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Abstract

We consider kernel density estimation for univariate distributions.
The question of interest is as follows: Given that the data analyst has
some background knowledge on the modality of the data (for instance,
“data of this type are usually bimodal”), what is the adequate band-
width to choose? We answer this question by extending Silverman’s
idea of “normal–reference” to that of “reference to a Gaussian mix-
ture”. The concept is illustrated in the light of real data examples.
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1 Background

Given i.i.d. replicates X1, . . . , Xn of a univariate random variable X with
density f and standard deviation σX, we consider the kernel density estimator

f̂h(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
, (1)

where K is a kernel function and h is the bandwidth. The estimator (1) was
originally proposed in Rosenblatt (1956) and its properties investigated in
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Parzen (1962) and Silverman (1978). The task of selecting h is extremely
important in determining the smoothness of the estimate and has been ex-
tensively investigated, with many publications covering the subject over the
last three decades. A large class of bandwidth selection tools makes, in one
form or another, use of the mean integrated squared error,

MISE(f, f̂h) = E

∫
{f̂h(x)− f(x)}2 dx, (2)

though approaches based on other loss functions such as the Kullback–Leibler
divergence have also been considered (Bowman, 1984). A well-known tech-
nique, which selects h by minimizing an empirically estimated quantity whose
expectation is identical to (2), was suggested independently by Rudemo
(1982) and Bowman (1984), and is known as least-squares cross-validation
(LSCV). An alternative concept, tracing back to Parzen (1962), is to base
the bandwidth selection problem on an asymptotic version of (2). For small
bandwidths (h −→ 0) and large sample sizes (nh −→∞), the MISE approx-
imates

D(f)
h4

4

[∫
u2K(u) du

]2
+

1

nh

∫
K2(u) du, (3)

where

D(f) =

∫
[f ′′]2(x) dx (4)

is a functional of the density f . Minimizing (3) w.r.t. h yields

hopt = κ0D
−1/5(f)n−1/5 , (5)

where κ0 = [
∫
u2K(u) du]−2/5[

∫
K2(u) du]1/5 is a (known) constant only de-

pending on the kernel. Silverman (1986) proposed to approximate the un-
known quantity D(f) by the value D(φσX ) which would be obtained if f was
normally distributed with standard deviation σX (“normal reference”), i.e.

D(φσX ) =

∫
[φ′′σX ]2(x) dx = σ−5X

∫
[φ′′]2(x) dx =

3

8
√
π
σ−5X ≈ 0.212σ−5X . (6)

[The density φ denotes the Gaussian density function, φ(x) = (2π)−1/2e−x
2/2,

and φσX (x) = σ−1X φ(x/σX).] In the special case of a Gaussian kernel K, one
has κ0 = 0.776, yielding the bandwidth selector

h∗opt = 1.06σX n
−1/5. (7)
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An important issue is the estimation of σX, a natural candidate for which
is the sample standard deviation s = [n − 1]−1/2[

∑
(Xi − X̄)2]1/2, where X̄

is the sample mean. An alternative choice is the robust “hybrid” measure
of spread, A = min(s, IQR/1.34), which will usually take its first argument
for multimodal, and its second argument for skew data, respectively, in this
manner avoiding gross oversmoothing in either case (Silverman, 1986). Re-
finements of this technique using improved measures of spread were provided
by Janssen et al. (1995) and Zhang & Wang (2009).

However, the issue of oversmoothing has not only to do with the spread,
but also with the constant 1.06, which stems from the normal reference as-
sumption. To address this problem, Silverman suggested substituting the
figure 1.06 generally by the smaller value 0.9, yielding hS ≡ 0.9An−1/5, with-
out justifying this specific choice of constant further. Intuitively, the more
modes the data are expected to have, the smaller the bandwidth has to be
relative to the standard deviation in order to enable an adequate degree of
resolution. This paper addresses the question of how much smaller the band-
width should be chosen, given some prior anticipation on the modality, for
instance based on expert knowledge. Eventually, we seek a function, say
c(m), so that, given a prior notion on the number m of modes, a suitable
bandwidth is found by

h∗m = c(m)sn−1/5. (8)

Of course, s could again be replaced by A herein. Since this paper focuses
on the problem of density estimation under multimodality, in which case one
will generally have A = s, we refrain from this modification for the sake of
simplicity.

