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Characterizing the conformational properties and dynamics of biopolymers and their relation to
biological activity and function is an ongoing challenge. Single molecule techniques have provided
a rich experimental window on these properties, yet they have often relied on simple
one-dimensional projections of a multidimensional free energy landscape for a practical
interpretation of the results. Here, we study three short peptides with different structural propensity
�� helical, � hairpin, and random coil� in the presence �or absence� of a force applied to their ends
using Langevin dynamics simulation and an all-atom model with implicit solvation. Each peptide
produces fluctuation power spectra with a characteristic dynamic fingerprint consistent with
persistent structural motifs of helices, hairpins, and random coils. The spectra for helix formation
shows two well-defined relaxation modes, corresponding to local relaxation and cooperative coil to
uncoil interconversion. In contrast, both the hairpin and random coil are polymerlike, showing a
broad and continuous range of relaxation modes giving characteristic power laws of �−5/4 and �−3/2,
respectively; the �5/4 power law for hairpins is robust and has not been previously observed.
Langevin dynamics simulations of diffusers on a potential of mean force derived from the atomistic
simulations fail to reproduce the fingerprints of each peptide motif in the power spectral density,
demonstrating explicitly that such information is lacking in such one-dimensional projections. Our
results demonstrate the yet unexploited potential of single molecule fluctuation spectroscopy to
probe more fine scaled properties of proteins and biological macromolecules and how low
dimensional projections may cause the loss of relevant information. © 2010 American Institute of
Physics. �doi:10.1063/1.3456552�

Biopolymers have a unique ability to adopt a range of
conformations under perturbation allowing them to perform
a huge diversity of functions in nature. This arises from the
variety of building blocks available in the alphabet of 20
amino acids that compose proteins, resulting in highly com-
plex free-energy landscapes, in sharp contrast to their syn-
thetic analogs. In the past decade single molecule atomic
force microscopy �AFM� has been highly successful in char-
acterizing the mechanical properties of many biopolymers
and proteins in particular.1 A typical experiment consists in
immobilizing one atom �usually one end� of a protein and
retracting a cantilever attached to another atom �usually the
other end� at constant speed, and measuring the reaction
force F of the protein as a function of the extension x; in the
case of stretching protein concatamers measurement of the
nonequilibrium unfolding forces allows inference of coarse
information about unfolding landscape of proteins. More re-
cently, use of a feedback mechanism, or “force clamp,” has
allowed application of constant force F to single molecules
and has been used as an alternative method to calculate glo-
bal properties of protein unfolding dynamics, such as its re-
laxation time, as well as studies of protein refolding.2 How-

ever, recent theoretical and experimental works3,4 have
shown that considerably more information on the energy
landscape and the resulting dynamics may be extracted from
the spectrum of the fluctuations of the molecule “length,”
when held at constant force in single molecule AFM
experiments.5 In principle, by monitoring the dynamics of
fluctuations of single proteins with sufficient fidelity of force
control, very fine-scaled information on the full unfolding or
refolding pathway could be achieved. Currently, the realiza-
tion of such experiments are complicated and limited by the
fact that fluctuations cannot be determined at present in fre-
quency range exceeding hundreds of kilohertz5 and by the
fact that short molecules cannot be studied. On the other
hand, molecular dynamics simulations are ideally suited to
probing small molecules on short time scales and at atomistic
detail. Here we use molecular dynamics simulations to ana-
lyze the dynamic fluctuations of short peptides, with differ-
ing propensities to form secondary structure such as � heli-
ces and � hairpins or random coils. We investigate the type
of information which can be constructed from the power
spectral density of molecule extension and compare it to the
information available from the commonly used one-
dimensional potential of mean force �PMF�. We show that
heterogeneity in local dynamics of differing peptide se-a�Electronic mail: e.paci@leeds.ac.uk.
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quences reveal themselves as distinct fingerprints in the
power spectrum of fluctuations; in particular, when such
states are structured the power spectrum reveals structural
motifs. This is in strong contrast to the information contained
in the PMF, which we show to be a poor differentiator of the
peptide motif structure, highlighting explicitly that reduced
dimensional projections, in particular, the one-dimensional
PMF of the end-to-end vector, do not correctly reproduce the
full many-bodied dynamics of the single molecule.

