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Abstract

We study a class of Markovian systems of N elements taking values in [0, 1] that
evolve in discrete time t via randomized replacement rules based on the ranks of the
elements. These rank-driven processes are inspired by variants of the Bak–Sneppen
model of evolution, in which the system represents an evolutionary ‘fitness land-
scape’ and which is famous as a simple model displaying self-organized criticality.
Our main results are concerned with long-time large-N asymptotics for the general
model in which, at each time step, K randomly chosen elements are discarded and
replaced by independent U [0, 1] variables, where the ranks of the elements to be
replaced are chosen, independently at each time step, according to a distribution
κN on {1, 2, . . . , N}K . Our main results are that, under appropriate conditions on
κN , the system exhibits threshold behaviour at s∗ ∈ [0, 1], where s∗ is a function
of κN , and the marginal distribution of a randomly selected element converges to
U [s∗, 1] as t → ∞ and N → ∞. Of this class of models, results in the literature
have previously been given for special cases only, namely the ‘mean-field’ or ‘ran-
dom neighbour’ Bak–Sneppen model. Our proofs avoid the heuristic arguments
of some of the previous work and use Foster–Lyapunov ideas. Our results extend
existing results and establish their natural, more general context. We derive some
more specialized results for the particular case where K = 2. One of our technical
tools is a result on convergence of stationary distributions for families of uniformly
ergodic Markov chains on increasing state-spaces, which may be of independent
interest.

Keywords: Bak–Sneppen evolution model; self-organized criticality; Markov process on
order statistics; phase transition; interacting particle system.
AMS 2010 Subject Classifications: 60J05 (Primary) 60J10, 60K35, 82B26, 92D15 (Sec-
ondary)

1 Introduction

Bak and Sneppen [5] introduced a simple stochastic model of evolution which initiated
a considerable body of research by physicists and mathematicians. The Bak–Sneppen
model has proved so influential because it is simple to describe and not difficult to simu-
late, and, while being challenging to analyse rigorously, demonstrates highly non-trivial
behaviour: it is said to exhibit ‘self-organized criticality’ (see e.g. [20]).

The Bak–Sneppen model is as follows. Consider the sites 1, 2, . . . , N arranged cyc-
lically, so that site k has neighbours k − 1 and k + 1 (working modulo N). Each site,
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corresponding to a species in the evolution model, is initially assigned an independent
U [0, 1] random variable representing a ‘fitness’ value for the species; here and subsequently
U [a, b] stands for the uniform distribution on the interval [a, b]. The Bak–Sneppen model
is a discrete-time Markov process, where at each step the minimal fitness value and the
values at the two neighbouring sites are replaced by three independent U [0, 1] random
variables. A variation on the model is the (maximal) anisotropic Bak–Sneppen model [19]
in which, at each step, only the right neighbour of the site with minimal fitness is updated
along with the minimal value.

A large physics literature is devoted to these models. Simulations suggest that the
equilibrium distribution of the fitness at any particular site approaches U [s∗, 1] in theN →
∞ limit, for some threshold value s∗; simulations give s∗ ≈ 0.667 for the original Bak–
Sneppen model and s∗ ≈ 0.724 for the anisotropic model [13]. There is a much smaller
number of mathematical papers on the model and its variants: see e.g. [15,16,23,24]; see
also the thesis [14]. It is a challenge to obtain further rigorous results for such models.

A simpler model can be formulated by removing the underlying topology, and such
‘mean field’ or ‘random neighbour’ versions of the model have also received attention
in the literature: see e.g. [7, 8, 12, 20, 21, 29]. For example, the mean-field version of
the anisotropic Bak–Sneppen model again has N sites each endowed with a fitness in
[0, 1]. At each step, the minimal fitness is replaced, along with one other fitness chosen
uniformly at random from the remaining N −1 sites. Again the replacement fitnesses are
independent U [0, 1] variables.

Such mean-field models display some features qualitatively similar to the original
Bak–Sneppen model, but give little indication of how the distinctive asymptotics of the
Bak–Sneppen model, in which the topology plays a key role, might arise. In particular,
changing the topology of the model changes the value of the threshold s∗ in a way that the
mean-field models cannot account for. In the present paper we study some generalizations
of the mean-field model described informally above, which we call rank-driven processes.
These models represent one possibility for showing how the influence of topology might
be replicated by simpler features.

In these more general models, we again have N sites, and at each time step some
fixed number of fitness values are selected for replacement, but for this selection process
we allow general stochastic rules based on the ranks of the values. These rank-driven
processes are Markov processes on ranked sequences, or order statistics (see Sections 2
and 3 for formal definitions).

To give a concrete example, we could, at each step, replace the minimal fitness along
with the Rth ranked value, where R is chosen independently at each step from some
distribution on {2, . . . , N}, with R = 2 corresponding to the second smallest value, and
so on. This model generalizes that of [7], which has R uniform on {2, . . . , N}, and
exhibits much richer behaviour. Specifically, the threshold s∗ depends explicitly on the
distribution chosen for R: in this way, the distribution of R is playing a role analogous
to the underlying topology in the Bak–Sneppen models.

Such rank-driven processes are of interest in their own right, but our motivation
for studying them also arises from an attempt to understand the original Bak–Sneppen
model, where the topology plays a key role. While the Bak–Sneppen model can be viewed
as a Markov process on the space [0, 1]N , it gives rise to a decidedly non-Markovian
process on order statistics. At the same time, as we explore in detail in [17], there is an
algorithmic way to associate to the Bak–Sneppen model a rank-driven process (a process
that is Markovian on order statistics) and which, according to numerical evidence, shares
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a number of important properties with the Bak–Sneppen model. The aim of the present
paper is to present a rigorous analysis of rank-driven processes. Ultimately we hope
to show that if a process, such as the BS one, gives rise to a rank-driven process, the
two processes must share observables, such as the location of thresholds in the invariant
distribution; see [17] for supporting numerical evidence.

The outline of the remainder of the paper is as follows. In Section 2 we discuss
an introductory example in which a single value is updated at each step. In Section
3 we describe the general rank-driven processes that we consider and state our main
theorems on asymptotic behaviour. In Section 4 we focus on a specific class of examples,
generalizing the mean-field anisotropic Bak–Sneppen model [7, 12], and give some more
detailed results. We emphasize the difference in nature of the results in Sections 3 and 4:
in the former, the results cover a very general class of processes and the proofs are robust,
using Foster–Lyapunov arguments and general theory of Markov processes, while in the
latter, we specialize to a narrower class of processes and exploit their special structure.
It is likely that analogues of our results from Section 4 could be obtained for other
processes, but the details would depend on the particular processes studied. In Section
5 we make some further remarks and state some open problems. Section 6 is devoted to
the proofs of the main results in Section 3, while Section 7 is devoted to the proofs of the
results in Section 4. The Appendix, Section 8, gives one of our key technical tools on the
asymptotics of families of Markov chains that are uniformly ergodic in a precise sense.

2 Warm-up example: Replace the kth-ranked value

We start by describing a particularly simple model, which can be solved completely, to
demonstrate some ideas that will be useful in greater generality later on. It will be con-
venient to view all of our models as Markov chains on ranked sequences, or order statistics.
Fix N ∈ N := {1, 2, . . .}. Given a vector (x1, x2, . . . , xN) we write the corresponding in-
creasing order statistics as

(x(1), x(2), . . . , x(N)) = ord(x1, . . . , xN),

where x(1) ≤ x(2) ≤ · · · ≤ x(N). Let ∆N denote the ‘simplex’

∆N := {(x1, . . . , xN) ∈ [0, 1]N : x1 ≤ x2 ≤ · · · ≤ xN}.

We study stochastic processes on ∆N indexed by discrete time Z+ := {0, 1, 2, . . .}.
Let U1, U2, . . . denote a sequence of independent U [0, 1] random variables. Define a

Markov process Xt on ∆N with transition rule such that, given Xt,

Xt+1 = ord{Ut+1, X
(2)
t , X

(3)
t , . . . , X

(N)
t };

in other words, at each step, discard the smallest value and replace it by a U [0, 1] random
variable. To make clear the dependence on the model parameter N , we write PN for the
probability measure associated with this model and EN for the corresponding expectation.

It is natural to anticipate that Xt should approach (as t → ∞) a limiting (stationary)
distribution; we show in this section that this is indeed the case. Assuming such a sta-
tionary distribution exists, and is unique, we can guess what it must be: the distribution
of the random vector (U, 1, 1, 1, . . . , 1) (a U [0, 1] variable followed by N−1 units) is invari-
ant under the evolution of the Markov chain. The process Xt itself lives on a relatively
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complicated state-space, and at first sight it might seem that some fairly sophisticated
argument would be needed to show that it has a unique stationary distribution. In fact,
we can reduce the problem to a simpler problem on a finite state-space as follows.

