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By coupling a probe transition to a Rydberg state using electromagnetically induced transparency (EIT)

we map the strong dipole-dipole interactions onto an optical field. We characterize the resulting

cooperative optical nonlinearity as a function of probe strength and density. We demonstrate good

quantitative agreement between the experiment and an N-atom cooperative model for N ¼ 3 atoms per

blockade sphere and the n ¼ 60 Rydberg state. The measured linewidth of the EIT resonance places an

upper limit on the dephasing rate of the blockade spheres of <110 kHz.
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Strong dipole-dipole interactions, manifest as the dipole
blockade mechanism [1], make Rydberg atoms attractive
candidates for studies of quantum many-body physics and
applications in quantum information [1–3]. The blockade
mechanism suppresses multiple Rydberg excitations
within a volume ð4=3Þ�r3b, where the blockade radius rb
is typically of the order of a few microns. Experimental
evidence of blockade is provided by the observation of the
suppression of Rydberg excitation [4–7] and a collective

enhancement of the transition dipole by a factor of
ffiffiffiffi
N

p
whereN is the number of atoms in a blockade sphere [7–9].
This collective effect has been used to realize both atomic
entanglement [10] and quantum gates [11]. Strong dipole
interactions in Rydberg ensembles also open the possibility
of manipulating nonclassical states of light [1], for ex-
ample, single photon sources [3,12,13] or photonic phase
gates [14]. One can use electromagnetically induced trans-
parency (EIT) [15] to map the properties of the Rydberg
states onto a strong optical transition [16]. This technique,
coupled with the sensitivity of Rydberg states to electric
fields, has been used demonstrate a giant dc Kerr effect
[17] and measure electric fields close to surfaces [18].
Introducing strong dipole-dipole interactions into the
atom-light interaction means that each atom can no longer
be treated independently. Instead, correlations between
atoms must be considered leading to a cooperative effect.
As the dissipative component of the dipole-dipole interac-
tions leads to superradiance [19], dipole-dipole induced
nonlinearities have so far only been observed in an up
conversion process [20]. However, for Rydberg systems
in the blockade regime the superradiance is reduced.

In this Letter we demonstrate a cooperative atom-light
interaction due to dipole blockade of the Rydberg state in an
ultracold atomic ensemble. The effect of strong interactions
between Rydberg pairs is mapped onto an optical transition
using EIT [15,16] resulting in an optical nonlinearity. As
EIT probes a dark state consisting of a superposition of the
ground and Rydberg states, the line shape is sensitive to the
coherence of the blockaded ensemble. We observe no addi-
tional dephasing of the dark state as the strength of the

optical field, and hence the blockade effect, is increased.
This result is inconsistent with a theoretical description of
individual atoms coupled to a mean field, where one finds
that the modification of the dark state due to interactions is
always accompanied by dephasing and level shifts [21]. We
show that a cooperative model describing the dynamics of
the full N-atom system coupled to a classical light field
provides good quantitative agreement for N ¼ 3.
Our experiments are performed on a laser cooled

87Rb atom cloud using the experimental setup described
in [22] and shown schematically in Fig. 1(a). Atoms are
loaded into a magneto-optical trap for 1 s, reaching a
temperature of 20 �K. Atoms are then prepared in the 5s
2S1=2jF ¼ 2; mF ¼ 2i state (jgi) by optical pumping. By

varying the optical pumping duration, the fraction of atoms
in F ¼ 2 and hence the density in state jgi can be con-
trolled without changing the cloud size. EIT spectroscopy
is performed using counterpropagating probe and coupling
lasers focused to 1=e2 radii of 12 and 66 �m, respectively.
The coupling laser is frequency stabilized to the 5p 2P3=2