I. MODELS AND SIMULATION

Simulations were performed using the CHARMM19
force field with an implicit solvent, which permits equilib-
rium folding of a large class of structured peptides.6 A con-
stant force, in the range of 0–60 pN was applied to the ends
of the peptides �main-chain nitrogen of the first monomer
and carbonyl carbon of last one�, oriented as the end-to-end
vector. We investigate a 10-alanine �peptide A�, a 12-mer
with sequence KWYQNGSTKIYT �peptide B�, and a 10-
glycine �peptide C�. With the force field used peptide A has a
strong propensity to form helices �77% probability, averaged
over all residues, to be in a helical conformation. Peptide B,
whose sequence corresponds to the second hairpin of a de-
signed three-stranded � sheet7 forms a � hairpin �47% prob-
ability, averaged over all the residues, to be in an extended
conformation, at 300 K and zero force�. Peptide C is a ran-
dom coil, with a residual low propensity to find residues in
either helical �6.7%� or extended �22%� conformation. A 2 fs
time step was used in all simulations. The length of each
trajectory was 2 �s. Langevin dynamics with a friction co-
efficient of 1 ps−1 was used. A limited number of simula-
tions was performed with a higher friction coefficient of
10 ps−1. Simulations were performed at 300 K temperature.

II. RESULTS

We simulated suitably short peptides in a range of forces
where full convergence of properties such as the distribution
of the extension can be achieved. Unlike in single molecule
experiments, we can here analyze, in principle, a range of
different coordinate-dependent properties, such as the sec-
ondary structure. We focus however on the peptides’ exten-

sion as this is the quantity which can directly or indirectly
monitor, in principle, using atomic force microscopy, optical
tweezers, and Foerster resonance energy transfer at a single
molecule level.

A. Static properties

Each simulation produces a time series x�t� which is the
extensional fluctuations of the molecule. The PMF
U�x� /kBT=−ln ��x� is calculated in each case from a histo-
gram or probability density ��x� of the time series. This is
calculated for each force applied to the ends of the peptides
and is shown in Fig. 1. For all peptides at large forces U�x�
has a unique minimum corresponding to a highly stretched
extended state. For all peptides, as the force is decreased the
extended state becomes less stable while more compact
states become populated. For peptide A, which we know a
priori to have a strong helical propensity, a state correspond-
ing to an extension of 15 Å is populated at small forces;
while at higher forces the extended state becomes populated.
In a relatively broad range of forces both states are popu-
lated; equally so at a force around 23 pN. Thus peptide A
appears to behave like a two-state system at most forces, and
the PMF along the extension appears to describe well its
thermodynamic properties.

For peptide B �Fig. 1�b�� there is narrow and deep native
state corresponding to an extension of 4 Å populated at small
forces. A shallower minimum in the PMF around x=4 Å is
actually observed also for peptides A and C and corresponds
to conformations where the two ends form a stable contact
such as an hairpin or ring. The extended state becomes popu-
lated only at forces F�40 pN. At intermediate forces �7–20
pN� the PMF suggests the existence of a broad intermediate
state at extensions between 13 and 20 Å. At intermediate
forces we observe shallow minima at intermediate values of
the extension which depends on the force.

For peptide C, at all forces except large ones, we see no
clear stable state, or at least not a stable state which can be
identified by the extension. The extended state, unlike for the
two other peptides, becomes thermodynamically stable in the
presence of a force as small as 20 pN.

Overall, it is clear for both the force-extension relation
and PMF that although there are some differences between

FIG. 1. PMF U�x� in units of kBT at different external forces for �a� peptide A, �b� peptide B, and �c� peptide C, as a function of the end-to-end extension of
the peptides.
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the different peptides, it is difficult to assign them with con-
fidence with one or another peptide. These essentially static
measures hide important differences between the peptides, as
we will see below.

B. Characterizing dynamic properties

We extract from our systems as a coarse-grained variable
the extension as a function of the time x�t�. The time depen-
dent autocorrelation function of this object is defined as

C�t� = �x�t� + t�x�t��� − �x�2 �1�

and can be calculated, where � � represents an ensemble av-
erage. The Fourier transform �FT� of this quantity gives the
power spectrum density �PSD� of the thermal fluctuations of
the end-to-end distance P���=�C�t�e−i�tdt. The PSD can be
calculated more directly and efficiently by using a fast FT
routine on the time series x�t� and so can also be written as

P��� = lim
T→	

	 �
XT���
2�
T

� , �2�

where XT���=�Tx�t�e−i�tdt is the FT of the time series for a
sample of duration T. In practice, T is finite and the reso-
lution of the PSD is given by the inverse of this time. The
PSD of fluctuations due to thermal noise are intimately con-
nected to the linear response function J��� of the single mol-
ecule though the fluctuation-dissipation theorem, P���=
−2kBT /� Im�J��� �Ref. 8� and so provides a direct measure
of the dynamics of the molecule.