For each s ∈ [0, 1], define the counting function

CN
t (s) := #{i ∈ {1, 2, . . . , N} : X

(i)
t ≤ s} =

N∑
i=1

1{X(i)
t ≤ s}, (2.1)

i.e., CN
t (s) is the number of values of magnitude at most s in the system at time t. (Here

and throughout we use #A to denote the number of elements of a finite set A.) Then,
for a fixed t, Xt is characterized by the counting functions (CN

t (s))s∈[0,1]. For a specific s,

CN
t (s) encodes marginal information about the X

(k)
t , since the two events {CN

t (s) ≥ k}
and {X(k)

t ≤ s} are equivalent. By an analysis of the auxiliary stochastic processes CN
t (s)

we will prove the following result, which deals with the more general model in which, at
each time step, the point with rank k is replaced.

Proposition 2.1. Let N ∈ N and k ∈ {1, 2, . . . , N}. For the model in which at each step
we replace the kth-ranked value by an independent U [0, 1] value, we have that, as t → ∞,

(X
(1)
t , X

(2)
t , . . . , X

(N)
t )

d→ (0, . . . , 0, U, 1, . . . , 1),

where U , the kth coordinate of the limit vector, has a U [0, 1] distribution.

If k = k(N) is such that k(N)/N → θ ∈ [0, 1] asN → ∞, a consequence of Proposition
2.1 is that the distribution of a uniformly chosen point converges (as t → ∞ and then
N → ∞) to the distribution with an atom of mass θ at 0 and an atom of mass 1− θ at
1. For example, if we always replace a median value, θ = 1/2 and the limit distribution
has two atoms of mass 1/2 at 0 and 1.

Proof of Proposition 2.1. It is not hard to see that CN
t (s) is a Markov chain on

{0, 1, 2, . . . , N}. The transition probabilities psN(n,m) := PN [C
N
t+1(s) = m | CN

t (s) = n]
are given for n ∈ {0, . . . , k − 1} by psN(n, n) = 1 − s and psN(n, n + 1) = s, and for
n ∈ {k, . . . , N} by psN(n, n) = s and psN(n, n − 1) = 1 − s. For s ∈ (0, 1) the Markov
chain is reducible and has a single recurrent class consisting of the states k− 1 and k. It
is easy to compute the stationary distribution and for s ∈ (0, 1) we obtain,

lim
t→∞

PN [C
N
t (s) = n] =


1− s if n = k − 1

s if n = k

0 if n /∈ {k − 1, k}
,

by standard Markov chain theory. In particular, for s ∈ (0, 1),

lim
t→∞

PN [X
(k)
t ≤ s] = lim

t→∞
PN [C

N
t (s) ≥ k] = s.

That is, X
(k)
t converges in distribution to a U [0, 1] variable. Moreover, if k > 1, for any

s ∈ (0, 1), P[X(k−1)
t ≤ s] = P[CN

t (s) ≥ k − 1] → 1, which implies that X
(k−1)
t converges

in probability to zero. Similarly, if k < N , for any s ∈ (0, 1), P[X(k+1)
t ≤ s] = P[CN

t (s) ≥

4



k+1] → 0, which implies that X
(k+1)
t converges in probability to 1. Thus we have proved

the marginal result that, as t → ∞, for U a U [0, 1] random variable,

X
(i)
t → 0, (i < k), X

(k)
t → U, X

(i)
t → 1, (i > k),

in distribution. Then the Cramér–Wold device (convergence in distribution of an N -
dimensional random vector is implied by convergence in distribution of all linear com-
binations of its components: see e.g. [10, p. 147]) together with Slutsky’s theorem (if
Yn converges in distribution to a random limit Y and Zn converges in distribution to a
deterministic limit z, then Yn+Zn converges in distribution to Y + z: see e.g. [10, p. 72])
enable us to deduce the joint convergence.

Remark 2.1. This simple example shows special features that will not recur in the general
case. (i) Here we obtained a result for any fixed N ≥ 1; in the general case, we will

typically state results as N → ∞. (ii) Since all but one of the X
(i)
t had a degenerate

limit distribution, we were able to use a soft argument to deduce convergence of the joint
distribution of (X

(1)
t , . . . , X

(N)
t ) from the convergence of the marginal distributions.

3 Rank-driven processes and threshold behaviour

In this section we give a general definition of a rank-driven process and present some
fundamental results on its asymptotic properties. Fix N (the number of points) and
K ∈ {1, . . . , N} (the number of replacements at each step). Define the set

IK
N := {1, 2, . . . , N}K .

The model will be specified by a selection distribution. Let RN denote a random K-vector
with distinct components in {1, . . . , N}. In components, write RN = (RN

1 , . . . , R
N
K). We

suppose that RN is exchangeable, i.e., its distribution is invariant under permutations of
its components. The distribution of RN can be described by a probability mass function
κN : IK

N → [0, 1] that is symmetric under permutations of its arguments, so PN [R
N
1 =

i1, . . . , R
N
K = iK ] = κN(i1, . . . , iK).

We define a Markov chain (Xt)t∈Z+ of ranked sequences Xt = (X
(1)
t , . . . , X

(N)
t ). The

initial distribution X0 can be arbitrary. The randomness of the process will be introduced
via independent U [0, 1] random variables U1, U2, . . . and independent copies of RN , which
we denote by RN(1), RN(2), . . .. In components, write RN(t) = (RN

1 (t), . . . , R
N
K(t)). The

transition law of the Markov chain is as follows.
Given Xt, discard the elements of (distinct) ranks specified by RN

1 (t+1), . . . , RN
K(t+

1) and replace them by K new independent U [0, 1] random variables, namely
UKt+1, . . . UKt+K ; then rank the new sequence. That is, we take Xt+1 to be

ord
(
X

(1)
t , X

(2)
t , . . . , X

(RN
1 (t+1)−1)

t , UKt+1, X
(RN

2 (t+1)+1)
t , . . . , UKt+K , X

(RN
K(t+1)+1)

t , . . . , X
(N)
t

)
.

Note that ties are permitted.
For i ∈ N let gN(i) := PN [R

N
1 = i], the marginal distribution of a specific component

of RN . Denote the corresponding distribution function by

GN(n) := PN [R
N
1 ≤ n] =

n∑
i=1

gN(i) =
n∑

i1=1

N∑
i2=1

· · ·
N∑

iK=1

κN(i1, i2, . . . , iK). (3.1)
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We make some further assumptions on the selection distribution. Assumption (A1) will
ensure that an irreducibility property holds, excluding some degenerate cases, while (A2)
regulates the N → ∞ behaviour of the selection rule.

(A1) If K = 1, suppose that gN(i) > 0 for all i ∈ {1, . . . , N}. If K ≥ 2, suppose that
gN(1) > 0.

(A2) Suppose that for any k ≤ K, for all distinct i1, . . . , ik ∈ N, the limit κ(i1, . . . , ik) :=
limN→∞ PN [R

N
1 = i1, . . . , R

N
k = ik] exists.

Note that the limits in (A2) need not constitute proper distributions on Nk: there may
be some loss of mass. Indeed, the possibility of a defective distribution as a limit in (A2)
plays a central role in the asymptotics of the rank-driven process, as we shall describe
below. In the example of replacing the minimum element and one uniformly random other
element, P[RN

1 = i, RN
2 = j] = 0 if neither i nor j is 1, and this probability is 1

2(N−1)

otherwise (see Example (E2) below). Hence (A2) holds and for all i, j ∈ N, κ(i, j) = 0,
so that κ is (maximally) defective. On the other hand, if we always choose the smallest
and the second smallest elements, κN(1, 2) = κN(2, 1) = 1/2, and the limits in (A2) are
indeed probability distributions. In general, a proper distribution can be recovered on
(N∪ {∞})K by correctly accounting for the lost mass, and then (A2) can be interpreted
as saying that RN converges in distribution to a random vector on (N ∪ {∞})K : see
Section 6.3 for details. A consequence of (A2) is that

lim
N→∞

gN(n) = g(n) and lim
N→∞

GN(n) = G(n) (3.2)

exist for all n ∈ N; then G is a (possibly defective) distribution function on N. (Note
that g(i) = κ(i).) Given (A2), we make an assumption on g analogous to (A1):

(A3) If K = 1, suppose that g(i) > 0 for all i ∈ N. If K ≥ 2, suppose that g(1) > 0.

