standard 

EPI T2* template with a resampled voxel size of 3 mm x 3 mm x 3 mm = 27 mm
3
 (Friston et 

al. 1995a). Spatial normalization was used to allow group statistics to be performed across 

the whole brain at the level of voxels (Ashburner and Friston 1997; Ashburner and Friston 

1999). Following normalization, the images were convolved with an 8 mm full width at half 

maximum Gaussian kernel to spatially smooth the data. Spatial smoothing was used in this 

study because it enhances the signal-to-noise ratio of the data, permits the application of 

Gaussian random field theory to provide for corrected statistical inference (Friston et al. 

1996) and facilitates comparisons across observers by compensating for residual variability in 

anatomy after spatial normalization, thus allowing group statistics to be performed.  

 

fMRI Statistical Analyses 

Pre-processed fMRI data were analyzed using the general linear model framework 

implemented in the SPM2 software package from the Wellcome Department of Imaging 

Neuroscience (www.fil.ion.ucl.ac.uk/spm). A two-step mixed-effects analysis was used, as is 

common in SPM for group analyses (Friston et al. 1999). The first step used a fixed-effects 

model to analyze individual data sets. The second step used a random-effects model to 

analyze the group aggregate of individual results, which come in the form of parameter 

estimates for each condition and each voxel (parameter maps). As these group statistics are 

performed at the voxel level, the individual parameter maps need to be in the same 

anatomical format and were thus computed on the normalized data. 

For each observer, a temporal high-pass filter with a cut-off of 128 sec was applied to 

the pre-processed data to remove low-frequency signal drifts and artefacts, and an 

autoregressive model (AR 1 + white noise) was applied to estimate serial correlations in the 
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data and adjust degrees of freedom accordingly. Following that, a linear combination of 

regressors in a design matrix was fitted to the data to produce beta estimates (Friston et al. 

1995b) which represent the contribution of a particular regressor to the data. 

 

Whole-Brain Analysis 

The GLM applied to the individual datasets contained separate regressors of interest for the 4 

experimental conditions (dynamic faces, dynamic scrambled, static face, static scrambled) 

and the fixation condition. Two sets of regressors were created in SPM2 for each of these 

conditions in the following manner. For each condition, we first modeled the onset and 

duration of each stimulus as a series of delta functions. The series of delta functions was 

convolved with a canonical haemodynamic response function (HRF) to create a first set of 

regressors. The HRF was implemented in SPM2 as a sum of two gamma functions. To create 

a second set of regressors the delta functions were convolved with the first temporal 

derivative of the HRF. Therefore, there were a total of 10 regressors in the part of the design 

matrix used to model experimentally-induced effects. In addition, the design matrix included 

a constant term and six realignment parameters (yaw, pitch, roll and three translation terms). 

These parameters were obtained during motion correction and used to correct for movement-

related artefacts not eliminated during realignment. 

Fitting each subject’s data to the GLM produced 3D parameter estimate maps for each 

of our conditions of interest. We imported these single-subject parameter maps into SPM2’s 

ANOVA model to evaluate group statistics (random effects) for the following contrasts: 

static faces vs. static scrambled, dynamic faces vs. dynamic scrambled, dynamic faces vs. 

static faces and the interaction: (dynamic face > dynamic scrambled) > (static face > static 

scrambled). The interaction was the most stringent test of differences between dynamic and 
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static faces as it controls for movement in the stimuli. SPM2 uses the Greenhouse-Geisser 

correction for non-sphericity in the data. 

We thresholded the statistical maps from the ANOVA at p < 0.0001, uncorrected, 

with a minimum cluster size of 5 voxels. At this threshold, all voxels survived correction for 

multiple comparisons across all the voxels in the brain at p < 0.05 (False Discovery Rate 

FDR, Genovese et al. 2002) and all clusters survived cluster-wise multiple corrections at p < 

0.05 (Friston et al. 1994). 

Figure 2 (activations rendered on inflated brain) was created using the spm_surfrend 

toolbox (http://spmsurfrend.sourceforge.net/) and displayed using Neurolens software 

(www.neurolens.org) on the inflated template brain from the Freesurfer toolbox 

(http://surfer.nmr.mgh.harvard.edu). 