C. Comparison of power spectra

The PSDs for each peptide are plotted in Fig. 2 versus
frequency on a log-log scale. It is immediately clear that they
are markedly different, particularly in the asymptotic power
laws exhibited, which are shown for reference. Before we
analyze these PSDs further, we ask: does the PSD of fluctua-
tions from the atomistic simulations contain the same infor-
mation as that contained in the PMF derived from the same
fluctuations �as shown in Fig. 1�? We make a simple and

FIG. 2. Power spectral density P��� of fluctuations from the atomistic simulations on a log-log scale, for forces between 0 and 60 pN, for �a� peptide A, �b�
peptide B, and �c� peptide C. The PSD is calculated as indicated in Eq. �2� and then placed in bins on a logarithmic scale so that there is equidistance between
points on the log � axis and where each point represents the mean of PSD values in that bin. Error bars are calculated as the standard deviation of PSD values
in a given bin and so as there are more points contributing to a given bin at high frequency we find the error decreases.

FIG. 3. Power spectral density P��� obtained by Brownian dynamics on the PMF in Fig. 1, on a log-log scale for forces between 0 and 60 pN, for �a� peptide
A, �b� peptide B, and �c� peptide C. The data are binned on a logarithmic scale as in Fig. 2. The scale of friction in these simulations sets the time scale and
was chosen to coincide with the friction constant obtained from the fully atomistic simulation for peptide C at F=60 pN, where it is clear the PMF is single
welled and approximately harmonic; the relaxation time 
 can be read off from the PSD and the elastic constant � determined from the PMF �Fig. 1�c�� to give
the approximate friction constant �=�
 of the atomistic simulations.
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qualitative comparison; in Fig. 3 are PSDs calculated from
Langevin dynamics simulations of an one-dimensional dif-
fuser on the PMFs shown in Fig. 1, where in each, the panels
correspond to the peptides as designated in Figs. 1 and 2.
These trajectories are calculated by numerically solving
�dx /dt�=−�1 /���d /dx�U�x�+ f�t�, where U�x� is the PMF
calculated from the atomistic molecular dynamics simula-
tions and shown in Fig. 1, x is the end-to-end distance of the
polymer, and f�t� represents random thermal noise with zero
mean and correlation �f�t�f�t���= �2kBT /���t− t��. This
gives a time series x�t� from which the PSD is calculated.

Comparing Figs. 2 and 3 it is clear that none of the PSDs
from Langevin dynamics on the PMF reproduce the com-
plexity of features in the PSDs that arise from the atomistic
level simulations. In particular, as mirrored in the PMFs
themselves, the PSDs in Fig. 3 show no strong distinguishing
features which would allow identification of high propensity
for any particular structural motif. Each of the PSDs show an
elastic plateau at low frequency followed by a power law
decay of �−2, which is indicative of the dynamics of a simple
overdamped spring with a single degree of freedom. It is
clear that the simple one-dimensional projection afforded by
the PMF cannot encompass information about the dynamics
of the molecule along the same one-dimensional projection.
Peptide A provides a particular case in point: the PMF is
bistable suggesting a separation of time scales between re-
laxation in each well and relaxation across the barrier, which
would give rise to two characteristic relaxation frequencies
and two “quasi”-elastic plateaus in the PSD �this can be seen
in the PSD from atomistic level simulations�. However, this
bistability cannot be discerned from the PSD produced from
Langevin dynamics on the PMF and can only be recovered
by artificially increasing the barrier height. This indicates
that the end-to-end distance is not the ideal reaction coordi-
nate as the density of states along this path is underestimated,
giving an overestimate of the relaxation frequency for barrier
crossing on the PMF.9,10 So even in the situation where the
PMF qualitatively predicts the same response as would be
expected from a molecule coiling and uncoiling in a two-
state manner, such predictions are not quantitative.