We will show that a crucial parameter for the asymptotics of the process is

s∗ := lim
n→∞

G(n) = lim
n→∞

lim
N→∞

GN(n). (3.3)

If (A2) holds, then the N -limit exists, and s∗ ∈ [0, 1] is well-defined. The value of s∗

captures the ‘asymptotic atomicity’ of GN in a certain sense.
Before stating our first results, we describe some concrete examples. For specifying

some of the examples, it is more convenient to work with a version of κN on ranked
sequences, namely γN defined for i1 < · · · < iK by γN(i1, . . . , iK) = K!κN(i1, . . . , iK).
With this notation, note that

gN(i) =
1

K

( ∑
i<i2<i3<···<iK

γN(i, i2, i3, . . . , iK) +
∑

i2<i<i3<···<iK

γN(i2, i, i3, . . . , iK)

+ · · ·+
∑

i2<i3<···<iK<i

γN(i2, i3, . . . , iK , i)

)
, (3.4)

where each sum is over i2, i3, . . . , iK ∈ {1, . . . , N} satisfying the given rank constraints.
We describe three examples, by giving the non-zero values of either γN or κN , as

convenient; (E1) was discussed in Section 2, while we study examples (E2) and (E3) in
detail in Section 4.
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Example (E1). Take K = 1 and γN(k) = 1, i.e., replace the kth ranked element only
each time. In this case gN(k) = 1 as well.

Example (E2). Let K = 2 and γN(1, j) =
1

N−1
for j ∈ {2, . . . , N}, i.e., each time we

replace the minimal element and one other uniformly chosen point. This model has been
studied by [7] and others. From (3.4) we have that in this case gN(1) = 1/2 and, for
i ∈ {2, . . . , N}, gN(i) = 1

2(N−1)
. Moreover, g(1) = 1/2 and g(i) = 0 for i ̸= 1.

Example (E3). (A generalization of (E2).) Let K ≥ 2 and let ϕN be a symmetric
probability mass function on IK−1

N . Set κN(1, i2, . . . , iK) = K−1ϕN(i2, . . . , iK). So
now we replace the minimal element and K − 1 other randomly chosen points, where
the distribution on the ‘other’ points is given by ϕN . Then gN(1) = 1/K and, for
i ∈ {2, . . . , N}, gN(i) = K−1

K
fN(i) where fN(i) =

∑
i3,...,iK

ϕN(i, i3, . . . , iK). Write
FN(n) =

∑n
i=1 fN(i). Assume that F (n) = limN→∞ FN(n) exists for all n, and set

α = limn→∞ F (n) ∈ [0, 1].

The assumptions (A1) and (A3) are satisfied by (E2) and (E3), but not (E1), while
(A2) is satisfied by (E1), (E2), and (E3).

We will work with the counting functions defined by (2.1). Our first main result,
Theorem 3.1 below, demonstrates a phase transition in the asymptotic behaviour of the
system at the threshold value s = s∗; note that part of the theorem is the non-trivial
statement that limN→∞ limt→∞ EN [C

N
t (s)] exists in [0,∞].

Theorem 3.1. Suppose that (A1), (A2), and (A3) hold, so that s∗ given by (3.3) exists
in [0, 1]. Then

lim
N→∞

lim
t→∞

EN [C
N
t (s)]

{
< ∞ if s < s∗

= ∞ if s > s∗
. (3.5)

Theorem 3.1 shows that s∗ is a threshold value for the model in the sense that

s∗ = sup{s ≥ 0 : lim
N→∞

lim
t→∞

EN [C
N
t (s)] < ∞}

is well defined (with the convention sup ∅ = 0). Example (E1) has s∗ = 1, although
Theorem 3.1 does not apply directly (since (A1) and (A3) fail). Example (E2) has
s∗ = 1/2, while Example (E3) has s∗ = 1

K
(1 + (K − 1)α).

For the next result we assume that the distribution GN given by (3.1) is ‘eventually
uniform’ in a certain sense; roughly speaking we will suppose that gN(n) ≈ 1−s∗

N
for n

large enough. The precise condition that we will use is as follows.

(A4) Suppose that there exists n0 ∈ {2, 3, . . .} such that

lim
N→∞

sup
n0≤n≤N

∣∣∣∣N(GN(n)− s∗)

n− n0 + 1
− (1− s∗)

∣∣∣∣ = 0.

For instance, Example (E2) satisfies condition (A4) with s∗ = 1/2 and n0 = 2, since
GN(n) =

1
2
+ n−1

2(N−1)
. In Example (E3), GN(n) =

1
K
+ K−1

K
FN(n), so that condition (A4)

holds if FN(n) satisfies a similar condition, namely

lim
N→∞

sup
n0≤n≤N

∣∣∣∣N(FN(n)− α)

n− n0 + 1
− (1− α)

∣∣∣∣ = 0. (3.6)
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Our next result shows the threshold phenomenon at the ‘O(N)’ scale. We can define
a threshold parameter

s# := sup{s ≥ 0 : lim
N→∞

lim
t→∞

(
N−1EN [C

N
t (s)]

)
= 0}. (3.7)

If both s∗ and s#, as given by (3.3) and (3.7) respectively, are well-defined, then clearly
s∗ ≤ s#. Theorem 3.2 shows that, under assumption (A4), s∗ = s#; in other words, the
transition is sharp. We use the notation

V (s) :=

{
0 if s < s∗

s−s∗

1−s∗
if s ≥ s∗

. (3.8)

Theorem 3.2. Suppose that (A1), (A2), (A3), and (A4) hold. With V (s) as given by
(3.8), we have that for any s ∈ [0, 1],

lim
N→∞

lim
t→∞

(
EN [C

N
t (s)]

N

)
= V (s). (3.9)

Another way to interpret Theorem 3.2 is as follows. Let X∗
t denote X

(M)
t where M is

a random variable with PN [M = j] = 1/N for j ∈ {1, . . . , N}. Then

PN [X
∗
t ≤ s] = N−1

N∑
i=1

P[X(i)
t ≤ s] = N−1E

N∑
i=1

1{X(i)
t ≤ s} = N−1EN [C

N
t (s)],

by (2.1), so that the conclusion of Theorem 3.2 is equivalent to, for s ∈ [0, 1],

lim
N→∞

lim
t→∞

PN [X
∗
t ≤ s] = V (s);

in other words, the marginal distribution of a ‘typical’ point converges (as t → ∞ then
N → ∞) to a U [s∗, 1] distribution. Note that some condition along the lines of (A4) is
needed for this result to hold: see the example in Remark 3.2 below.

Remark 3.1. In this paper we restrict attention to the case where the distribution of
replacements is U [0, 1], but instead of U1, U2, . . . one could take independent copies of
a nonnegative random variable W with distribution function ρ. The results with the
U [0, 1] distribution immediately generalize to distributions ρ that are continuous, suppor-
ted on a single interval, and strictly increasing on that interval: to see this, note that
(x1, . . . , xN) 7→ (ρ(x1), . . . , ρ(xN)) preserves ranks and ρ(W ) has a U [0, 1] distribution,
so that the dynamics of the process are preserved, up to the change of scale s 7→ ρ(s).
Thus our results immediately extend to this class of distributions W .

Remark 3.2. Our results can be translated into complementary results by reversing the
ranking and looking at N − CN

t (s). Indeed, N − CN
t (s) counts the number of points in

(s, 1]; translating Theorem 3.1 shows that under appropriate versions of (A1)–(A3) (in
which conditions on gN(n) are replaced by conditions on gN(N − n+ 1)) the threshold

s∗ = inf{s ≤ 1 : lim
N→∞

lim
t→∞

EN [N − CN
t (s)] < ∞}

is given by
s∗ = lim

n→∞
lim

N→∞
GN(N − n).
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For example, suppose that K = 2 and we always replace the smallest and the largest points,
i.e., gN(1) = gN(N) = 1/2. Then GN(n) = (1 + 1{n = N})/2, so that G(n) = 1/2 and
s∗ = 1/2. But also, s∗ = 1/2. So the expected number of points in any interval not
containing 1/2 remains finite as N → ∞; in other words, the marginal distribution
of a typical point converges to a unit point mass at 1/2. This example also serves to
demonstrate that Theorem 3.2 may fail if (A4) does not hold.

