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The Bak–Sneppen model is a well-known stochastic model of evolution that exhibits self-

organized criticality; only a few analytical results have been established for it so far. We re-

port a surprising connection between Bak–Sneppen type models and more tractable Markov

processes that evolve without any reference to an underlying topology. Specifically, we

show that in the case of a large number of species, the long time behaviour of the fitness

profile in the Bak–Sneppen model can be replicated by a model with a purely rank-based

update rule whose asymptotics can be studied rigorously.
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I. INTRODUCTION

In [1], Bak and Sneppen introduced a very fruitful and simple model of evolution that exhibits

interesting dynamics but has proved surprisingly hard to analyse. The classical Bak–Sneppen (BS)

model is a stochastic coarse-grained model of evolution of an ecosystem consisting of a fixed

number N of evolutionary niches organised in a ring. Each niche is occupied by a species with

a particular fitness value in [0, 1]. Direct inter-species interactions (predation, competition, etc.)

occur only between species in neighbouring niches. The dynamics of the system is driven by the

removal (extinction) of the least fit species in the entire system, whose niche is taken over by a

new species; the extinction of the least fit species induces changes in the fitnesses of the species

in the two neighbouring niches. In this contribution, we show we can algorithmically associate

with the BS model a stochastic process whose update rule is defined solely in terms of the ranks

of the fitness values, without any reference to topology of interactions, which exhibits asymptotic

behaviour and self-organized criticality statistics similar to those of the BS model.

We call processes of the type we associate to the BS model rank-driven processes (RDPs) and

analyse them in detail in [2]. RDPs are of independent mathematical interest and can be used to

define new evolution models.

In more detail, the BS model [1] is a discrete-time process which advances every time there is

a species extinction event. Each species occupying the N niches is initially assigned a fitness

xk ∈ [0, 1], k ∈ {1, . . . , N}, chosen independently from the uniform distribution on the unit

interval, U [0, 1]. At each step of the algorithm, we choose the smallest of all the xk, xkmin say,

and replace xkmin and its two nearest neighbours xkmin±1 (indices calculated modulo N ) by new

independent U [0, 1] random numbers. In simulations with large N , the marginal distribution of the

fitness at any particular niche is seen to evolve to a U [s∗, 1] distribution, with s∗ ≈ 0.667.

The Bak–Sneppen model has had a considerable impact on the physics community and beyond,

as witnessed by more than a thousand citations to it to date. While it is impossible to encompass

the whole range of work inspired by this simple model, we will only indicate some directions:

applications to evolution modelling [3], economics [4–6], and numerical analysis of aspects of BS

dynamics such as avalanche statistics and damage spreading [7], computational complexity of the
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model [8] and so on.

A number of variants of Bak and Sneppen’s original model have been introduced which evolve

according to different criteria. One simple variant is the discrete Bak-Sneppen model, in which

fitnesses are only allowed to take the values 0 and 1 [9]; another is the anisotropic Bak–Sneppen

(aBS) model [10–12], in which, in addition to the least fit species, only its right-hand nearest

neighbour is replaced. The aBS model also gives rise (according to large-N simulations) to a

threshold value s∗ ≈ 0.724 [12]. Another variant on the BS model which eliminates topology is

the mean-field version analysed in [13–15], in which one replaces the smallest fitness and K − 1

randomly chosen other ones; below we show that such models fall within the RDP framework.

Rigorous results on the BS model include proofs the conjugacy of the discrete BS model to a

contact process [16], of non-triviality of the steady-state distribution [17], and a description of

duration of avalanches [18]. See also the thesis [19]. In this contribution, by exploiting the tools

for analysis of RDP models developed in [2], we provide an approach for establishing new results

in this active area.

II. THE CONSTRUCTION

Consider a process in which at each update the species with the smallest fitness and the R1-th and

R2-th ranked fitness are replaced, where R = (R1, R2) is a random variable on {2, 3, . . . , N}2

sampled independently at each step from a distribution P [R1 = k,R2 = l] = fN(k, l) where

fN(k, l) ≥ 0, fN(k, k) = 0, fN(k, l) = fN(l, k) and
∑N

k=2

∑N
l=2 fN(k, l) = 1. This is an example

of a rank-driven process to be defined in the next section: it is a Markov process on the N -simplex

∆N = {(x(1), . . . , x(N)) : 0 ≤ x(1) ≤ · · · ≤ x(N) ≤ 1};

x(1), . . . , x(N) are the (increasing) order statistics of x1, . . . , xN . The complexity of this RDP is

intermediate between that of the BS model and the mean-field model of [13–15] with K = 2; the

latter is the special case of a RDP with fN(k, l) = 1
(N−1)(N−2) for all distinct k, l ∈ {2, . . . , N}.