D. Power spectra from atomic level simulations

In general, molecules such as peptides are objects with a
number of degrees of freedom, such as polymers or rods,
whose response or fluctuations can be decomposed into nor-
mal modes, each of which relaxes in a single-mode manner
at some characteristic frequency 
q and with some elastic
constant �q,

Jq��� =
1

�q�1 + i�
q�
�3�

where the real part of Jq is the elastic or in-phase part of the
response and the imaginary part is the dissipative or out-of-
phase response. The exact dispersion relations �q and 
q of a
given molecule will depend on the static and dynamic struc-
tures of the object, which manifest themselves as different
characteristic power laws in the total response of the mol-
ecule, which is a sum over modes. For example, a flexible

polymer is often modeled using the Rouse model,11 whose
dispersion relations with mode number q are �q��q2 and

q=
 /q2—summing over all modes gives a total response
function that decays at high frequency as �−1/2 or in the PSD
as �−3/2. Here we probe the PSD for each type of peptide and
at a range of forces as shown in Fig. 2. As noted above
different power laws clearly emerge, which we analyze be-
low.

First, the PSDs of all peptides show two common fea-
tures: �1� a plateau at low frequency indicating the domi-
nance of elastic processes and �2� a common asymptotic
power law of with an exponent less than �2 at very high
frequency ���1012 Hz, where �=2��—fits in this fre-
quency regime to log�P����=�−� log���, give an exponent
� between 5/2 and 3, across all peptides�. This high fre-
quency regime is interesting, since we would expect a law of
�2, corresponding to the overdamped dynamics of internal
frictional processes that dominate short wavelength modes.3

Given this regime only spans at most one order of magnitude
in frequency and that there will be aliasing at the Nyquist
frequency, discussing the quantitative values of the expo-
nents is not very meaningful; however, as a possible expla-
nation for a deviation from �2 behavior, we note that an
exponent in the PSD of �5/2 corresponds to an extra power-
law contribution of �1/2, which recalls high frequency cor-
rections to far-field Stokes friction.12 However, here we sug-
gest the effective solvent may arise from the multiple higher-
frequency internal modes of the peptides, which will create
an effective viscous contribution of frequency-dependent
magnitude. But whatever its origin, this phenomenon cannot
be produced from PSDs derived from Langevin dynamics on
the PMFs �Fig. 3�, which uniformly exhibit an asymptotic
power law of �2 at high frequency.

The PSDs for peptide A �Fig. 2�a�� in general exhibit the
superposition of a slow and fast mode with two distinct re-
laxation frequencies and a strong dependence on the applied
force. An exponent of �2 in the PSD would indicate single-
mode behavior with a single well defined relaxation time; for
the slow mode this only approximately obeyed due to the
close proximity of the fast mode, while for the fast mode we
find a modified exponent less than �2, as discussed above.
The existence of two well defined relaxation frequencies is
qualitatively consistent with the picture obtained from the
PMF of an equilibrium between helical and extended states;
we expect the fast time to be related to relaxation in the local
minima corresponding to the helical and extended states,
while the slow time is related to relaxation of motions that go
between helical and extended states. As force increases from
0 pN the slow interwell mode contribution to the PSD be-
comes increasingly smaller, as the underlying PMF becomes
less bistable and more single welled, up to approximately �50
pN� when the PSD is essentially single mode. However, de-
spite a qualitative agreement of features in the PSD with
features in the PMF, as we have seen the information in the
PMF is not sufficient to quantitatively reproduce the PSD in
Fig. 2�a�.

For peptide B �Fig. 2�b�� at forces less than 30 pN, we
measure a power law dependence of �5/4 of its PSD over
more than four decades in frequency �107 s−1��
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�1011 s−1, where for F= �0,10,20 pN the measured expo-
nents are �= �1.26�0.01,1.26�0.01,1.25�0.01, respec-
tively, where errors are calculated from the linear regres-
sion�. The origin of the �5/4 exponent ��1/4 in the
imaginary part of the response function� is not known, but it
likely arises from the dynamics of the hairpin as it explores a
wide range of hairpinlike conformations with fluid, or sol-
ventlike, degrees of freedom �i.e., with very small barriers of
interconversion�. In principle, such an exponent should be
calculable from a microscopic model of beta hairpin dynam-
ics �e.g., Ref. 13� or from more coarse-grained modeling.14