 

Regions Of Interest Analysis 

In addition to our whole-brain, voxel-wise group analysis, we performed analyses on 

individually-defined face sensitive regions of interest (ROI). These ROIs were identified 

using the contrast static faces > static scrambled, as follows. We searched in each subject’s 

individual GLM analysis for clusters whose peak response was located less than 10 mm away 

from the peak response of the clusters found in the group ANOVA. The single-subject GLMs 

were thresholded at the lower p<0.001 uncorrected threshold during this ROI search (1) 

because we were looking in regions of a-priori interest which had already survived whole-

brain correction in the group ANOVA and (2) to increase the likelihood of finding significant 

clusters in as many of the individual subjects as possible. 

After identifying these individual ROIs, we computed their block-averaged response 

time-courses to each condition, as follows. Raw BOLD signal data were extracted and 

filtered by removing low frequencies (cutoff = 128 seconds) and movement artefacts (using 
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the realignment parameters calculated by SPM2), then averaged over voxels in each ROI. For 

each run of each participant, the time-series were converted into percent signal change from 

average activity by dividing the signal measured at each time point by the average signal 

during the run, subtracting 1, and then multiplying by 100. The block-related responses to 

each condition were then averaged across all participants from 10s before to 30s after each 

block onset. The signal from the fixation condition was then used as a baseline and subtracted 

from each of the four other conditions. Therefore, the “0” point on the y axis of Figure 3 

corresponds to the mean activity in the fixation condition across all runs, and positive and 

negative values respectively represent relative increases and decreases from the mean signal 

intensity in the fixation condition.  

In each ROI, group statistics were assessed as follows. For each block of trials, the 

magnitude of the response to each condition was calculated by averaging the signal time-

course in the period between 7.5 and 19 seconds after block onset. The response to static 

faces and dynamic faces was then compared using 2-tailed paired-samples t-tests over 

subjects. To assess the robustness of the magnitude effects to differences in low-level 

stimulus characteristics, these tests were computed again after subtracting from the response 

time-course to each faces condition the response to the matching phase-scrambled faces 

conditions. This effectively tests the following interaction: (dynamic face > dynamic 

scrambled) > (static face > static scrambled). Note: Our ROIs were defined by comparing 

static faces to static scrambled, and thus the response to dynamic faces (or to dynamic 

scrambled) did not play any role in the definition of these ROIs (i.e., the voxels of our ROI 

could respond more, less or similarly to dynamic faces compared to static faces). As the way 

we defined the ROIs did not influence the outcome of the contrasts testing for responses to 

dynamic faces vs. other conditions, it is perfectly valid to statistically compare responses to 

static faces and dynamic faces without a-priori biases introduced through the ROI definition 
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method. In effect, instead of performing a separate localiser experiment, we used some of the 

conditions of our experiment as a localiser contrast to define regions in which we 

subsequently tested other contrasts (Friston et al. 2006). 

 

Results 

Whole-Brain Statistics 

Clusters of voxels responding more to static faces than to static scrambled were found in 

fusiform gyrus (FFG) bilaterally, in inferior occipital gyrus (IOG) bilaterally and in the right 

STS. Given their anatomical location (see coordinates in Table 1), the clusters in FFG and 

IOG most likely correspond respectively to the fusiform face areas (FFA, Kanwisher et al. 

1997) and the occipital face areas (OFA, Halgren et al. 1999; Gauthier et al. 2000; Hoffman 

and Haxby 2000). As we did not define these clusters by contrasting faces against objects as 

was done in the studies defining FFA and OFA, we prefer to use the terms FFG and IOG. 

Figure 2A shows these results thresholded at p<0.0001 uncorrected (Note: right STS survived 

the threshold of p<0.05, whole-brain corrected but not p<0.0001 uncorrected and thus does 

not appear in Figure 2). Clusters of voxels responding more to dynamic faces than to dynamic 

scrambled were found bilaterally in the following structures: fusiform gyri (FFG), inferior 

occipital gyrus (IOG), in the posterior and middle parts of the superior temporal sulcus (STS) 

extending into middle (MTS) and inferior temporal sulci, including the anatomical location of 

area hMT+/V5 (Dumoulin et al. 2000), as well as in middle prefrontal (MFG), medial 

prefrontal and medial orbitofrontal cortex, inferior frontal gyrus (IFG) and posterior cingulate 

gyrus (see Figure 2B). A higher response to dynamic faces than to static faces was found 

bilaterally in STS (extending into middle temporal gyrus and sulcus, MTS), in the inferior 

temporal sulcus (hMT+/V5), and in a small cluster in the precentral gyrus (see Figure 2C). 

No areas were found that responded more to static than dynamic faces. The interaction  
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(dynamic face > dynamic scrambled) > (static face > static scrambled) yielded significant 

effects exclusively in bilateral STS (Figure 2D). Details of the peaks of these activations are 

reported in Table 1.  