The RDP has the advantage over BS that it can be analysed rigorously. We have strong numerical
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evidence that for a judicious choice of fN(k, l) this simpler model can replicate the asymptotic

behaviour of BS. Similar constructions can be made for other variations of BS, such as aBS, in

which case we compare the behaviour of the aBS model with an RDP that replaces the smallest

fitness and the R-th ranked fitness chosen from an appropriate distribution P [R = k] = fN(k).

Specifically, in the BS case, one can choose fN(k, l) to be fBS
N (k, l), the empirical distribution of

the ranks of the pairs of sites chosen in BS: if we let PBS(k, l,M) be the number of times the pair

of k-th and l-th ranked elements, k, l ≥ 2, is the nearest neighbour pair of the smallest element in

M iterations of the BS algorithm,

fBS
N (k, l) = lim

M→∞

1

M
PBS(k, l,M). (1)

Similarly, for aBS we put

f aBS
N (k) = lim

M→∞

1

M
P aBS(k,M), (2)

where P aBS(k,M) is the number of times inM iterations of the aBS algorithm that the k-th ranked

element is the right hand-side neighbour of the smallest element.

Gillett (see Theorem 2.20 of [19]) showed that the BS model, viewed as a Markov process on

[0, 1]N , has a unique stationary distribution, and that starting from N indpendent U [0, 1] variables,

the N -dimensional distribution converges to that stationary distribution. Gillett’s result does not

apply directly to aBS, but similar arguments should be valid. An appropriate ergodic theorem

should then imply the existence, with probability one, of the limits (1) and (2); each of these limits

will be the appropriate projection of the corresponding stationary distribution on [0, 1]N . To put it

another way, by transitivity of the underlying graph we may view BS or aBS as Markov processes

on ∆N × SN , where ∆N records the order statistics and SN , the symmetric group of degree N ,

records the permutation that maps ranks to sites. Then a version of Gillett’s arguments should

imply the existence of a stationary distribution ψN × θN on ∆N × SN for BS and aBS; the limit in

(1) or (2) will have component(s) θ−1N (θN(1) ± 1) as appropriate. For our purposes, the N → ∞

behaviour of this distribution is important.

4



III. RANK-DRIVEN PROCESSES (RDPS)

Following [2], we define an RDP to be a discrete-time Markov process on the N -simplex ∆N .

The RDP evolves according to the following Markovian rule. At each step, K of the xk-values

are selected, according to rank, by sampling according to some specified probability distribution

κN(i1, . . . , iK) on {1, 2, . . . , N}K which is invariant under permutations of its arguments and such

that κN(i1, . . . , iK) = 0 necessarily if im = il for some 1 ≤ m, l ≤ K, m 6= l. The sample

taken from {1, 2, . . . , N}K according to κN specifies the ranks of the elements that are chosen.

The chosen K elements are replaced by new independent U [0, 1] values. Let

gN(i) =
N∑

i2=1

· · ·
N∑

iK=1

κN(i, i2, . . . , iK) and GN(n) =
n∑

i=1

gN(i).

Let us consider a subclass of RDPs relevant to BS-type models, in which at each step we

choose the smallest and (K − 1) other elements as described above. Set κN(1, i2, . . . , iK) =

K−1fN(i2, . . . , iK), where fN is a symmetric probability distribution on {2, . . . , N}K−1, and

fN(i2, . . . , iK) = 0 if im = il for some 2 ≤ m, l ≤ K, m 6= l. Note that gN(1) = 1/K, and define

for all i ∈ {2, . . . , N}

φN(i) =
N∑

i3=2

· · ·
N∑

iK=2

fN(i, i3, . . . , iK).

Assume that F (n) = limN→∞
∑N

i=2 φN(n) exists for all n and finally set

α = lim
n→∞

F (n) ∈ [0, 1]. (3)

The quantity α measures the “atomicity” of fN as N →∞. It is not hard to see that if at each step

we choose the smallest and the second-smallest of all elements, α = 1 and if we choose at each

step the smallest element and another uniformly random one, α = 0.