At this point we observe that a polymer with fractal dimen-
sion df and local dissipation exhibits a power-law power
spectrum P�����−� with �=1+df / �df +2� �B.K., Z.T.Y.,
T.C.B.M., and E.P., manuscript in preparation�. A model with
df between 1 and 2 describes a chain with a distribution of
side loops controlled by strongly local friction. This can arise
for example in the case of breaking and reforming hydrogen
bonds. Such a model is consistent with power-spectrum ex-
ponent � smaller than 3/2 �df =2�, the power law we find
below for a random coil �peptide C�, and that expected for
the Rouse model;4,11 in particular, a fractal dimension df =1
gives a power law exponent �=4 /3, which is close to the
observed exponent. We note that for simulations that probe
significantly lower frequencies �longer times� we may expect
to see a folding plateau emerge at lower frequency, similar to
that seen for helices for ��108 Hz. This would be consis-
tent with experimental folding times of hairpins being 1–2
orders of magnitude slower than helices.15 At larger forces
�F�30 pN� we find an elastic plateau at low frequencies
followed by a power law which is instead approximately
�3/2, the exponent for a random coil. In particular, in the
frequency range of approximately 108 s−1���1010 s−1, we
measured exponents of �= �1.48�0.02,1.49�0.03,
1.29�0.03, for F= �30,40,50 pN, respectively, where the
measurement at 50 pN is expected to be less reliable as the
range of frequency over which the power law extends is
reduced, as seen in Fig. 2. Overall, we see here that changes
in the PSD provides a sensitive signal that there is a transi-
tion at approximately 30 pN, where the hairpin denatures
subsequently exhibiting random coil dynamics.

At low forces ��30 pN�, the PSD of the unstructured
peptide C exhibits an elastic plateau at low frequency fol-
lowed by a power law of approximately �3/2; for a fre-
quency range of 1010 s−1���3�1011 s−1, we find
�= �1.50�0.03,1.50�0.02,1.30�0.03 for F= �0,10,20
pN, respectively. The measurement for F=20 pN, we again
expect that it is less reliable as the power law regime be-
comes less well defined as the low frequency plateau weak-
ens to give single-mode behavior at high force. An exponent
of �3/2 would arise from the many degrees of freedom of a
simple freely jointed polymer in a solvent; as mentioned
above the PSD for a such an object is predicted by the Rouse
model to follow a �3/2 power law. However, in general it is
expected that for short polymers, when the molecular weight
of the polymer, N���i0 /�s0, internal friction dominates3,16

giving single-mode overdamped relaxation, where �i0 and �s0

are the monomeric friction constants for internal and solvent
dissipation, respectively. For this power law to arise for short

peptides it is necessary for the friction constant per monomer
due to solvent motion to be at least within a couple of orders
of magnitude of the constant for internal friction4 �for typical
biopolymers at high stretch, �i0 /�s0�106 �Refs. 3 and 17��.
As the chain is at moderate stretch for F�30 pN �F�p

�kBT, where �p�3 Å is the typical persistence length of a
polypeptide chain�, we suggest that in order for the same
mechanism to be at play in this unstructured peptide, here,
the dynamics arises from friction with the effective solvent
formed from non-nearest neighbor monomer-monomer inter-
actions of the single peptide. This monomer solvent would
give an effective friction constant of the same order of mag-
nitude as for internal friction, since they are due to the same
underlying interactions and so we would expect to see a
�3/2 power law at low frequencies indicative of the relax-
ation of polymeric degrees of freedom. For forces F
�30 pN, we see that the PSD across all frequencies tends to
the behavior of a single-mode overdamped spring indicating
that internal friction dominates the dynamics of all modes.
This is consistent with a decreasing monomer-monomer sol-
vent contribution as the chain is stretched and an internal
friction constant increasing monotonically with force, which
is a general prediction for polymers at high stretch3,17 and
arises as consequence of a decreased dynamical flexibility of
the chain under increasing tension.

It is interesting to contrast the behavior of peptide A
compared to peptides B and C, since the latter present dy-
namics consistent with the null hypothesis that a short pep-
tide is a polymer with many degrees of freedom which have
very small barriers to interconversion to different conforma-
tions. Peptide A, on the other hand, presumably because of
the special relationship of interactions between its amino
acid backbone, has lost its polymer properties and populates,
with a high degree of cooperativity, a relatively narrow en-
semble of states that constitute a helix. The highly coopera-
tive transition of the alpha helix is of course well known.18,19

However, despite this large cooperativity and consequent di-
mensional reduction, as we have seen the PMF of the end-
to-end distance cannot correctly capture the dynamics of the
molecule.