4 Detailed example: Replace the minimum and one

other

In this section we present some more specific results to complement our general results
from Section 3. To do so, we specialize to the K = 2 case of Example (E3) from Section
3, in which we replace the smallest value and choose the other value to replace from
{2, . . . , N} according to a probability distribution fN . Write

FN(k) :=
k∑

j=2

fN(j), (4.1)

for the corresponding distribution function, adopting the usual convention that an empty
sum is zero, so that FN(0) = FN(1) = 0.

In the general set-up of Section 3, we have κN(1, i) = fN(i)/2, gN(1) = 1/2 and
gN(i) = fN(i)/2 for i ∈ {2, . . . , N}. Here, assumption (A1) and (A3) are automatically
satisfied; Assumption (A2) becomes a condition on fN (or FN), namely that

lim
N→∞

FN(n) = F (n) (4.2)

exists for all n ≥ 2. The present version of (A2) is then:

(A2′) Suppose that (4.2) holds.

Under (A2′),
α := lim

n→∞
F (n) (4.3)

exists in [0, 1]. Indeed, since GN(n) = (1 + FN(n))/2, we have that (A2′) implies that s∗

given by (3.3) satisfies s∗ = 1+α
2
.

Before stating our results, we comment briefly on their relation to previous work in the
literature. The model of this section includes that studied by de Boer et al. [7] amongst
others (see e.g. [20, §5.2.5]); the model of [7] is the special case where FN(n) =

n−1
N−1

, which
satisfies (A2) with α = 0. Thus the α = 0 cases of our results are not surprising in view
of the (not completely rigorous) arguments in [7], or the heuristic analysis in [20, §5.2.5]
that neglects correlations between the X

(k)
t , but our results are more general even in the

case α = 0, and we show explicitly the dependence of the phase transition on FN via the
parameter α. Moreover, one aim of the present work is to give a more rigorous approach
to the results of [7] in the present considerably more general setting.

In this setting, the following result is immediate from Theorem 3.1.

Theorem 4.1. Suppose that (A2′) holds. Then

lim
N→∞

lim
t→∞

EN [C
N
t (s)]

{
< ∞ if s < 1+α

2

= ∞ if s > 1+α
2

. (4.4)
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Similarly, we have the following translation of Theorem 3.2 into this setting. The
appropriate version of condition (A4) is:

(A4′) Suppose that FN satisfies (3.6).

Theorem 4.2. Suppose that (A2′) and (A4′) hold. With V (s) as given by (3.8),

lim
N→∞

lim
t→∞

(
EN [C

N
t (s)]

N

)
= V (s), s ∈ [0, 1].

Remark 4.1. If instead of a U [0, 1] distribution we use a distribution ρ for replacement
points, as described in Remark 3.1, then the threshold exhibited in Theorem 4.1 becomes
s∗ = ρ−1(1+α

2
); the inverse ρ−1 is well-defined when ρ satisfies the conditions described in

Remark 3.1.

Now we move on to our detailed results concerning the case α = 0; note that α = 0 if
and only if fN(n) → 0 as N → ∞ for any n. The case α = 0 includes the discrete uniform
case (as considered in [7]) in which fN(n) =

1
N−1

, but includes many other possibilities.
Theorem 4.1 shows that when α = 0 the phase transition occurs at s∗ = 1/2. The next
result gives more information, giving an explicit expression for the limiting equilibrium
expectation in the case in which it is finite.

Theorem 4.3. Suppose that (A2′) holds and that α = 0. Then

lim
N→∞

lim
t→∞

EN [C
N
t (s)] =

{
2s+ s2

1−2s
if 0 ≤ s < 1/2

∞ if s ≥ 1/2
. (4.5)

We also have the following explicit description of the limit distribution.

Theorem 4.4. Suppose that (A2′) holds and that α = 0. If s < 1/2, then for any n ∈ Z+,

lim
N→∞

lim
t→∞

PN [C
N
t (s) = n] = πs(n),

where

πs(0) = 1− 2s;

πs(1) = 2s−
(

s

1− s

)2

;

πs(n) =

(
1−

(
s

1− s

)2
)(

s

1− s

)2(n−1)

, (n ≥ 2). (4.6)

On the other hand, if s ≥ 1/2, then for any n ∈ Z+, limN→∞ limt→∞ PN [C
N
t (s) ≤ n] = 0.

Remark 4.2. (i) The corresponding stationary probabilities put forward in [7] do not
sum to 1 (see equations (10)–(12) in [7]). Our argument is similar (based on the use of
the ‘N = ∞’ Markov chain) but we try to give a fuller justification. (ii) Let

τN(s) := min{t ∈ N : CN
t (s) = 0}. (4.7)

By standard Markov chain theory, πs
N(n) = (EN [τN(s) | CN

0 (s) = 0])−1. So an immediate
consequence of Theorem 4.4 is that (cf equation (16) of [7])

lim
N→∞

EN [τN(s) | CN
0 (s) = 0] =

{
1

1−2s
if s < 1/2

∞ if s ≥ 1/2
.
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We also prove explicit limiting (marginal) distributions for the lower order statistics
themselves. We use the notation

hn(s) :=

{
2s if n = 1(

s
1−s

)2(n−1)
if n ≥ 2

. (4.8)

Theorem 4.5. Suppose that (A2′) holds and that α = 0. Then for n ∈ N,

lim
N→∞

lim
t→∞

PN [X
(n)
t ≤ s] =


0 if s ≤ 0

hn(s) if 0 ≤ s ≤ 1/2

1 if s ≥ 1/2

. (4.9)

The n = 1 case of (4.9) says that the large N , long-time distribution of the smallest
component approaches a U [0, 1/2] distribution. The distributions arising for n ≥ 2 are
not so standard, but, as n → ∞, they approach a unit point mass at 1/2.

Also note that Theorem 4.5 yields convergence of moments of the X
(n)
t . For example,

for any k ∈ N, limN→∞ limt→∞ EN [(X
(1)
t )k] = 2−k/(k + 1), and for n ≥ 2 and any k ∈ N,

lim
N→∞

lim
t→∞

EN [(X
(n)
t )k] = 2−k− k2−(2n+k−2)

2n+ k − 2
2F1(2n−2, 2n+k−2; 2n+k−1; 1/2). (4.10)

To see this, note that since X
(n)
t is uniformly bounded, its moments converge to those of

the distribution hn by bounded convergence, so we have

lim
N→∞

lim
t→∞

EN [(X
(n)
t )k] = k

∫ 1/2

0

sk−1
(
lim

N→∞
lim
t→∞

PN [X
(n)
t > s]

)
ds

= k

∫ 1/2

0

sk−1(1− hn(s))ds.

When n = 1 this is k
∫ 1/2

0
(1 − 2s)sk−1ds which yields the claimed result. When n ≥ 2,

using the substitution u = 2s, the limit becomes

2−k − k2−2(n−1)−k

∫ 1

0

u2(n−1)+k−1(1− (u/2))−2(n−1)du,

which gives (4.10) via the integral representation of the hypergeometric function.

5 Further remarks and open problems

A multidimensional model

Allowing more general distributions W , as described in Remark 3.1, enables some multi-
dimensional models to fit within the scope of our results. We describe one example.
Let Z be a uniform random vector on [0, 1]2, and let ∥ · ∥ denote the Euclidean norm.
Starting with N points in [0, 1]2, iterate the following Markovian model: at each step in
discrete time, replace the minimal-ranked point, where the ranking is in order of increasing
Euclidean distance from the origin, and another point (chosen uniformly at random) with
independent copies of Z. This model corresponds to the model described in Section 4 but
with the Ui replaced by copies of W = ∥Z∥, and with α = 0. Elementary calculations
show that ρ(x) := P[W ≤ x] = πx2

4
for x ∈ [0, 1] (ρ(x) is more complicated for x ≥ 1), so

that the phase transition (see Remark 4.1) occurs at s∗ = ρ−1(1/2) =
√

2/π ≈ 0.80. See
Figure 1 for a simulation.
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Figure 1: Simulation of the model in which, at each step, the closest point to the origin
and one uniformly random other point are replaced by independent uniform random
points on [0, 1]2, with N = 104 points and t = 106 steps. The initial distribution was
N independent uniform points on [0, 1]2. Also shown in the figure is part of the circle
centred at the origin with radius

√
2/π. [colour online]

A partial-order-driven process

Here is a variation on the multidimensional model of the previous example governed by
a partial order rather than a total order. Again consider a system of N points in [0, 1]2.
Consider the co-ordinatewise partial order ‘4’ under which (x1, y1) 4 (x2, y2) if and only
if x1 ≤ x2 and y1 ≤ y2; a point x of a finite set X ⊂ [0, 1]2 is minimal if and only if there
is no y ∈ X \ {x} for which y 4 x. Now define a discrete-time Markov process as follows:
at each step, replace a minimal element of the N points (chosen uniformly at random
from amongst all possibilities) and a non-minimal element (again, chosen uniformly at
random); all new points are independent and uniform on [0, 1]2. This model seems more
difficult to study than the previous one, although simulations suggest qualitatively similar
asymptotic behaviour: see Figure 2.