F0 ¼ 3 ! ns2S1=2 transition using an EIT locking scheme

[23]. The probe laser drives the 5s 2S1=2 F ¼ 2 ! 5p2P3=2

F0 ¼ 3 transition and is scanned across the resonance from
�p=2� ¼ �20 ! þ20 MHz in 500 �s. The probe and

coupling lasers are circularly polarized to drive �þ � ��
transitions, maximizing the transition amplitude to the
Rydberg state. Probe powers in the range 1 pW to 5 nW
were used to explore the optical nonlinearity. The trans-
mission is recorded using a single photon counting module.
For each power, the experiment is repeated 100 times to
build up a transmission histogram. The width of the atom
cloud along the probe axis ‘ was measured by fluorescence
imaging of the cloud after preparation in F ¼ 2, giving
‘ ¼ 1:4� 0:1 mm. To measure the density of atoms in
the probe beam, the transmission data are recorded with the
coupling laser off. The spectra are fitted using the analytic
absorption profile for a two-level atom [24] to extract both the
density and the effective Rabi frequency due to the saturation
of the transition and Gaussian intensity profile. We obtain a
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peak density of � ¼ 1:2� 0:1� 1010 cm�3 giving around
7000 atoms in the interaction region.

Figure 1(b) shows EIT spectra as a function of probe Rabi
frequency �p for coupling to the 60S1=2 Rydberg state. As

the probe Rabi frequency is increased, there is a dramatic
suppression of transmission on the two-photon resonance
from 75% to 20%. This intensity dependent transmission on
resonance gives an optical nonlinearity. The effect saturates
at �p=2� ¼ 5 MHz. From the line shape the detuning (�)

and the FWHM (�T) of the two-photon resonance are
extracted as a function of �p, see Fig. 1(c). This shows

there is neither a broadening nor a detuning of the EIT
feature to accompany the suppression. The absence of a
shift or broadening is significant, as it rules out inhomoge-
neous broadening mechanisms such as Stark shift due to
ions or van der Waals dephasing of the Rydberg state [25].

The observation of suppression without shift or broad-
ening is explained by considering the dipole-dipole
interactions between Rydberg atoms [26]. For S states
the long-range dipole-dipole potentials have the form
VðRÞ ¼ �C6=R

6, where R is the interatomic separation
and C6 < 0 [27]. We consider a many-body system of
N atoms, where each pair is coupled via the dipole-dipole
interaction, shown schematically in Fig. 2(a). The resulting

N-atom Hamiltonian ĤN is given by

ĤN ¼ XN

i

Ĥ
ðiÞ � C6

X

j<i

P̂ðiÞ
rr P̂

ðjÞ
rr

R6
jj

; (1)

where Ĥ
ðiÞ

is the single atom Hamiltonian describing the
coupling to the probe and coupling field acting on atom i

and P̂ðiÞ
rr ¼ jriiihrj is the projector onto the Rydberg state of

the ith atom. For a given set of parameters the temporal

evolution is calculated from the master equation _̂� ¼
i=@½�̂;ĤN� � �̂ where �̂ is the 3N � 3N density matrix
for the N atom system and � is the decoherence matrix,
including the dephasing due to finite laser linewidth. The
susceptibility, and the transmission, is calculated by sum-
ming over all the coherence terms in the density matrix
between states that are coupled by the probe laser.
The effect of dipole-dipole interactions on the two-

photon resonance can be seen from considering the sim-
plest case of N ¼ 2, shown in Fig. 2(b). In the absence of
interactions [VðRÞ ¼ 0] the system evolves into the follow-
ing eigenstate on the two-photon resonance:

jDi ¼ �2
cjggi �

ffiffiffi
2

p
�p�cjgriþ þ�2

pjrri
�2

p þ�2
c

; (2)

where jgriþ ¼ ðjgri þ jrgiÞ= ffiffiffi
2

p
, �c is the coupling Rabi

frequency and the relative phase between the lasers has
been neglected. This is a dark state as it is not coupled to
the probe laser, leading to the observed transparency.
Dipole-dipole interactions between the Rydberg states

modify this dark state by suppressing excitation of jrri
when VðRÞ> �T due to blockade [1]. The resulting state
can no longer be written as a product state and involves the
components jggi, jgeiþ, jgriþ, and jeriþ. Because of
the rapid decay of state jei this state differs from the eigen-
state found in [28]. The physical interpretation of this result
is that the system is in a superposition where only one atom
can be excited to theRydberg state and thereby contribute to
the EIT dark state, while the other acts as a two-level atom
which couples resonantly to the probe field. This leads to a
suppression of transmission on resonance. The blockade
forms a collective state where the single Rydberg excitation

FIG. 2 (color online). Schematic of exact N-atom interaction
model where all pairwise dipole-dipole interactions between
atoms i and j are included. (b) Energy levels for N ¼ 2 atom
model. The dipole-dipole interaction term VðRÞ acts to detune
the doubly excited state off resonance, leading to blockade.