The remainder of this article is organized as follows. In Section 2 we
attempt to quantify the necessary reduction of the bandwidth under multi-
modality by replacing the concept of “normal reference” with that of “ref-
erence to a Gaussian mixture”. The technique is worked into a simple rule
of thumb in Section 3. A small simulation study is provided in Section 4,
before we finish with a Discussion in Section 5.

2 Reference to a Gaussian mixture

We work in this section with a general, not necessarily Gaussian, kernel
function K, and consider (5) as the starting point of our analysis. Obviously,
the crucial quantity in this expression is D(f). If the data are multimodal,
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the normal reference rule will underestimate D(f), hence overestimate h.
Hence, we attempt to approximate D(f) more accurately, and this can be
achieved by making reference to a mixture

ϕm(x) ≡ ϕ(x|θm) ≡
m∑
k=1

πkφσk(x− µk)

of m normal densities φσk(x − µk) centered at locations µk, with standard
deviations σk, and associated mixture probabilities πk, k = 1, . . . ,m, bun-
dled into a parameter vector θm = {πk, µk, σk}1≤k≤m ∈ R3m. [These are
effectively only 3m − 1 parameters since

∑
k πk = 1.] All these quantities

can be estimated straightforwardly through the EM algorithm (Laird, 1978)
using standard software (we used Einbeck et al., 2007), yielding estimates
θ̂m = {π̂k, µ̂k, σ̂k}1≤k≤m. The estimated mixture density is then given by

ϕ̂m(x) = ϕ(x|θ̂m) =
m∑
k=1

π̂kφσ̂k(x− µ̂k)

and the corresponding integral D(ϕ̂m) can be calculated exactly using The-
orem 4.1 of Marron & Wand (1992),

D(ϕ̂m) =
m∑
k=1

m∑
`=1

π̂kπ̂`φ
(iv)√
σ̂2
k+σ̂

2
`

(µ̂k − µ̂`), (9)

or computed numerically using software such as Mathematica. [The notation
(iv) signifies a fourth derivative.] Hence, one may approximate (5) by

hm = κ0D
−1/5(ϕ̂m)n−1/5 . (10)

We illustrate this criterion by means of two simple real data examples.
Firstly, we consider data featuring the log-energy consumption, in kg oil
equivalent per capita in the year 2007, for a sample of n = 135 countries
(retrieved from the World bank data base1). A rug plot of the data is pro-
vided in Figure 1, with several particular countries highlighted for the sake
of interest. One observes that the world is essentially divided into two ma-
jor clusters in this respect; corresponding to the so-called developing and
developed countries, respectively. In fact, this bimodal structure has been

1http://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE
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prevalent for many years already. Though the gap has started to become
closer in recent years, it would still be appropriate for an expert to assume,
as a working assumption, that data of this type possess two distinct modes.
The resulting density estimate, using a Gaussian kernel with h2 according to
(10), is provided in Figure 1 (left), along with the densities obtained using h1
(being identical to (7) with σX estimated by s), and hS. One observes that, as
expected, h2 resolves the bimodal structure the most, providing the deepest
dip between the two modes. The estimated density would remain bimodal,
but with a yet more pronounced dip, by using h3 or h4 according to Table 1,
but as there is not much of a justification for the use of such bandwidths for
these data, we abstain from providing the corresponding estimated density
curves.