III. DISCUSSION

Polypeptides, even short ones, have a free-energy land-
scape which while simpler than for a larger protein, contains
the same type of complexity. Such complexity is due to the
large number of metastable states and rich dynamics of tran-
sitions between them, which are in turn due to the complex
interplay between a large number of possible favorable inter-
actions between atoms, and entropy loss upon formation of
such structures. Experimental characterization of free-energy
surface is challenging because of the limited number of
probes that can be monitored on a broad range of time scales.
Even atomistic simulations, where any single molecule ob-
servable can be monitored with arbitrary time resolution
pose serious challenges when one attempts to represent the
free-energy surface and insightfully describe the dynamics of
the system.

Many single molecule techniques, such as atomic force
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microscopy, probe only the extension. It has been hinted pre-
viously that extension is not in general a good reaction co-
ordinate for unfolding,20 and this is particularly the case
when no, or only a small, force is applied. Indeed, the evo-
lution of single molecule techniques which provide a time
series has sparked the development of empirical methods21,22

to extract information on the underlying free-energy land-
scape even if the quantity monitored does not have the prop-
erties of a good reaction coordinate. In simulation one can
detect the existence of states from an analysis of the trajec-
tory in the conformation space, but even in that case this is
not straightforward.23,24 The peptides studied here provide an
excellent example of this problem, despite their simplicity.
While for peptide A, the PMF of the extension, U�x�, pro-
vides strong hints on the existence and nature of well-defined
basins in the free-energy landscape �when determined at dif-
ferent forces�, for peptides B and C it has little information
on the free-energy landscape �at least at low or intermediate
forces� and the many-body effects that give rise to the char-
acteristic power laws observed in the PSDs. To show this
explicitly, we conducted Brownian dynamics simulations of
a diffuser on the PMFs derived from the fully atomistic
simulations. The resultant PSDs of the time series cannot
reproduce the dynamics of the fully atomistic simulations,
even in the case of peptide A, and instead produce the dy-
namics of a simple overdamped spring with first order kinet-
ics ��−2�. To be completely rigorous, in projecting onto the
one-dimensional PMF, a coordinate dependence of diffusion
should be extracted.24,25 The coordinate dependent diffusion
coefficient, in particular, can change the position of the tran-
sition state,26 or even change the number of basin.24 Employ-
ing the approach described in Ref. 24 the coordinate depen-
dent diffusion coefficient can be found as D�x�= �� /�t�
��ZC�x� /ZH�x��2, where �t is the sampling interval and
ZC�x� and ZH�x� are the partition function of the cut based
and conventional �histogram� free energy profiles. ZC at
point x is defined as the number of transitions through that
point, i.e., ZC�x�=1 /2�t���x�t�−x��x−x�t+�t��, where
��x is the Heaviside step function. ZH�x� is determined by
computing a histogram as ZH�x�=Nx /�X, where Nx is the
number of time-series points in bin x and �X is the size of
the bin. The analysis shows that the diffusion coefficient var-
ies only marginally; for example, for peptide A at zero force
it varies between 0.1 and 0.15. As a consequence, the PSD
computed from the diffusive dynamics with the coordinate
dependent diffusion coefficient is almost indistinguishable
from that with coordinate independent diffusion coefficient.
This brings to fore the essential point that the phenomenon
we observe specifically requires the interplay between the
many degrees of freedom of the polymer, as embodied in Eq.
�3� and how the dynamics varies on different length scales,
embodied in the specific elastic and friction dispersion rela-
tions �q and �q. Similarly, there exist complementary meth-
ods that attempt to analyze the complexity of the multidi-
mensional energy landscape, for example, by looking at
fluctuations in the total potential energy in time;27,28 how-
ever, these studies show that the emergent fractal behavior is

insensitive to global dynamics and only represent intermode
coupling from anharmonicity of the local potentials.

In conclusion, when the power spectra of the fully ato-
mistic simulations is analyzed, we discover rich phenomena
with information which complements and exceeds that con-
tained in the PMF. In particular, we have seen that the many-
bodied dynamics of peptides leads to the emergence of dis-
tinct fingerprints for the power spectra of helices, hairpins,
and random coils and the detection of transitions between
them. Combining theory, simulation, and experiments that
analyze the dynamical fluctuations of single biomolecules
holds promise of experimental observation of such motifs
and their transitions, for example, during the unfolding or
refolding of proteins and opens a new window on the prop-
erties of disordered or partially structured proteins.
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