FIG. 1 (color online). (a) Schematic of experiment. EIT spec-
troscopy is performed on an ultracold 87Rb atom cloud.
(b) Suppression of transparency on resonance for coupling to
60S1=2 for increasing probe Rabi frequency �p at a density � ¼
1:2� 0:1� 1010 cm�3. (c) Detuning, �, and width, �T , of
EIT resonance as a function of �p in units of the excited

state width �e ¼ 2�� 6 MHz, showing no dephasing and no
resonance shift.
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is shared between the two atoms. As more atoms are in-
cluded in the blockade sphere, the single excitation is shared
across a larger number of atoms, further suppressing the
transmission on resonance. The resulting nonlinearity is
sensitive to the photon statistics of the probe field; however,
below we focus on classical fields.

We demonstrate the scaling of the nonlinearity with
number of atoms in each blockade sphere by changing
both the density and the principal quantum number n. In
an ordinary nonlinear medium, the optical response scales
linearly with density as each optical dipole is independent.
For a cooperative effect due to dipolar interactions, the
optical response is now proportional to the number of atoms
in a blockade sphere, leading to a nonlinear scaling with
density. Figure 3 shows the optical depth on resonance as a
function of density for 60S1=2 and 54S1=2 for both strong and
weak probe powers. To remove the trivial linear response
with density the optical depth is scaled by the value with
coupling laser off. In the weak probe regime, the resonant
eigenstate is equivalent to jDi and no nonlinear scaling is
observed. For the strong probe data, there is a second-order
scaling with density, consistent with increased suppression
due to an increase in the number of atoms in each blockade
sphere. Taking into account the scaling ofC6 and�c with n,
the number of atoms in a blockade sphere should scale as
N / n6:25. The ratio of N for 60S to 54S is 2.0, while the
ratio of the linear fit gradients gives a ratio of 2:6� 0:7. This
is consistent with the blockade scaling, showing the tuna-
bility of the cooperative optical nonlinearity with principal
quantum number.

To reproduce the data shown in Fig. 1 it is necessary to
solve the many-body Hamiltonian for the average number
of atoms in each blockade sphere. For the 60S1=2 state, the

van der Waals coefficient is C6 ¼ �140 GHz�m6 [29],

which for �T=2� ¼ 3 MHz gives a blockade radius rb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C6=�T

6
p ¼ 6 �m. For a density of 1:2� 1010 cm�3 this
gives an average of �N ¼ 11 atoms in each blockade sphere.
As a full solution of Eq. (1) for large N is demanding,
previous work on N-atom blockaded systems have focused
on a mean-field description [4,30–32]. However, a mean-
field approach is insufficient to reproduce the experimental
observations shown in Fig. 1 as the average interaction
experienced by each atom by its neighbors contributes to
blue shift of the Rydberg state. This leads to both broad-
ening and a shift of the EIT line shape when summing over
each atom [21]. No dephasing is observed in our experi-
ment because the blockade suppresses multiple Rydberg
excitations and consequently van der Waals dephasing is
also suppressed.
To obtain quantitative agreement with the full N-atom

model we reduce the density to 0:35� 0:03� 1010 cm�3

to give an average of �N ¼ 3 atoms per blockade sphere.
Transmission data for �p=2� ¼ 0:1 to 3.2 MHz is shown

in Figs. 4(a)–4(c), again showing suppression of the reso-
nant transmission but by a smaller amount as the number of

FIG. 3 (color online). Optical depth [� lnðTEITÞ] as a function
of density for 60S1=2 (c, d) and 54S1=2 (x, �) for weak and

strong �p, respectively, scaled by probe-only optical depth

½� lnðTABSÞ� to remove trivial linear scaling. Strong probe data
reveal a second order density scaling consistent with a coopera-
tive optical nonlinearity. Comparison of the gradients for 60S1=2
and 54S1=2 gives a ratio of 2:6� 0:7.