 

----------------------------------- 

Insert Table 1 about here  

Insert Figure 2 about here 

----------------------------------- 

 

Individual Face-Sensitive Regions Of Interest 

We located the following ROIs in 8 to 10 out of our 10 subjects: left and right FFG, left and 

right IOG, and right STS. As stated in the previous paragraph, FFG and IOG most likely 

correspond to FFA and OFA respectively (see coordinates in Table 2). As reported in Table 2 

and shown in Figure 3, all ROIs except the right IOG responded more to dynamic faces than 

to static faces when both conditions were compared with fixation. In addition, right FFG and 

right STS also showed increased activation for dynamic compared to static faces when both 

were contrasted with their matched phase-scrambled controls (i.e., (dynamic faces > dynamic 

scrambled) > (static faces > static scrambled)). No ROI showed a higher response to static 

faces than to dynamic faces.  

Note: almost identical time-courses were found in fusiform and occipital ROIs 

identified using the contrast dynamic faces > dynamic scrambled, which is an indication of 

the great overlap between ROIs identified using both methods. 

----------------------------------- 

Insert Table 2 about here 

Insert Figure 3 about here 
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----------------------------------- 

 

Discussion 

In this study, we investigated brain activation in response to dynamic face stimuli using 

natural video sequences of facial motion and directly compared it to activation in response to 

static face images. Using ROI analyses, we found that in most of the classic face-sensitive 

areas (bilateral FFG, left IOG and the right STS), the BOLD response to dynamic faces was 

higher than to static faces. In right FFG and right STS, these effects survived even when 

controlling for low-level visual properties of the stimuli using matched phase-scrambled 

controls. In addition, our analyses confirmed that STS is the brain region most sensitive to 

dynamic faces when controlling for stimulus motion. No clusters of the whole-brain analysis 

or any ROI showed greater response to static than dynamic faces. Taken together, these 

results show higher brain activation for dynamic than static faces not only in areas that have 

been related to the processing of changeable aspects of faces but also in areas that have been 

previously attached to the processing of invariant aspects of faces, i.e., the processing of 

facial form rather than facial motion (Haxby et al., 2000). This is particularly interesting 

given that face recognition, a process thought to involve mainly areas sensitive to invariant 

aspects of faces, can be facilitated by facial motion (O'Toole et al. 2002; Pilz et al. 2006). 

These results suggest an integration of form and motion information in a network of areas 

including STS, as has been proposed in models of the recognition of biological motion (Giese 

and Poggio, 2003). In addition, our results provide a strong argument for the use of dynamic 

stimuli to localize areas related to the processing of human faces, supporting an argument put 

forward by Fox and colleagues (Fox et al. 2008). 

 

Higher BOLD responses to Dynamic than Static Faces 
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In almost all face-sensitive ROIs, the BOLD response to dynamic faces was higher than to 

static faces. This is consistent with previous results directly comparing dynamic and static 

faces (Kilts et al. 2003; Sato et al. 2004) and with a recent study showing a stronger 

differential response in these areas between faces and objects when shown in motion rather 

than statically (Fox et al. 2008). However, the same contrast performed in the whole-brain 

analysis did not show significant activation in FFG or IOG (except after lowering the 

threshold to p<0.01 uncorrected; data not shown). This suggests that the analysis done on 

individually-defined ROIs is more sensitive, which can be due to several reasons. First, the 

ROIs were identified individually which compensates for the between-subjects variation in 

location of functionally-defined regions. Second, the much smaller number of tests being 

performed in ROI analyses compared to testing all voxels in the brain reduces the multiple 

comparisons problem and allows more sensitive thresholds to be used in ROI analyses (Saxe 

et al. 2006).  

The higher activation we found for dynamic faces are compatible with the idea that 

more neurons are tuned to these stimuli because they are more familiar and behaviorally 

relevant stimuli, as has been suggested by several research groups (Kilts et al. 2003; Bartels 

and Zeki 2004; Pelphrey et al. 2007; Fox et al. 2008); for example, more neurons have been 

found that are tuned to frontal views as compared to side views of faces, which could be 

related to the fact that we have greater experience with frontal view faces (Perrett et al. 

1998). We encounter moving faces frequently every day when interacting with other people. 

Therefore, our visual system is probably more familiar with seeing moving than static faces. 

As a result, more neurons might be sensitive to dynamic than static faces.  