A repeated beauty contest

We describe a process of a different flavour to those previously considered, in which the
update rule depends not only on the ranks of the points; this is a variation on a Keynesian
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Figure 2: Simulation of the model in which, at each step, one 4-minimal element and
one non-minimal element (each uniformly chosen) are replaced by independent uniform
random points on [0, 1]2, with N = 104 points and t = 106 steps. The initial distribution
was N independent uniform points on [0, 1]2. Can the threshold curve be characterized?
[colour online]

beauty contest.
Fix a parameter p > 0. Start with a uniform array of N elements on [0, 1]. At each

step, compute the mean µ of the N elements, and replace by a U [0, 1] random variable
the element that is farthest (amongst all the N points) from pµ. Thus at each step, either
the minimum or maximum is replaced, depending on the current configuration.

This is related to the “p-beauty contest” [27, p. 72] in which N players choose a
number between 0 and 100, the winner being the player whose choice is closest to p
times the average of all the N choices. The stochastic process described above is a
repeated, randomized version of this game (without any learning, and with random player
behaviour) in which the worst performer is replaced by a new player.

According to simulations and heuristic considerations, the equilibrium distribution
of a typical point approaches, for large N , a point mass at 0 (1) in the case p < 1
(p > 1). The case p = 1 is more subtle, and is reminiscent of a Pólya urn. Stochastic
approximation ideas (see e.g. [28]) may be relevant in studying this model.
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6 General thresholds: Proofs for Section 3

6.1 Overview

This section contains the proofs of our general results from Section 3, and is arranged
as follows. In Section 6.2 we give a basic result on the Markov chains CN

t (s). To study
the N → ∞ asymptotics of these Markov chains, at least when s < s∗, we introduce
an ‘N = ∞’ Markov chain Ct(s). In Section 6.3 we show that we can define Ct(s) in
a consistent way, and we prove some of its basic properties. In Section 6.4 we relate
the asymptotic properties of the finite-N chains CN

t (s) with s < s∗ to the chain Ct(s),
making use of our technical results from Section 8. Then in Section 6.5 we complete the
proofs of Theorems 3.1 and 3.2.

6.2 The Markov chain CN
t (s)

We have the following basic result.

Lemma 6.1. Fix N ∈ N. Suppose that (A1) holds. Suppose that s ∈ (0, 1). Then CN
t (s)

is an irreducible, aperiodic Markov chain on {0, 1, . . . , N} with uniformly bounded jumps:
PN [|CN

t+1(s) − CN
t (s)| > K] = 0. There exists a unique stationary distribution πs

N , with

πs
N(n) > 0 for all n ∈ {0, 1, . . . , N} and

∑N
n=0 π

s
N(n) = 1, such that

lim
t→∞

PN [C
N
t (s) = n] = πs

N(n), (6.1)

for any initial distribution CN
0 (s). Moreover,

lim
t→∞

EN [C
N
t (s)] =

N∑
n=1

nπs
N(n). (6.2)

Finally, with GN as defined at (3.1), the one-step mean drift of CN
t (s) is given by

EN [C
N
t+1(s)− CN

t (s) | CN
t (s) = n] = K(s−GN(n)). (6.3)

Note that the degenerate cases s ∈ {0, 1} are excluded from Lemma 6.1: CN
t (1) = N

a.s. for all t, while CN
t (0) → 0 a.s. as t → ∞ for any initial distribution CN

0 (0).

Proof of Lemma 6.1. Note that

{CN
t (s) = n} = {X(1)

t ≤ s, . . . , X
(n)
t ≤ s,X

(n+1)
t > s, . . . , X

(N)
t > s};

the distribution of CN
t+1(s) depends only on (X

(1)
t , . . . , X

(N)
t ) through events of the form

on the right-hand side of the last display. Specifically, given CN
t (s) = n, we have that the

increment CN
t+1(s) − CN

t (s) is the number of the K new U [0, 1]-distributed points that
fall in [0, s] minus the number of the K points selected for removal whose rank was at
most n. That is, with the notation

Bt+1(s) := #{i ∈ {Kt+ 1, . . . , Kt+K} : Ui ∈ [0, s]},
AN

t+1(n) := #{i ∈ {1, . . . , K} : RN
i (t+ 1) ≤ n},

we have that, given CN
t (s) = n,

CN
t+1(s) = n+Bt+1(s)− AN

t+1(n). (6.4)
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Thus, given CN
t (s) = n, the increment depends only on n and the variables RN(t + 1),

UKt+1, . . . , UKt+K , which are all independent of CN
t (s). This demonstrates the Markov

property.
The bounded jumps property is clear by definition, and can also been seen from (6.4).

To show irreducibility and aperiodicity, we show that

PN [C
N
t+1(s) = n | CN

t (s) = n] > 0, (n ∈ {0, 1, . . . , N}),
PN [C

N
t+1(s) = n+ 1 | CN

t (s) = n] > 0, (n ∈ {0, 1, . . . , N − 1}),
PN [C

N
t+1(s) = n− 1 | CN

t (s) = n] > 0, (n ∈ {1, 2, . . . , N}).

Since Bt+1(s) and AN
t+1(n) are independent given CN

t (s) = n, it suffices to show that
PN [Bt+1(s) = i] > 0 for any i ∈ {0, 1, . . . , K}, and that PN [A

N
t+1(n) = i] > 0 for: (i)

i ∈ {0, 1} ifK = 1; or (ii) i = 1 ifK ≥ 2. Then the intersection of two independent events
of positive probability will yield any increment of CN

t (s) in {−1, 0, 1}, as required. First
consider Bt+1(s): this has a Bin(K, s) distribution, and so takes any value in {0, 1, . . . , K}
with positive probability, provided s ∈ (0, 1). Now consider AN

t+1(n). Then

AN
t+1(n) =

n∑
i=1

1{i ∈ {RN
1 (t+ 1), . . . , RN

K(t+ 1)}}. (6.5)

It follows from (6.5) that, for n ≥ 1, AN
t+1(n) ≥ 1{1 ∈ {RN

1 (t+ 1), . . . , RN
K(t+ 1)}}, so

PN [A
N
t+1(n) = 1] ≥ PN [1 ∈ {RN

1 (t+ 1), . . . , RN
K(t+ 1)}] ≥ PN [R

N
1 = 1].

This latter probability is gN(1), which is positive by (A1). This completes the proof of
irreducibility and aperiodicity in the case K ≥ 2; it remains to show that PN [A

N
t+1(n) =

0] > 0 for n ≥ 0 when K = 1. Using the K = 1 case of (6.5), we obtain

PN [A
N
t+1(n) = 0] = PN [R

N
1 (t+ 1) > n] = 1−GN(n),

by (3.1), and 1−GN(n) > 0 since (A1) implies that in this case gN(i) > 0 for some i > n.
Thus the Markov chain is irreducible and aperiodic; it has a finite state-space, and so

standard Markov chain theory implies the existence of a unique stationary distribution,
for which (6.1) holds. Moreover, since CN

t (s) is bounded by N , (6.2) follows from (6.1).
Finally we prove the statement (6.3). We take expectations in (6.4); Bt+1(s) has mean

Ks, and taking expectations in (6.5) we obtain

E[AN
t+1(n)] =

n∑
i=1

P[i ∈ {RN
1 (t+ 1), . . . , RN

K(t+ 1)}] = K

n∑
i=1

P[RN
1 = i],

by exchangeability. Thus from (3.1) we obtain (6.3).

A key step in our analysis is to study the stationary distributions πs
N of the Markov

chains CN
t (s), s ∈ (0, 1), whose existence is proved in Lemma 6.1. We consider πs

N as
N → ∞. One tool that we will use is a Markov chain Ct(s) on the whole of Z+ that can
be viewed in some sense as the N → ∞ limit of the Markov chains CN

t (s): this Markov
chain we call the ‘N = ∞’ chain, and we describe it in Section 6.3; in Section 6.4 we
make precise the sense in which the ‘N = ∞’ chain is a limit of the finite-N chains.
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6.3 The ‘N = ∞’ chain Ct(s)

Our asymptotic analysis makes use of an ‘N = ∞’ analogue of the Markov chain CN
t (s).