For RDPs of such form, the following two results proved in [2] are crucial for our purposes:

(a) In the limit N →∞ the limiting marginal probability distribution function of any arbitrary xk
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converges to π(x), π(x) > 0 if x > s∗ and π(x) = 0 for x ∈ [0, s∗], where the threshold s∗ satisfies

s∗ =
1 + (K − 1)α

K
. (4)

(b) If gN(n) is “eventually uniform”, i.e. if for large n,

gN(n) ≈ 1− s∗

N
←→ fN(n) ≈ 1− α

N
, (5)

then π(x) = x−s∗
1−s∗ for x ∈ [s∗, 1], i.e., π is the uniform distribution U [s∗, 1].

For example, for the mean-field aBS model, the threshold is at s∗ = 1/2 and since the eventual

uniformity condition holds by definition, the limiting distribution is indeed U [1/2, 1] as indicated

by [14].

In the Appendix we give a brief derivation of the origin of the threshold formula (4); see [2] for

details.

IV. COMPARISON OF DYNAMICS

In this section we numerically compute the empirical distributions for RDPs associated with BS

and aBS, fBS
N and f aBS

N , respectively, and compare various aspects of the behaviour of RDPs de-

fined by these distributions with the Bak–Sneppen type models that gave rise to them.

A. Computation of distributions

Both f aBS
N and f aBS

N can be accurately numerically computed. Figure 1 shows simulation estimates

of f aBS
N (k) for small values of k and different values of N .

Figure 2 shows a representative example of fBS
N (k) with a simulation estimate for N = 250.

From the joint distribution we can compute the (indistinguishable) marginal distribution of ranks
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FIG. 1. Plot of faBS
N (k), k ∈ {2, . . . , 150} for N = 250, 1000, 20000.

FIG. 2. Plot of fBS
250(k), k ∈ {2, . . . , 50}.

of the left and right neighbours, gBS
N (k). Representative examples are given in Figure 3.

B. Thresholds

From the results of Figures 1–3 we see that for a given N , the empirical distributions decay rapidly

for small k before settling down to a uniform value. In fact, it appears that there are constants C1

and C2 such that f aBS
N (k) ≈ C1/N and gBS

N (k) ≈ C2/N for large enough k. Thus the numerical

evidence supports the eventual uniformity condition (5) and we can compute α = 1−Ci. Numeri-

cal results give lower bounds of α ≈ 0.496 for BS and α ≈ 0.445 for aBS and hence s∗BS ≈ 0.664

and s∗aBS ≈ 0.723 in close agreement with the simulations of [12].
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FIG. 3. Plot of gBS
N (k), k ∈ {2, . . . , 150} for N = 250, 1000, 20000.

C. Avalanches

Following [1] we define the length of an s-avalanche to be t if the number of consecutive steps for

which the smallest fitness value stays below s is t. As s approaches s∗ we expect n(`), the dis-

tribution of s-avalanche lengths, to show the power law behaviour characteristic of self-organized

criticality. Using f aBS
N (k) and fBS

N (k), we can compare the avalanches of RDPs with those of aBS

and BS.

Consider the RDP induced by f aBS
N (k) (a similar approach can be adopted for BS, too). An s-

avalanche of length l represents the end point of an excursion during the RDP whose starting point

was the last time all states had fitnesses greater than s. Each excursion is a Markov chain whose

state space is the number of states with fitness values below s and n(l) is the distribution of arrival

times at the absorbing state (zero fitnesses below s). The transition probabilities of the Markov

chain can easily be calculated from f aBS
N (k). Let pk =

∑k
r=2 f

aBS
N (r) and qk = 1− pk. If πk

t is the

probability that there are k states less than s after t steps of the excursion then for k > 1,

πk
t+1 = s2qk−1π

k−1
t + (s2pk + 2s(1− s)qk)πk

t +

(2s(1− s)pk+1 + (1− s)2qk+1)π
k+1
t + (1− s)2pk+2π

k+2
t . (6)
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For k = 1 we omit the first term on the right-hand side of (6) and

π0
t+1 = π0

t + (1− s)2π1
t + (1− s)2p2π2

t .