Secondly, n = 876 measurements of traffic flow (in vehicles/5 min.) were
taken from 10–12/07/07 on a Californian freeway (retrieved from PeMS2).
Traffic engineers will have some notion that such data tend to have at least
two distinct modes, one corresponding to freeflow, and another one to busy,
possibly congested, traffic. Figure 1 (right) shows the estimated density
curves using h1, . . . , h4. One observes that, using h1, the estimated density
is in fact bimodal, but still appears oversmoothed. Anticipating m = 2 modes
resolves the structure better, and unveils a third mode for small flow values,
which can be traced back to a period of unusual activity on 12/07 between 2
and 3am. Anticipating m = 3 modes gives an indication of a potential fourth
and fifth mode for flow values of around 70 and 125 veh/5 min, respectively,
but going beyond m > 3 leads to a clearly overfitted result. A complete
breakdown of the values of D(ϕ̂m), for m = 1, . . . , 4, as well as the resulting
bandwidths hm, is provided in Table 1, for both datasets.

3 Rule of thumb

In practice, it is impractical to fit a Gaussian mixture just for the sake of
kernel density bandwidth selection. Firstly, the fitted mixture constitutes a
density estimate in its own right already. Secondly, the task of estimating the
mixture and computing D(ϕ̂m) is quite laborious. Thirdly, as pointed out by
Jones (2000), for the estimation of D(f), a certain degree of oversmoothing
may even be beneficial. As seen for the traffic flow data, the integral D(ϕ̂m)
can depend sensitively on the value of m, especially if m is misspecified.

2http://pems.dot.ca.gov/
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Therefore, it would be desirable to produce a simple rule of thumb based
on the ideas from Section 2, which does not require the actual fitting of the
mixture, and is robust (to some degree) to misspecification of m.

We approach this objective by making some simplifying assumptions. We
restrict the shape of the mixture density to an equal mixture of m normal
densities with standard deviation σ, which are placed at equidistant locations
µk, k = 1, . . . ,m. Given these assumptions, and noting that the integral over
the squared second derivatives is a location invariant functional, we can write
the position of the locations w.l.o.g. as µk = kdσ, with a distance parameter
d. It remains a simplified parameter vector θ∗m = {σ, d,m}, and the mixture
density takes the form

ϕ∗m(x) = ϕ(x|θ∗m) =
1

m

m∑
k=1

1√
2πσ2

exp

{
−1

2

(
x− kdσ

σ

)2
}
. (11)

Using lengthy but otherwise straightforward algebra (see appendix), one de-
rives

D(ϕ∗m) =
3

8
√
πmσ5

[1 + F (m, d)] , (12)

where

F (m, d) =
2

m

m−1∑
s=1

(m− s)e−
d2s2

4

[
1− s2d2 +

s4d4

12

]
.

[In the special case m = 2, an equivalent formulation of this result was
provided by Zhang and Wang (2009).] Substituting (12) into the expression
for hopt, (5), one obtains

hopt = κ0

(
8
√
π

3

)1/5

m1/5n−1/5σ [1 + F (m, d)]−1/5 . (13)

It is important to recall here that σ is the component standard deviation,
which is different from the overall standard deviation, previously denoted
by σX. However, simple algebra shows that for a random variable X with
mixture density (11), one has

σ2
X = Var(X) = σ2

(
1 + (m2 − 1)

d2

12

)
. (14)

So, σ2 can be estimated by s2/(1 + (m2−1)d
2

12
), where s is the overall sample

standard deviation. Substituting this into (13), and using now κ0 = 0.776
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for a Gaussian kernel, yields

hopt = 1.06m−
4
5n−

1
5 s

2
√

3

d
√

1 + (12
d2
− 1)/m2 [1 + F (m, d)]

1
5

. (15)

This is still a bulky expression, which involves the unknown quantity d, which
the practising data analyst will not want to estimate. Hence, a practicable
default choice is needed. If one takes d = 2

√
3, which is a reasonable as-

sumption as it means a slight overlap of distributions (see Figure 2 left),
with clearly distinguishable modes, then (14) boils down to the simpler form
σX = mσ. Furthermore, it is worth looking at the surface F (m, d), which
is provided in Figure 2 (right). One observes that, for d ≥ 1/2 one has
strictly |F (m, d)| < 1, and that in fact F (m, d) ≈ 0 for a wide range of val-
ues of m and d. For the special choice d = 2