The case N = ∞ does not make sense directly in terms of the original model Xt, but
(A2) can be used to define a Markov chain on the whole of Z+, which we can relate to
our finite-N Markov chains, at least when s < s∗.

We use Ct(s) to denote our new Markov chain, now defined on the whole of Z+, and we
write P for the associated probability measure and E for the corresponding expectation.
The idea is to define transition probabilities via

P[Ct+1(s) = m | Ct(s) = n] = lim
N→∞

PN [C
N
t+1(s) = m | CN

t (s) = n];

to show that this is legitimate under suitable assumptions, we need the following result.

Lemma 6.2. Suppose that (A2) holds. Let s ∈ [0, 1]. Then for any n,m ∈ Z+,

ps(n,m) := lim
N→∞

PN [C
N
t+1(s) = m | CN

t (s) = n]

is well-defined, and
∑

m∈Z+ ps(n,m) = 1.

Proof. We show that the increment distribution, conditional on {CN
t (s) = n}, given

by (6.4) in the finite N case converges (as N → ∞), using assumption (A2), to an
appropriate limiting distribution, which will serve as the increment distribution ps(n, · ).
This convergence is clear for the term Bt+1(s), which has no N -dependence. Moreover,
given CN

t (s) = n, the terms Bt+1(s) and AN
t+1(n) are independent. Thus it suffices to

show that AN
t+1(n) converges in distribution to a proper random variable. We show that

this follows from (A2), although care is needed to correctly account for lost mass in (A2).
To proceed, it is useful to introduce more notation. Let R = (R1, . . . , RK) denote the

N → ∞ distributional limit of RN : given (A2), this limit exists but is not necessarily
a proper distribution on NK , but we recover a proper distribution by expanding the
state-space to (N ∪ {∞})K . Thus components of R may take the value ∞: this cannot
be directly interpreted in terms of rank distributions, but is convenient for correctly
accounting for the lost mass in (A2). Concretely, the distribution of R is given, for any
k ≤ K and any distinct i1, i2, . . . , ik ∈ N, by

P[R1 = i1, . . . , Rk = ik, Rk+1 = ∞, . . . , RK = ∞]

= lim
N→∞

PN [R
N
1 = i1, . . . , R

N
k = ik]−

∑
ik+1∈N

· · ·
∑
iK∈N

lim
N→∞

PN [R
N
1 = i1, . . . , R

N
K = iK ]

= κ(i1, . . . , ik)−
∑

ik+1∈N

· · ·
∑
iK∈N

κ(i1, . . . , iK), (6.6)

using (A2). Note that since RN is exchangeable on {1, . . . , N}K , it follows that R is
exchangeable on (N ∪ {∞})K .

Now we can define the N = ∞ analogue of AN
t+1(s) to be an independent copy of

#{i ∈ {1, . . . , K} : Ri ≤ n}, i.e., for R(t+1) = (R1(t+1), . . . , RK(t+1)) an independent
copy of R, with distribution given by (6.6), we take

At+1(n) :=
K∑
i=1

1{Ri(t+ 1) ≤ n}.
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Then we can construct Ct(s) via its increments

Ct+1(s)− Ct(s) = Bt+1(s)− At+1(Ct(s)). (6.7)

Since RN converges in distribution to R as N → ∞, AN
t+1(n) =

∑K
i=1 1{RN

i (t + 1) ≤ n}
converges in distribution to At+1(n); specifically, using exchangeability,

PN [A
N
t+1(n) = k] =

(
K

k

)
PN [R

N
1 ≤ n, . . . , RN

k ≤ n,RN
k+1 > n, . . . , RN

K > n]

→
(
K

k

)
P[R1 ≤ n, . . . , Rk ≤ n,Rk+1 > n, . . . , RK > n],

as N → ∞. This completes the proof.

The following result gives some basic properties of the Markov chain defined above.

Lemma 6.3. Suppose that (A2) and (A3) hold. Then for any s ∈ (0, 1), Ct(s) is an
irreducible, aperiodic Markov chain on Z+, with uniformly bounded jumps: P[|Ct+1(s)−
Ct(s)| > K] = 0. The one-step mean drift of Ct(s) is given by

E[Ct+1(s)− Ct(s) | Ct(s) = n] = K(s−G(n)). (6.8)

Proof. The boundedness of the increments follows from the construction in (6.7). The
irreducibility and aperiodicty follow from a similar argument to that used in the proof
of Lemma 6.1 in the finite-N case, now using (A3) in place of (A1). The drift (6.8) also
follows similarly to the proof of (6.3) in Lemma 6.1; in the present case

E[At+1(n)] =
n∑

i=1

P[i ∈ {R1, . . . , RK}] = K
n∑

i=1

P[R1 = i],

by exchangeability of R (see the comment after (6.6)). But
∑n

i=1 P[R1 = i] = G(n), by
(A2) and the definition of G(n) at (3.2).

6.4 Large-N asymptotics

We show that properties of the Markov chains CN
t (s), described in Section 6.2, in the

large N limit can (at least when s < s∗) be described using the ‘N = ∞’ Markov chain
Ct(s), described in Section 6.3. The main tool is Theorem 8.1 stated and proved in
Section 8. Recall the definition of πs

N from Lemma 6.1.

Lemma 6.4. Suppose that (A1), (A2), and (A3) hold, and that s ∈ (0, s∗). There
exists a unique stationary distribution πs for Ct(s), with πs(n) > 0 for all n ∈ Z+ and∑

n∈Z+ πs(n) = 1, such that, for all n ∈ Z+,

lim
t→∞

P[Ct(s) = n] = πs(n), (6.9)

for any initial distribution C0(s). In addition, the following results hold.

(a) There exist c > 0 and C < ∞ such that, for all n ∈ Z+, πs
N(n) ≤ Ce−cn and

πs(n) ≤ Ce−cn.

(b) For any n ∈ Z+, limN→∞ πs
N(n) = πs(n).
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(c) As t → ∞, EN [C
N
t (s)] →

∑N
n=0 nπ

s
N(n) and E[Ct(s)] →

∑
n∈Z+ nπs(n) < ∞.

Proof. We will show that we can apply Theorem 8.1 with Y N
t = CN

t (s), Yt = Ct(s),
SN = {0, 1, . . . , N}, and S = Z+. Since s ∈ (0, 1) and (A1) holds, Lemma 6.1 shows that
CN

t (s) is an irreducible Markov chain on {0, 1, . . . , N}, while, since (A2) and (A3) hold,
Lemma 6.3 implies that Ct(s) is an irreducible Markov chain on Z+. Lemmas 6.1 and
6.3 also imply that the increments of CN

t (s) and Ct(s) are uniformly bounded in absolute
value (by K) almost surely. Thus (8.1) holds.

Next we verify the drift conditions in (8.2). Since s < s∗, there exists ε > 0 such that
s < s∗ − 2ε. First consider the finite-N case. By (A2) and the definition of s∗ at (3.3),
given ε, we can take N0 and n0 such that for any N ≥ N0 and any n ≥ n0,

GN(n) > s∗ − ε > s+ ε.

So we have from (6.3) that, for all N ≥ N0 and n ≥ n0,

EN [C
N
t+1(s)− CN

t (s) | CN
t (s) = n] ≤ −εK.

A similar argument holds for Ct(s), using (6.8). Thus (8.2) is satisfied. Finally, we verify
(8.3) by Lemma 6.2. Thus Theorem 8.1 applies, yielding the claimed results.

The next result deals with the case s > s∗. Recall that τN(s) defined by (4.7) denotes
the time of the first return of CN

t (s) to 0.

Lemma 6.5. Suppose that (A1), (A2), and (A3) hold, and that s > s∗. Then
limN→∞ EN [τN(s)] = ∞.