However, the additional number of frames present in the dynamic face stimuli lead to 

two alternative explanations of our findings: First, an explanation on the level of a single 

population of neurons sensitive to both static and dynamic faces is that neurons responding to 
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faces might show response adaptation during the presentation of static faces. Because nothing 

changes during the presentation of a single static face, the neuronal response would be 

smaller at the end than at the beginning of each trial, as neural activity and the related BOLD 

signal are known to decrease when there is no stimulus change (Grill-Spector and Malach 

2001). This explanation was also put forward recently by others (Fox et al. 2008). Those 

same neurons might not adapt during the presentation of the dynamic faces, because the face 

undergoes subtle changes between successive frames shown during each trial. Less neuronal 

adaptation during dynamic face presentations might therefore lead to higher metabolic 

demands and thus to the higher BOLD signal we observe. Given the slow dynamics of the 

BOLD signal, this difference in neuronal adaptation might also account for the bigger 

difference in BOLD response we observed at the end of the blocks of trials compared to the 

beginning.  

Second, one could propose an explanation on the level of different neuronal 

populations that each responds to a particular static frame of the dynamic face stimuli. In this 

case, all these populations would be active during presentation of our dynamic face stimuli, 

but only a subset of them would respond to our static face stimuli. This mechanism has also 

been suggested recently by Fox and colleagues (2008). The difference in the number of 

static-face-sensitive neuronal populations involved would then explain the difference in 

BOLD signal we observed, without any involvement of neurons sensitive to face motion per 

se.  

Disproving these alternative hypotheses requires the use of control stimuli with the 

same number of frames as the dynamic stimuli but not perceived as facial motion. These 

stimuli are very difficult to create, because simply frame-scrambling our movies yields 

stimuli perceived as strange, unnatural speeded-up motion, and these perceptual effects 

probably involve unnatural responses of the face-processing system, leading to further 
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difficulties in experimental design and interpretation. We are currently addressing this 

question in further experiments. 

Interestingly, the difference in response to dynamic and static faces was not only 

found in the right STS which is known to respond to biological motion and facial motion 

(e.g., Haxby et al. 2000; Bartels and Zeki 2004; Hasson et al. 2004), but also in the areas 

classically known to process invariant aspects of the faces: FFG and IOG. A recent study by 

Fox and colleagues (2008) also reported a greater difference in response to dynamic faces  

versus dynamic objects in these areas. But in their study, the responses to dynamic and static 

faces could not be compared directly. As recognition of facial identity is thought to be mainly 

accomplished by those latter areas, their higher response to dynamic faces might be linked to 

the increased recognition performance observed for dynamic faces (O'Toole et al. 2002; Pilz 

et al. 2006). This will have to be investigated further in purposefully-designed experiments.  

Our findings constitute evidence that both motion- and form-related areas participate 

in the processing of dynamic faces and suggest that temporal and spatial aspect of faces seem 

to be processed in an integrated fashion in higher level visual brain areas. Those findings are 

particularly interesting given that the different face identities and expressions in the stimulus 

set were the same for static and dynamic faces, as were their presentation schedule, and that 

in some ROIs, these effects even survived when the responses to the phase-scrambled control 

stimuli was subtracted. Therefore, the effects are not related to face identity or expression 

differences, and are not simply related to the fact that something was moving in the dynamic 

face blocks or that each trial was composed of a series of different frames. 

  

Other Regions Responding to Dynamic Faces 

Contrasting the parameter estimates for dynamic faces to those for dynamic scrambled, we 

found, in addition to activations in the face- and motion-sensitive areas discussed above, 
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higher activation in inferior and middle frontal gyrus (IFG and MFG) as well as medial 

prefrontal and orbitofrontal cortex and posterior cingulate gyrus. In their recent paper, Fox 

and colleagues (2008) found similar results by comparing dynamic faces to dynamic objects. 

Recent neuroimaging studies have shown that the IFG, prefrontal and inferior parietal areas 

are important for action observation and imitation (Molnar-Szakacs et al. 2005; Vogt et al. 

2007). Iacoboni and colleagues (Iacoboni et al. 2005) found that the ventral premotor cortex 

responds more to actions observed in an action-related context than in the absence of such a 

context. They suggest that the human mirror system does not only provide an action 

recognition mechanism, but also constitutes a neural system for coding the intentions of 

others. This is supported by studies showing impairment in the recognition of emotional 

stimuli and attribution of personality traits in patients with lesions in frontal cortex (Damasio 

et al. 1991; Heberlein et al. 2004). Our stimuli show expressive faces that have a high 

relevance when interacting in social situations. Therefore, it is reasonable that watching 

dynamic expressive faces activates areas related to processing of emotional stimuli and 

observing relevant actions of other people.  