√
3, one has F (2, 2

√
3) = 0.050,

F (3, 2
√

3) = 0.067, and F (4, 2
√

3) = 0.076, all of which are fairly close to
zero. [For d < 1/2, values of |F (m, d)| > 1 can be observed, but these
are irrelevant for our purposes since, realistically, we are only interested in
d > 2, with d = 2 being the largest value of d for which the two normals
just don’t separate.] In addition, it should be noted that F (m, d) enters
into the equation only in terms of a fifth root, so that we can effectively
assume [1 + F (m, d)]

1
5 ≈ 1. Performing all these simplifications in (15), the

expression for the optimal bandwidth simplifies significantly, and becomes

h∗m = 1.06m−
4
5 sn−

1
5 . (16)

This gives a simple rule of thumb, c(m) = 1.06 ×m−4/5, which, just as the
normal reference rule (7), only makes use of the spread of the data, and
differs from this one merely by the factor m−4/5.

Table 2 gives the resulting factors at a glance. Looking at the row for
c(m) one observes that, except for m = 1, all values are significantly smaller
than Silverman’s constant c(m) ≡ 0.9. Silverman’s objective was to provide
one constant which serves reasonably well for any modality, accepting that
it will “slightly oversmooth” for m ≥ 2. If one’s prior belief distribution on
the expected modality has a strong weight on m = 1, then a factor of 0.9
still seems to be in line with the results from Table 2.

Before investigating its performance more thoroughly in Section 4, we
apply this rule–of–thumb tentatively on the two real data sets introduced in
Section 2. Figure 3 (left) compares the normal reference bandwidth h1 = h∗1
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with the bandwidths h2 and h∗2. We see that h2 and h∗2 do not differ strongly
and yield similar densities, with the latter one yielding a slightly more pro-
nounced dip. Figure 3 (right) is the analogous image to Figure 1 (right)
but using now the rule–of–thumb. We see that both bandwidth selectors
yield very similar results, but with the rule–of–thumb method behaving less
temperamentally for higher values of m. The numeric values of all used
bandwidths are provided in Table 1.

4 Simulation study

We have carried out a simulation study in order to investigate the efficiency
of the proposed rule of thumb. Before explaining the setup of the study, it is
important to clarify what the technique is supposed to achieve. Crucially, the
objective is not to reproduce the anticipated number of modes. For instance,
when setting m = 1, the objective is clearly not to obtain a unimodal density
estimate, but to obtain the best density estimate based on the reference to
a unimodal distribution. The quality of a density estimate can be measured
by an empirical version of (2),

MSE(f, f̂h) =
1

N

N∑
i=1

{f̂h(zi)− f(zi)}2, (17)

where z1, . . . , zN is an appropriate set of grid points. The question that we
investigate in this study is, hence:

Given that the data are generated from a distribution of known modality,
does one achieve the best MSE when exactly this number of modes is used

for m in (16)?

We will see below that the answer to this question turns out to be ‘yes’
throughout. In what follows we will work with a grid of size N = 200, ranging
from z1 = mink{µk − 3σk} to zN = maxk{µk + 3σk}. We begin with data
simulated from an “ideal” scenario, i.e. data from an equal and equidistant
mixture of m Gaussians with equal standard deviation σ = 1 and distance
d = 2

√
3. That is, the rule–of–thumb is in this case exact and produces

precisely the asymptotically optimal bandwidth. Figure 4 (left) shows the
mixture densities (a)–(d) for m = 1, 2, 3 and 4 components. 200 data sets
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of size n = 500 are generated from each of (a) to (d), and the densities are
estimated using rule (16), each for different values for m.