Proof. Suppose that s > s∗. Then, for some ε > 0, s− s∗ − ε > ε. Fix x ∈ N. Since, by
(A2), limN→∞ GN(n) = G(n) ≤ s∗ for any n, we can find N0(x) such that GN(n) ≤ s∗+ε
for any n ≤ x and any N ≥ N0(x). Hence, by (6.3),

EN [C
N
t+1(s)− CN

t (s) | CN
t (s) = n] ≥ Kε, (6.10)

for any N ≥ N0(x) and any n ≤ x, where ε > 0 does not depend on x. We show that
(6.10) implies that CN

t (s) has a positive probability (uniform in x) of reaching x before
returning to 0, which will imply the result. It suffices to suppose that CN

0 (s) ≥ 1.
To ease notation, write τ := τN(s) for the remainder of this proof. To estimate the

required hitting probability, set Wt := exp{−δCN
t (s)}, for δ > 0 to be chosen later. Now

Wt+1 −Wt = exp{−δCN
t (s)}

(
exp{−δ(CN

t+1(s)− CN
t (s))} − 1

)
≤ exp{−δCN

t (s)}
(
−δ(CN

t+1(s)− CN
t (s)) +Mδ2

)
,

for some absolute constant M , using the fact that the increments of CN
t (s) are uniformly

bounded. Taking expectations and using (6.10), we have that, on {CN
t (s) ≤ x},

EN [Wt+1 −Wt | CN
t (s)] ≤ exp{−δCN

t (s)}
(
−Kεδ +Mδ2

)
≤ 0,

for δ ≤ δ0 small enough, where δ0 > 0 depends only on ε and not on x or N . Let
νx := min{t ∈ Z+ : CN

t (s) ≥ x}. Then we have shown that Wt∧τ∧νx is a nonnegative
supermartingale, which converges a.s. to Wτ∧νx . It follows that

e−δ ≥ W0 ≥ EN [Wτ∧νx ] ≥ PN [τ < νx],

so that PN [νx < τ ] ≥ 1 − e−δ =: p, where p > 0 does not depend on x or on N . The
fact that CN

t (s) has increments of size at most K implies that on {νx < τ} we have
{τ ≥ x/K}. Hence PN [τ ≥ x/K] ≥ PN [νx < τ ] ≥ p, so that EN [τ ] ≥ px/K for all
N ≥ N0(x). Since x was arbitrary, the result follows.
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6.5 Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. First suppose that s < s∗. Then Lemma 6.4 applies. By Lemma
6.4(a), πs

N(n) ≤ Ce−cn where C < ∞ and c > 0 do not depend on N or n. In particular,
for any p > 0, supN

∑
n∈Z+ npπs

N(n) < ∞. Moreover, by Lemma 6.4(b), πs
N(n) → πs(n)

as N → ∞. Hence for any p > 0, by uniform integrability,
∑

n n
pπs

N(n) →
∑

n n
pπs(n)

as N → ∞. Together with Lemma 6.4(c), this implies that, for s < s∗,

lim
N→∞

lim
t→∞

EN [C
N
t (s)] = lim

N→∞

∑
n∈Z+

nπs
N(n) =

∑
n∈Z+

nπs(n) < ∞. (6.11)

Next suppose that s > s∗. Then, for fixed x > 0 and some ε > 0 (not depending on
x) we have that (6.10) holds for any N ≥ N0(x) and any n ≤ x. On the other hand, if
CN

t (s) > x, we have that CN
t+1(s) ≥ x−K (by bounded jumps). It follows that

EN [C
N
t+1(s)− CN

t (s) | CN
t (s)] ≥ K(1 + ε)1{CN

t (s) ≤ x} −K.

Taking expectations implies that

EN [C
N
t+1(s)]− EN [C

N
t (s)] ≥ K(1 + ε)PN [C

N
t (s) ≤ x]−K.

By (6.2), the left-hand side of the last display tends to 0 as t → ∞. It follows that, for
some δ > 0 that depends on ε but not on x, PN [C

N
t (s) ≥ x] ≥ δ for all t large enough.

Hence EN [C
N
t (s)] ≥ xδ, for all N and t sufficiently large, Since x was arbitrary, and δ

did not depend on x, the second part of the theorem follows.

Proof of Theorem 3.2. For s < s∗, the statement follows immediately from Theorem 4.1.
Suppose that s > s∗. For the duration of this proof, we write τ for τN(s) to ease

notation. In this case, Lemma 6.5 applies, showing that limN→∞ EN [τ ] = ∞. We claim
that CN

t (s) is asymptotically null in the sense that, for any n ∈ Z+,

lim
N→∞

lim
t→∞

PN [C
N
t (s) ≤ n] = 0. (6.12)

Indeed, (6.12) follows from Lemma 6.5 and the occupation-time representation for the
stationary distribution of an irreducible, positive-recurrent Markov chain (see e.g. [1,
Corollary I.3.6, p. 14]), which implies that

lim
t→∞

PN [C
N
t (s) ≤ n] =

n∑
x=0

πs
N(x) =

EN

∑τ−1
t=0 1{CN

t (s) ≤ n}
EN [τ ]

;

in the final fraction, the denominator tends to infinity with N (by Lemma 6.5) while the
numerator is uniformly bounded in N since the expected number of visits to any bounded
interval stays bounded, by irreducibility (uniform in N). Thus (6.12) holds for s > s∗.

Taking expectations in (6.3) yields

EN [C
N
t+1(s)]− EN [C

N
t (s)] = Ks−KEN [GN(C

N
t (s))]. (6.13)

The left-hand side of (6.13) tends to 0 as t → ∞ by (6.2). Also, for n0 as in (A4),

lim
N→∞

lim
t→∞

EN [GN(C
N
t (s))1{CN

t (s) < n0}] ≤ lim
N→∞

lim
t→∞

PN [C
N
t (s) ≤ n0],
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which is 0 by (6.12). Hence, taking limits in (6.13), we obtain

s = lim
N→∞

lim
t→∞

EN [GN(C
N
t (s))1{CN

t (s) ≥ n0}].

By condition (A4), a.s.,

GN(C
N
t (s))1{CN

t (s) ≥ n0} = s∗ + (1− s∗)
CN

t (s)

N
+ εN ,

where εN = o(1) as N → ∞, uniformly in CN
t (s) (and hence uniformly in t). Thus

s = lim
N→∞

lim
t→∞

(
s∗ + (1− s∗)N−1EN [C

N
t (s)]

)
,

which yields the result (3.9) for s > s∗.
Finally, suppose that s = s∗. Then CN

t (s) ≤ CN
t (r) for all t, N , and r > s∗. Hence

lim
N→∞

lim
t→∞

(
N−1E[CN

t (s)]
)
≤ lim

r↓s
lim

N→∞
lim
t→∞

(
N−1E[CN

t (r)]
)

= lim
r↓s

V (r),

by the previous part of the proof, since r > s∗. The latter limit is V (s∗) = 0, so the
result (3.9) is proved for s = s∗ as well.

7 Proofs for Section 4

7.1 Overview

In this section we study the K = 2 case of Example (E3), working towards proofs of
the results in Section 4. The organization of the section broadly mirrors that of Section
6. In Sections 7.2 and 7.3 we return to the finite-N Markov chain CN

t (s) and the limit
chain Ct(s), respectively, describing their properties more explicitly in this special case,
for which exact computations are available. Then in Section 7.4 we give the proofs of our
remaining results, Theorems 4.3, 4.4, and 4.5.

7.2 The Markov chain CN
t (s)

For this model, the following result complements the general Lemma 6.1. Write
psN(n,m) := PN [C

N
t+1(s) = m | CN

t (s) = n]. Recall the definition of FN from (4.1),
and that FN(0) = FN(1) = 0. In the case where FN(n) = n−1

N−1
, psN(n,m) was written

down in equations (1)–(3) in [7].

Lemma 7.1. For any s ∈ [0, 1], (CN
t (s))t∈Z+ is a Markov chain on {0, 1, 2, . . . , N} under

PN . The transition probabilities are given by

psN(0, 0) = (1− s)2, psN(0, 1) = 2s(1− s), psN(0, 2) = s2,

and for n ≥ 1,

psN(n, n− 2) = (1− s)2FN(n)

psN(n, n− 1) = 2s(1− s)FN(n) + (1− s)2(1− FN(n))
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psN(n, n) = s2FN(n) + 2s(1− s)(1− FN(n))

psN(n, n+ 1) = s2(1− FN(n)). (7.1)

Moreover, for n ≥ 0,

EN [C
N
t+1(s)− CN

t (s) | CN
t (s) = n] = 2s− (1 + FN(n))1{n ̸= 0}. (7.2)

Proof. Suppose that CN
t (s) = n. If n = 0, then the two points that we select come from

(s, 1), and CN
t+1(s) is 1 or 2 according to whether 1 or 2 of the new points land in [0, s]:

each does so, independently, with probability s. This gives psN(0,m).