The posterior cingulate gyrus has been found to respond more to familiar faces, voices 

and words (Kim et al. 1999; Leveroni et al. 2000; Shah et al. 2001) and shows an increasing 

response during acquisition of facial familiarity (Kosaka et al. 2003). Its activation when 

watching dynamic faces might reflect the fact that dynamic faces are more familiar and / or 

that dynamic faces automatically trigger processes leading to their familiarization. 

 

Conclusion 

This study shows that dynamic faces elicit more activation than both static faces or phase-

scrambled controls in form-related face-processing areas (FFG and IOG) and in motion-

related face-processing areas (STS). These results are consistent with the hypothesis that our 
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brain contains mechanisms that are especially tuned to dynamic aspects of faces, and further 

reveal that regions tuned to invariant aspects of faces respond more to dynamic than static 

faces. In addition, our results show that dynamic stimuli provide an excellent tool for robustly 

localizing areas related to the processing of facial form and motion information (also shown 

by Fox et al. 2008).  



Neural correlates of facial motion perception   21 

Acknowledgments 

The work was conducted while both authors were employed at the Max Planck Institute for 

Biological Cybernetics, Tübingen, Germany. The authors would like to thank Heinrich H. 

Bülthoff for support. Conflict of Interest: None declared. 



Neural correlates of facial motion perception   22 

References 

Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS 

region. Trends Cogn Sci 4: 267-278 

Ashburner J, Friston K (1997) The role of registration and spatial normalization in detecting 

activations in functional imaging. Clinical MRI/Developments in MR 7: 26-28 

Ashburner J, Friston KJ (1999) Nonlinear spatial normalisation using basis functions. Human 

Brain Mapping 7 254-266 

Bartels A, Zeki S (2004) Functional Brain Mapping During Free Viewing of Natural Scenes. 

Hum.Brain Mapp. 21: 75-85 

Bassili JN (1976) Temporal and spatial contingencies in the perception of social events. J 

Pers Soc Psychol 33: 680-685 

Blake R, Shiffrar M (2007) Perception of Human Motion. Annu Rev Psychol 58: 47-73 

Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the 

sensory consequences of action. Neuroreport 12: 1879-1884 

Bonda E, Petrides M, Ostry D, Evans A (1996) Specific involvement of human parietal 

systems and the amygdala in the perception of biological motion. J Neurosci 16: 

3737-3744 

Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10: 433-436 

Campbell R, MacSweeney M, Surguladze S, Calvert G, McGuire P, Suckling J, Brammer 

MJ, David AS (2001) Cortical substrates for the perception of face actions: an fMRI 

study of the specificity of activation for seen speech and for meaningless lower-face 

acts (gurning). Brain Res.Cogn Brain Res. 12 233-243 

Costen NP, Parker DM, Craw I (1996) Effects of high-pass and low-pass spatial filtering on 

face identification. Percept Psychophys 58: 602-612 



Neural correlates of facial motion perception   23 

Damasio AR, Tranel D, Damasio H (1991) Somatic markers and the guidance of 

behavior: Theory and preliminary testing. Oxford University Press, New York 

Dumoulin SO, Bittar RG, Kabani NJ, Baker CL, Jr., Le Goualher G, Bruce PG, Evans AC 

(2000) A new anatomical landmark for reliable identification of human area V5/MT: 

a quantitative analysis of sulcal patterning. Cereb Cortex 10: 454-463 

Eger E, Henson RNA, Driver J, Dolan RJ (2004) BOLD Repetition Decreases in Object-

Responsive Ventral Visual Areas Depend on Spatial Attention. J Neurophysiol 92: 

1241-1247 

Fox CJ, Iaria G, Barton JJS (2008) Defining the face processing network: Optimization of the 

functional localizer in fMRI. Human Brain Mapping Online in advance of print 

Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RS (1995a) Spatial 

registration and normalisation of images. Hum Brain Mapp 2: 165-189 

Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and 

fMRI: levels of inference and power. Neuroimage 4: 223-235 

Friston KJ, Holmes AP, Worsley KJ (1999) How Many Subjects Constitute a Study? 