Figure 4 (right) gives the resulting MSEs, where the value of m used in
the rule–of–thumb is provided in the horizontal axis label. For comparison,
Silverman’s rule hS is also included and symbolized by an S. We observe
that, for all of (a) to (d), the MSEs tend to be minimal when the modality
was correctly anticipated. Table 3 provides additionally the percentages of
times that each value of m led to the winning MSE (the bandwidth hS is
excluded from this analysis). Clearly, using the correct choice of m leads to
the best MSE, and deviating from this in either direction deteriorates the fit.

We proceed with investigating more complex scenarios in which rule (16)
is indeed only a rule–of–thumb. Graphs of the densities (e)–(h) used for this
simulation are provided in Figure 5 (left). The precise specifications from
which these densities are generated are provided in Table 4. One observes
from Figure 5 (right) that, even under this harder scenario, the rule of thumb
does a good job in selecting the bandwidth, and at all occasions we achieve
the best MSEs when the correct modality is anticipated. This is confirmed
by considering the lower part of Table 3.

Some comments concerning density (e) are in order. Firstly, this density
highlights that the number of mixture components is generally just an upper
bound for the number of modes. Secondly, this example demonstrates that
for use in the rule of thumb (16), it is really the number of modes rather than
the number of mixture components which matters. One further observes
from the two top right panels in Figure 5 that, for densities (e) and (f),
Silverman’s bandwidth hS, using the hybrid measure of spread A, works quite
well. Indeed, if hS had been included in the comparison for these densities in
Table 3, then this bandwidth would have won in 40% and 36%, respectively, of
the cases. This is actually not surprising since these densities are quite skew,
and the IQR component of the hybrid measure A was introduced precisely
to serve this case. The proportions of wins for hS drop to 30% and 10%,
respectively, for densities (a) and (b), and to 0% when the underlying density
was at least trimodal (not shown).

5 Discussion

Extending Silverman’s idea of normal reference towards the “reference to
a Gaussian mixture”, we have provided a simple rule of thumb for density
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estimation under multimodality. The application of this rule requires the
specification of an “anticipated” modality. As pointed out by M. Aitkin at
occasion of the Conference of Applied Statistics in Ireland 2011, this aspect
entails the danger of circularity: If a density estimate (such as a histogram
or kernel density estimate) is used to become informed about the modality,
this modality will depend on the initial smoothing parameter used. In fact,
if one iterates this procedure, one is likely to end up with ever decreasing
bandwidths, and an ever increasing number of modes, which is obviously
unacceptable. To avoid such circularity, it is important that the “anticipated
modality” stems from an external source such as prior knowledge, expert
opinion, etc. We have provided two real data examples in which it was
realistic to assume that such knowledge is available, and we believe that it
is realistic to have such prior information in a wider range of applications.

We have found that there is no need to estimate the actual mixture pa-
rameters, since a simple approximation based on an “idealized” mixture per-
forms equally well, and tends to behave in a more stable manner for higher
numbers of modes. We have shown in the simulation study that the concept
of modality-dependent bandwidths is sensible: Using the “true” modality in
the rule–of–thumb has led to minimal MSEs under all investigated scenarios.

We have seen that, for use in the rule–of–thumb, it is the number of
modes rather than the number of mixture components which matters. Expert
opinion on the modality will often be motivated by the presence of several
groups, subpopulations or “components” which drive the data-generating
process. Though this provides a reasonable starting point for the choice of m
in (16), one should be aware that the actual number of modes could be smaller
than the number of mixture components. It should also be pointed out that,
even though the concept of a mixture may be a reasonable surrogate, the
data–generating mechanism may have worked very differently. For instance,
the traffic flow data originally form a time series of clearly non–independent
character. In fact, it is the dependence (cases closely together in time are
likely to belong to the same cluster) which induces the multimodality in this
example. As a working assumption, it still seems acceptable to think of
these data as i.i.d. realizations from a two–component mixture structure, in
conformity with the setup outlined at the beginning of the Introduction.