We compute the distribution n(l) of s-avalanche lengths for various values of s for our RDPs and

compare them with empirical results for aBS and BS. Representative distributions are given in

Figure 4. There is a small but clear difference in the exponents of the two processes, but the RDP

shows the characteristic behaviour expected as s approaches s∗.

FIG. 4. Size distribution n(l) of s avalanches in RDP (dashed) and aBS (left); and BS (right) for N = 2000.

V. REMARKS

The numerical evidence reported above leads to several interesting problems for further investiga-

tion, not least the strong suggestion that the RDP with fN = fBS
N given by (1) is closely related

to BS itself. The exact relationship of the two processes remains to be characterized rigorously.

If one wished to define a Markov process on ∆N whose stationary distribution coincided with the

projection onto ∆N of the stationary distribution of BS, a natural candidate would be a RDP with

state-dependent selection distribution: instead of a single fN(·) one would have a family fN( · ;x)

of selection distributions conditioned on the state x ∈ ∆N . Thus, assuming it exists, one would

take fN( · ;x) to be fBS
N ( · ;x), the stationary distribution for BS of the nearest neighbours of the

smallest element conditional on the projection of the current state onto ∆N being x. The fact that
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the numerical evidence described above suggests that one can proceed not with a state-dependent

RDP based on fBS
N ( · ;x) but with the simpler RDP based on fBS

N ( · ) (which is an average of the

fBS
N ( · ;x)) seems to point to some important underlying property of BS itself. Two possible expla-

nations are:

(a) fBS
N ( · ) = fBS

N ( · ;x) for all x, i.e., at stationarity there is some independence between the

order statistics and the permutation that maps sites to ranks; or

(b) fBS
N ( · ;x) satisfies (uniformly in x) the same asymptotic conditions as fBS

N ( · ) that are central

to the limit behaviour, namely (3) and (5).

The stronger fact (a) would suggest that the stationary distribution of the RDP coincides with

the projection of the stationary distribution of BS onto ∆N , so that the two processes share the

same detailed equilibrium properties. The weaker fact (b) would suffice to explain why the two

processes share the same threshold and characteristic U [s∗, 1] limit distribution. We remark that

the distributions fBS
N ( · ;x) seem to be very difficult to evaluate numerically.

In conclusion, we have indicated how the distribution fBS
N (k, l) and the quantity α of (3) capture

the build-up of correlations in Bak–Sneppen type algorithms, the threshold behaviour of which can

be analysed exactly by considering the appropriate RDP.

The class of RDPs that we have introduced is of interest in its own right. The remaining analytical

challenge is to clarify the relationship between BS and the RDP. This involves at least two main

parts: (i) proving the existence of the distributions fBS
N given by (1) and of the limit α defined by

(3); and (ii) determining the property of BS that allows us to use fBS
N ( · ) instead of the conditional

version fBS
N ( · ;x). In respect to challenge (i) above, it is interesting to note that if an explicit

description of fBS
N could be obtained, one might be able to obtain an explicit formula for the

threshold s∗ via (3) and (4).
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Appendix A: Derivation of the threshold formula

Consider the s-counting process CN
t (s) defined to be the number of xk-values in the interval [0, s]

after t iterations of the RDP defined by fN . Then CN
t (s) is a Markov chain on the finite state-space

{0, 1, . . . , N}. The threshold s∗ relates to the limiting (t→∞ thenN →∞) marginal distribution

of an arbitrary xk. To evaluate s∗, we compute the mean drift of CN
t (s), E[CN

t+1(s) − CN
t (s) |

CN
t (s) = n], where E is the expectation operator.

It can be shown that

E[CN
t+1(s)− CN

t (s) | CN
t (s) = n] = K(s−GN(n)).

Hence the drift is zero (asymptotically, as n→∞ and N →∞) at

s = s∗ = lim
n→∞

lim
N→∞

GN(n).

In terms of the functions fN(i), FN(n) and the quantity α (3), we have that

gN(i) =
K − 1

K
fN(i) and GN(n) =

1 + (K − 1)FN(n)

K
,

so that

s∗ = lim
n→∞

lim
N→∞

GN(n) =
1 + (K − 1)α

K
.

The drift being zero indicates the threshold behaviour, because a positive (negative) drift would

mean CN
t (s) increases (decreases). In this argument there are several limits involved (n,N, t all

going to∞) that need to be handled with care. In [2] we exploit techniques from Markov process

theory, such as Foster–Lyapunov ideas [20], to do this.
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