Neuroimage 10: 1-5 

Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RS (1995b) Statistical 

parametric mapping in functional imaging: a general linear approach. Hum Brain 

Mapp 2: 189-210 

Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RNA (2006) A critique of functional 

localisers. Neuroimage 30: 1077-1087 

Friston KJ, Worsley KJ, Frackowiak R, Mazziotta J, Evans AC (1994) Assessing the 

significance of focal activations using their spatial extent. Hum Brain Mapp 1: 210-

220 



Neural correlates of facial motion perception   24 

Gauthier I, Curby KM, Skudlarski P, Epstein RA (2005) Individual differences in FICA 

activity suggest independent processing at different spatial scales. Cogn Affect Behav 

Neurosci 5: 222-234 

Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits 

brain areas involved in face recognition. Nat Neurosci 3: 191-197 

Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional 

neuroimaging using the false discovery rate. Neuroimage 15: 870-878 

Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. 

Nat Rev Neurosci 4: 179-192 

Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional 

properties of human cortical neurons. Acta Psychol 107: 293-321 

Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain 

areas involved in perception of biological motion. J Cogn Neurosci 12: 711-720 

Halgren E, Dale AM, Sereno MI, Tootell RBH, Marinkovic K, Rosen BR (1999) Location of 

human face-selective cortex with respect to retinotopic areas. Hum Brain Mapp 7: 29-

37 

Hall DA, Fussell C, Summerfield AQ (2005) Reading Fluent Speech from Talking Faces: 

Typical Brain Networks and Individual Differences. Journal of Cognitive 

Neuroscience 17: 939-953 

Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject Synchronization of 

Cortical Activity During Natural Vision. Science 303: 1634 

Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face 

perception. Trends Cogn Sci. 4: 223-233 



Neural correlates of facial motion perception   25 

Heberlein AS, Adolphs R, Tranel D, Damasio H (2004) Cortical Regions for Judgments of 

Emotions and Personality Traits from Point-light Walkers. J. Cogn. Neurosci. 16: 

1143-1158 

Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the 

distributed human neural system for face perception. Nat Neurosci 3: 80-84 

Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) 

Grasping the intentions of others with one's own mirror neuron system. PLoS Biology 

3: e79 

Jacques C, Rossion B (2007) Early electrophysiological responses to multiple face 

orientations correlate with individual discrimination performance in humans. 

Neuroimage 36: 863-876 

Jellema T, Perrett DI (2003) Cells in monkey STS responsive to articulated body motions and 

consequent static posture: a case of implied motion? Neuropsychologia 41: 1728-

1737 

Kamachi M, Bruce V, Mukaida S, Gyoba J, Yoshikawa S, Akamatsu S (2001) Dynamic 

properties influence the perception of facial expressions. Perception 30: 875-887 

Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human 

extrastriate cortex specialized for face perception. J Neurosci 17: 4302-4311 

Kanwisher N, Tong F, Nakayama K (1998) The effect of face inversion on the human 

fusiform face area. Cognition 68: B1-B11 

Kilts CD, Egan G, Gideon DA, Ely TD, Hoffman JM (2003) Dissociable Neural Pathways 

Are Involved in the Recognition of Emotion in Static and Dynamic Facial 

Expressions. Neuroimage 18: 156-168 



Neural correlates of facial motion perception   26 

Kim JJ, Andreasen NC, O'Leary DS, Wiser AK, Ponto LL, Watkins GL, Hitchwa RD (1999) 

Direct comparison of the neural substrates of recognition memory for words and 

faces. Brain 122: 1069-1083 

Kosaka H, Omori M, Iidaka T, Murata T, Shimoyama T, Okada T, Sadato N, Yonekura Y, 

Wada Y (2003) Neural substrates participating in acquisition of facial familiarity: an 

fMRI study. Neuroimage 20: 1734-1742 

Kovacs G, Zimmer M, Banko E, Harza I, Antal A, Vidnyanszky Z (2006) 

Electrophysiological Correlates of Visual Adaptation to Faces and Body Parts in 

Humans. Cereb Cortex 16: 742-753 

LaBar KS, Crupain MJ, Voyvodic JT, McCarthy G (2003) Dynamic perception of facial 

affect and identity in the human brain. Cereb Cortex 13: 1023-1033 

Leveroni CL, Seidenberg M, Mayer AR, Mead LA, Binder JR, Rao SM (2000) Neural 

systems underlying the recognition of familiar and newly learned faces. J Neurosci 

20: 878-886 

Molnar-Szakacs I, Iacoboni M, Koski L, Mazziotta JC (2005) Functional segregation within 

pars opercularis of the inferior frontal gyrus: Evidence from fMRI studies of imitation 

and action observation. Cereb. Cortex 15: 986-994 

Morrison DJ, Schyns PG (2001) Usage of spatial scales for the categorization of faces, 

objects, and scenes. Psychon Bull Rev 8: 454-469 

Näsänen R (1999) Spatial frequency bandwidth used in the recognition of facial images. 