FIG. 4 (color online). Comparison of N-atom model to trans-
mission data at a density of � ¼ 0:35� 0:03� 1010 cm�3 with
�N ¼ 3. Traces (a)–(c) show spectra recorded at �p=2� ¼ 1:0,

2.0, 3.2 MHz, respectively, with the three-atom model plotted on
top (thick line). (d) Optical depth on resonance as a function of
�p compared to model for N ¼ 1, 2, and 3 atoms. Good

qualitative agreement is obtained for N ¼ 3 to both resonant
transmission and line shape. All curves calculated using
�c=2� ¼ 3:8 MHz and VðRÞ=2� ¼ 15 MHz with linewidths
of the probe laser and two-photon transition of 0.2 and
0.11 MHz, respectively.
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atoms per blockade is reduced. Also shown on the data is
the transmission calculated using the many-body model for
N ¼ 3. Model parameters are determined by matching the
single atom model to the weak probe transmission for
�p=2� ¼ 0:1 MHz, yielding the coupling Rabi frequency

and linewidths of the probe laser and two-photon reso-
nance of 3.8, 0.2, and 0:1ð�2�Þ MHz, respectively, con-
sistent with experimental parameters. Transmission traces
are then calculated changing only �p. There is only one

free parameter in the model, which is the interaction
strength V. For the model traces in Fig. 4 calculations
were performed using V=2� ¼ 15 MHz; however,
the model is insensitive to V once the blockade condition
(V > �T) is met. The model shows very good quantitative
agreement with the data, reproducing both the suppression
on resonance and the EIT line shape. Figure 4(d) shows
the optical nonlinearity by plotting the optical depth on the
two-photon resonance as a function of �p compared to

the model for N ¼ 1, 2, and 3. The small decrease with�p

observed for N ¼ 1 is due to the system being driven faster
relative to the dephasing caused by finite laser linewidth.
Comparing this to the curves for N ¼ 2 and 3 shows that
the transmission is strongly modified compared to the case
for a single atom, with a good agreement to the �N ¼ 3 data
as expected.

The results of Figs. 1(c) and 4 show that EIT is sensitive
to the coherence of the blockaded ensemble, as only by
considering the coherence terms of the complete many-
body system is it possible to reproduce the suppression of
transmission without introducing broadening. The line-
width of the EIT is a function of the broadening due to
the coupling Rabi frequency and the relative laser line-
width of the two-photon transition. Fitting the line shape
for the weak probe data in Fig. 1(a) gives a laser linewidth
of 110� 50 kHz. As the probe Rabi frequency is in-
creased, the system evolves into an ensemble of blockaded
regions on resonance. Dephasing between neighboring
blockade spheres would lead to broadening of the EIT
resonance, appearing as an effective increase in the relative
laser linewidth of the two-photon transition as �c remains
constant. Since no additional broadening is observed in the
experiment, this places an upper limit on the dephasing rate
of each blockade sphere of <110 kHz for 60S1=2.

In summary, we explore the effects of dipole-dipole
interactions between Rydberg atoms on light propagation.
By mapping the strong interactions onto an optical field, a
novel cooperative optical nonlinearity is observed. This
differs from other cooperative effects such as superra-
diance, where the cooperativity is mediated by the optical
field. Instead, the cooperativity arises from long-range
dipole-dipole interactions between Rydberg states that is
observed as a backaction on the probe field. As the optical
response of each atom is significantly modified by its
proximity to neighboring atoms, the dynamics can only
be described by treating all N atoms in each blockade

sphere. We show excellent quantitative agreement between
experiment and theory for three atoms per blockade, and
verify the expected density scaling with the strength of the
van der Waals interaction. By probing the coherence of the
blockaded system we place an upper limit on the dephasing
rate of each blockade sphere of <110 kHz, enabling po-
tential applications in quantum optics. Future work will
focus on demonstrating the use of the nonlinearity to create
nonclassical states of light, and the development of a single
photon source based on a single blockaded ensemble.
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