Summarizing, we believe that we have formulated a very simple tool for
bandwidth selection for multimodal distributions, which operates by multi-
plying the normal reference rule by m−4/5, where m is the anticipated number
of modes.
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Appendix

Derivation of (12)

Using equation (9) for the special case of a mixture density of type (11),
one has

D(ϕ∗m) =
1

m2

[
m∑
k=1

φ
(iv)

σ
√
2
(0) + 2

m−1∑
s=1

(m− s)φ(iv)

σ
√
2
(sdσ)

]
(18)

Simple calculus shows that

φ(iv)
σ (x) =

1√
2πσ5

[
3− 6

x2

σ2
+
x4

σ4

]
e−

x2

2σ2

so that φ
(iv)

σ
√
2
(0) = 3/(8

√
πσ5) and

φ
(iv)

σ
√
2
(sdσ) =

3

8
√
πσ5

[
1− s2d2 +

1

12
s4d4

]
e−

s2d2

4 .

Plugging these into (18) gives

D(ϕ∗m) =
3

8
√
πmσ5

[
1 +

2

m

m−1∑
s=1

(m− s)
(

1− s2d2 +
s4d4

12

)
e−

d2s2

4

]
,

which is (12).
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Table 1: Overview of results for the energy use and the traffic flow data.

Data set m 1 2 3 4

Energy use D(ϕ̂m) 0.151 0.961 2.93 2.98
hm 0.425 0.291 0.235 0.234

modes observed 2 2 2 2
h∗m 0.425 0.244 0.177 0.141

modes observed 2 2 3 4

Traffic flow D(ϕ̂m) 6.24e-10 1.75e-08 8.44e-08 1.74e-06
hm 13.89 7.13 5.20 2.84

modes observed 2 3 5 8
h∗m 13.89 7.97 5.77 4.57

modes observed 2 3 3 5

Table 2: Multimodal correction factor m−4/5 for m = 1, ..., 8 modes.

m 1 2 3 4 5 6 7 8

m−4/5 1.000 0.574 0.415 0.330 0.276 0.238 0.211 0.189
c(m) 1.060 0.609 0.440 0.350 0.293 0.253 0.223 0.201
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Table 3: Out of 200 simulations, percentage of times that the minimal MSE
is achieved when anticipating m modes.

m
density 1 2 3 4 5 6
(a) 91 9 0 0 0 0
(b) 2 87 11 0 0 0
(c) 0 11 77 12 0 0
(d) 0 0 24 64 12 0
(e) 86 14 0 0 0 0
(f) 12 86 2 0 0 0
(g) 0 3 52 42 3 0
(h) 0 0 15 58 27 0

Table 4: Specification of the mixture parameters used to generate densities
(e)–(h).

density m µk σk πk
(e) 2 0, 1 1, 0.5 0.8, 0.2
(f) 2 0, 0.7 0.2, 0.4 0.4, 0.6
(g) 3 0, 2, 3 0.8, 0.3, 0.3 0.1, 0.4, 0.5
(h) 4 0, 1, 2, 3 0.3, 0.3, 0.3, 0.3 0.2, 0.3, 0.1, 0.4
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Figure 1: Left: energy consumption per capita in 2007, and density estimates
using h1, h2, and hS; right: estimated densities for traffic flow data using hj,
j = 1, . . . , 4; each with rug plots providing the raw data.
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Figure 3: Rule–of–thumb applied to real data sets. Left: estimated density of
energy data using bandwidth h∗2, in comparison with “exact” mixture-based
bandwidth h2, and the normal reference bandwidth h1 = h∗1; right: estimated
densities of traffic flow data using bandwidths h∗j , j = 1, . . . , 4.
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Figure 4: Left: generating densities (black) with probability-weighted com-
ponent densities (grey); right: boxplots of MSEs for different bandwidths,
for scenarios (a) to (d).
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Figure 5: Left: generating densities (black) with probability-weighted com-
ponent densities (grey); right: boxplots of MSEs for different bandwidths,
for scenarios (e) to (h).