Vision Res 39: 3824-3833 

O'Toole AJ, Roark DA, Abdi H (2002) Recognizing moving faces: a psychological and 

neural synthesis. Trends Cogn Sci 6: 261-266 



Neural correlates of facial motion perception   27 

Oram MW, Perrett DI (1996) Integration of form and motion in the anterior superior 

temporal polysensory area (STPa) of the macaque monkey. J Neurophysiol 76: 109-

129 

Pelli DG (1997) The VideoToolbox software for visual psychophysics: Transforming 

numbers into movies. Spat Vis 10: 437-442 

Pelphrey KA, Morris J, Michelich C, Allison T, McCarthy G (2005) Functional anatomy of 

biological motion perception in posterior temporal cortex: an fMRI study of eye, 

mouth and hand movements. Cereb Cortex 15: 1866-1876 

Pelphrey KA, Morris JP, McCarthy G, LaBar KS (2007) Perception of dynamic changes in 

facial affect and identity in autism. Social Cognitive and Affective Neuroscience 2: 

140-149 

Perrett DI, Oram MW, Ashbridge E (1998) Evidence accumulation in cell populations 

responsive to faces: an account of generalisation of recognition without mental 

transformations. Cognition 67: 111-145 

Pilz KS, Buelthoff HH, Vuong QC (2008) Learning influences the encoding of static and 

dynamic faces and their recognition across different spatial frequencies. Mem Cog in 

press 

Pilz KS, Thornton IM, Bulthoff HH (2006) A search advantage for faces learned in motion. 

Exp Brain Res 171: 436-447 

Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) Temporal cortex activation in 

humans viewing eye and mouth movements. J Neurosci 18: 2188-2199 

Puce A, Syngeniotis A, Thompson JC, Abbott DF, Wheaton KJ, Castiello U (2003) The 

human temporal lobe integrates facial form and motion: evidence from fMRI and 

ERP studies. Neuroimage. 19: 861-869 



Neural correlates of facial motion perception   28 

Rotshtein P, Vuilleumier P, Winston J, Driver J, Dolan R (2007) Distinct and convergent 

visual processing of high and low spatial frequency information in faces. Cereb 

Cortex 17: 2713-2724 

Rousselet GA, Husk JS, Bennett PJ, Sekuler AB (2007) Single-trial EEG dynamics of object 

and face visual processing. Neuroimage 36: 843-862 

Sadr J, Sinha P (2004) Object recognition and Random Image Structure Evolution. Cognitive 

Sci 28: 259-287 

Sato W, Kochiyama T, Yoshikawa S, Naito E (2004) Enhanced neural activity in response to 

dynamic facial expressions of emotion: an fMRI study. Cognitive Brain Research 20: 

81-91 

Saxe R, Brett M, Kanwisher N (2006) Divide and conquer: A defense of functional 

localizers. Neuroimage 30: 1088-1096 

Shah NJ, Marschall JC, Zafiris O, Schwab A, Zilles K, Markowitsch K, Fink GR (2001) The 

neural correlates of person familiarity: a functional magnetic resonance imaging study 

with clinical implications. Brain 124: 804-815 

Thompson JC, Hardee JE, Panayiotou A, Crewther D, Puce A (2007) Common and distinct 

brain activation to viewing dynamic sequences of face and hand movements. 

Neuroimage 37: 966-973 

Vogt S, Buccino G, Wohlschlager AM, Canessa N, Shah NJ, Zilles K, Eickhoff SB, Freund 

H-J, Rizzolatti G, Fink GR (2007) Prefrontal involvement in imitation learning of 

hand actions: Effects of practice and expertise. Neuroimage 37: 1371-1383 

Vuilleumier P, Armony JL, Driver J, Dolan RJ (2003) Distinct spatial frequency sensitivities 

for processing faces and emotional expressions. Nat Neurosci 6: 624-631 

 



Neural correlates of facial motion perception   29 

Tables 

Table 1. Anatomical and statistical details of the peaks of significant activations revealed by 

the contrasts performed in the ANOVA group analysis. All activations survive correction for 

multiple comparisons across the whole brain.  

Anatomy Hemisphere Coordinates T Z 

X, Y, Z 

Static faces > static scrambled 

Fusiform gyrus (FFG) Left -42, -48, -24 5.72 4.79 

Right 39, -57, -18 5.62 4.73 

Inferior occipital gyrus (IOG) Left -39, -72, -12 5.65 4.75 

Right 45, -75, -12 5.79 4.84 

Superior temporal sulcus (STS) Right 51, -48, 21 4.98 4.31 

Dynamic faces > dynamic scrambled 

Superior temporal sulcus (STS) Left -54, -48,  6 8.09 6.07 

Right 50, -36,  0 7.21 5.64 

Fusiform gyrus (FFG) Left -45, -51, -21 6.51 5.26 

Right 39, -54, -18 5.67 4.75 

Inferior occipital gyrus (IOG) Left -39, -72, -12 5.27 4.50 

Right 45, -69, -12 5.71 4.79 

Middle prefrontal cortex Left -39,  30,  3 5.42 4.60 

Right 51,  33,  0 7.28 5.67 

Medial orbitofrontal cortex Right 3,  42, -15 5.45 4.62 

Posterior cingulate cortex Right 6, -54,  33 5.39 4.58 

Inferior frontal gyrus Left -48,  18,  24 5.05 4.36 

Right 45,  24, 18 5.18 4.45 
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Superior medial prefrontal gyrus Left -6,  51, 30 4.66 4.09 

Dynamic faces > static faces 

Superior temporal sulcus (STS) Left -54, -58, 6 8.17 6.10 

Right 63, -27, 0 7.13 5.71 

hMT+/V5 Left -51, -69, 9 8.66 6.33 

Right 45, -66, 3 7.35 5.71 

Precentral gyrus Left -39, -3, 51 4.58 4.04 

Right 54, 0, 51 4.63 4.07 

Interaction: (Dynamic faces > dynamic scrambled) > (Static faces > static scrambled) 

Superior temporal sulcus (STS) Left -57, -42, 6 5.91 4.14 

Right 66, -27, 0 4.56 4.02 

Note: Coordinates indicate local maxima in MNI space. T and Z column respectively indicate 

T values and Z scores from whole-brain ANOVA analysis. 
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Table 2. Location of the individually-defined face-sensitive regions of interest and response 

differences to dynamic vs. static faces. 

Structure Coordinates (X, Y, Z) N Dynamic face > static face 

Mean STD  Fix Scram 

Left FFG -42, -51, -22 0.6, 1.8, 1.1 8 2.45* 1.55 

Right FFG 43, -54, -19 0.9, 2.1, 0.8 10 3.50* 2.59* 

Right STS 53, -51, 18 1.5, 2.3, 1.6 9 6.55*** 4.40** 

Left IOG -40, -76, -10 1.2, 2.1, 1.5 10 2.35* 0.77 

Right IOG 45, -76, -11 1.2, 2.6, 1.2 10 1.66 0.79 

Notes: Coordinates are in MNI space. N indicates number of subjects in which each ROI was 

identified. “Dynamic face > static face” columns show 2-tailed paired t values. *: p<0.05, **: 

p<0.005, ***: p<0.001. Tests were performed after subtracting response to fixation (“Fix” 

column) or to the corresponding phase-scrambled faces stimuli (“Scram”), which is 

equivalent to the interaction test: (dynamic face > dynamic scrambled) > (static face > static 

scrambled). Coordinates are in MNI space. 
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Figure Captions 

 

Figure 1. Example stimulus images. Top: all 26 frames of an example face movie stimulus 

(dynamic face). Bottom: all 26 frames of an example phase-scrambled face movie stimulus 

(dynamic scrambled). In the static conditions, only the last frame of each movie was shown, 

for the same duration as the dynamic stimuli. Stimuli were shown in color. 

 

Figure 2. Results of the whole-brain ANOVA group statistics projected on the surface of an 

inflated standard structural scan. Panel A shows clusters responding more to static faces than 

static scrambled. Panel B shows clusters responding more to dynamic faces than dynamic 

scrambled. Panel C shows clusters responding more to dynamic faces than static faces. Panel 

D shows clusters with a significant interaction effect: (dynamic faces > dynamic scrambled) 

> (static faces > static scrambled). Insets in D show percent signal change from fixation 

(mean & SEM over subjects) for static faces (SF), static scrambled (SS), dynamic faces (DF) 

and dynamic scrambled (DS) in left and right STS clusters (left and right insets respectively). 

Maps are thresholded at p<0.0001 uncorrected, but all activations survive whole-brain 

correction at p<0.05. Gradient bar shows T values. 

 

Figure 3. Time-courses of responses to static faces, static scrambled, dynamic faces and 

dynamic scrambled in individually-defined face-sensitive ROIs (identified by contrasting 

static faces with static scrambled). Average time-courses over subjects and SEM are shown. 
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