Suppose that n ≥ 1. In this case, X
(1)
t ≤ s is always removed. Then CN

t+1(s) is either
(i) n−2; (ii) n−1; or (iii) n according to whether (i) the second point selected for removal

is one of {X(2)
t , . . . , X

(n)
t }, and both new points fall in (s, 1); (ii) the second point is one

of {X(2)
t , . . . , X

(n)
t }, and exactly one of the two new points falls in (s, 1), or the second

point is one of {X(n+1)
t , . . . , X

(N)
t }, and both new points fall in (s, 1); or (iii) the second

point is one of {X(n+1)
t , . . . , X

(N)
t }, and both new points fall in [0, s]. Thus we obtain the

expressions in (7.1), noting that the probability that one of {X(2)
t , . . . , X

(n)
t } is selected

as the second point for removal is FN(n). We then obtain (7.2) from (7.1).

7.3 The ‘N = ∞’ chain Ct(s)

Again we consider the ‘N = ∞’ chain Ct(s) as described in Section 6.3. In the special
case where (A2′) holds, so that F is the limiting distribution given by (4.2), and α = 0,
the transition probabilities ps(n,m) = P[Ct+1(s) = m | Ct(s) = n] are given for n = 0 by

ps(0, 0) = (1− s)2, ps(0, 1) = 2s(1− s), ps(0, 2) = s2,

and for n ∈ N by

ps(n, n− 1) = (1− s)2, ps(n, n) = 2s(1− s), ps(n, n+ 1) = s2.

In their analysis, de Boer et al. [7] discuss this Markov chain, although they do not
give full justification that it can be used to describe the asymptotics of the finite-N chains
CN

t (s); this is justified in a specific sense by our results from Section 6.4, which rely on
the technical tools from Section 8. In the remainder of this section we present some basic
properties of Ct(s).

The Markov chain Ct(s) is almost a nearest-neighbour random walk (or birth-and-
death chain), apart from the fact that from 0 we can make a jump of size 2. However,
the form of the transition probabilities allows us to use a trick to transform this into
a nearest-neighbour process (see the proof of Lemma 7.2 below). We will prove the
following result, which corrects an error in the stationary distribution proposed in [7].

Lemma 7.2. Suppose that α = 0 and s < 1/2. Then for any n ∈ Z+,

lim
t→∞

P[Ct(s) = n] = πs(n), (7.3)

and the stationary distribution πs satisfies (4.6). Moreover,

lim
t→∞

E[Ct(s)] = 2s+
s2

1− 2s
. (7.4)
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Proof. Observe that the probability of a jump from 0 to 2 is the same as that from 1 to
2 (namely, s2), while the probability of a jump from 0 into the set {0, 1} is the same as
that from 1 into {0, 1} (1− s2). So we can merge {0, 1} into a single state and preserve
the Markov property. (A formal verification of the preservation of the Markov property
under this transformation is provided by, for example, [9, Corollary 1].) This gives a
genuine birth-and-death chain on a state-space isomorphic to Z+. Call this new state-
space {0̄, 1̄, 2̄, . . .}, so that 0̄ corresponds to {0, 1} and n̄ for n ≥ 1 corresponds to n + 1
in the original state-space. This new Markov chain has transition probabilities

qs(0̄, 0̄) = 1− s2, qs(0̄, 1̄) = s2, and for n̄ ≥ 1, qs(n̄, m̄) = ps(n+ 1,m+ 1).

This Markov chain is reversible and solving the detailed balance equations (cf e.g. [6, §I.12,
pp. 71–76]) we obtain the stationary distribution π̄s for s < 1/2 as

π̄s(n̄) =

(
1−

(
s

1− s

)2
)(

s

1− s

)2n

,

for all n ≥ 0. To obtain πs(n), the stationary distribution for the original Markov chain,
we need to disentangle the composite state 0̄. We have that πs(0) + πs(1) = π̄s(0̄) and,
by stationarity,

πs(0) = (1− s)2πs(0) + (1− s)2πs(1).

Solving these equations we obtain (4.6). Some algebra then yields the mean of the
distribution πs (when s < 1/2), giving∑

n∈Z+

nπs(n) = 2s+
s2

1− 2s
< ∞, (7.5)

since s < 1/2. Hence (7.4) follows from (7.5) and Lemma 6.4(c).

7.4 Proofs of Theorems 4.3, 4.4, and 4.5

Now we can complete the proofs of our remaining theorems.

Proof of Theorem 4.3. The s < 1/2 statement follows from (6.11) and (7.5). On the
other hand, for any s ≥ 1/2 and any r < 1/2, we have CN

t (s) ≥ CN
t (r), so

lim
N→∞

lim
t→∞

EN [C
N
t (s)] ≥ lim

r↑1/2

(
2r +

r2

1− 2r

)
= ∞,

as required.

Proof of Theorem 4.4. The s < 1/2 part of the theorem follows from Lemma 7.2 and
Lemma 6.4(b). On the other hand, for any s ≥ 1/2 and any r < 1/2, PN [C

N
t (s) ≤ n] ≤

PN [C
N
t (r) ≤ n] so that, again by Lemmas 7.2 and 6.4(b),

lim
N→∞

lim
t→∞

PN [C
N
t (s) ≤ n] ≤ lim

r↑1/2

n∑
m=0

πr(m) = 0,

by (4.6).
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Proof of Theorem 4.5. Since PN [X
(n)
t ≤ s] = PN [C

N
t (s) ≥ n], we have

lim
N→∞

lim
t→∞

PN [X
(n)
t ≤ s] = 1− lim

N→∞
lim
t→∞

n−1∑
m=0

PN [C
N
t (s) = m] = 1−

n−1∑
m=0

πs(m),

by Theorem 4.4. The result (4.9) now follows from (4.6) and some algebra.

8 Appendix: Markov chain limits

In relating the asymptotics of the Markov chains CN
t (s) to the ‘N = ∞’ Markov chain

Ct(s), we need the following general result (Theorem 8.1) on a form of analyticity for
families of Markov chains that are uniformly ergodic in a certain sense (but not the sense
used in Chapter 16 of [26], where the uniformity is over all possible starting states of a
single Markov chain; our ‘uniformity’ is over a family of Markov chains all starting at the
same point). Theorem 8.1 is related to material in Chapters 6 and 7 of [11], although
our setting is somewhat different and the proof we give uses different ideas. Our context
differs from the set-up in [11], most notably in that our state-space changes with N , unlike
in [11]. It is likely that the methods of [11] could be adapted to our setting. However, it
is simpler to proceed directly; we use, in part, a coupling approach. Recall that a subset
S of R is locally finite if S ∩R is finite for any bounded set R.

Theorem 8.1. Fix N0 ∈ N. For each integer N ≥ N0 let Y
N
t be an irreducible, aperiodic

Markov chain under PN on SN a countable subset of [0,∞), where 0 ∈ SN , SN ⊆ SN+1,
and lim supN→∞ SN = ∞. Also suppose that Yt is an irreducible, aperiodic Markov chain
under P on S := ∪NSN . Suppose that S is locally finite. Write EN and E for expectation
under PN and P respectively. Suppose that there exists B < ∞ such that for all N ≥ N0,

PN [|Y N
t+1 − Y N

t | > B] = 0, and P [|Yt+1 − Yt| > B] = 0. (8.1)

Suppose also that there exist A0 ∈ (0,∞) and ε0 > 0 for which

sup
N≥N0

sup
x∈SN∩[A0,∞)

EN [Y
N
t+1 − Y N

t | Y N
t = x] ≤ −ε0;

sup
x∈S∩[A0,∞)

E[Yt+1 − Yt | Yt = x] ≤ −ε0. (8.2)

Let qN(x, y) := PN [Y
N
t+1 = y | Y N

t = x] and q(x, y) := P [Yt+1 = y | Yt = x]. Suppose that

lim
N→∞

[qN(x, y)1{x ∈ SN}] = q(x, y), (8.3)

for all x, y ∈ S. Then the following hold.

(a) The Markov chain Yt is ergodic on S and, for any N ≥ N0, Y
N
t is ergodic on SN .

Let τN := min{t ∈ N : Y N
t = 0} denote the time of the first return to 0 by the

process Y N
t ; similarly let τ := min{t ∈ N : Yt = 0}. There exists δ > 0 such that

E[eδτ ] < ∞, and sup
N≥N0

EN [e
δτN ] < ∞. (8.4)

23



(b) There exist stationary distributions νN on SN and ν on S such that

lim
t→∞

PN [Y
N
t = x] = νN(x), and lim

t→∞
P [Yt = x] = ν(x).

Moreover, there exist c > 0 and C < ∞ such that for all N ≥ N0 and all x ∈ SN ,
νN(x) ≤ Ce−cx and, for all x ∈ S, ν(x) ≤ Ce−cx.

(c) For any x ∈ S, limN→∞ νN(x) = ν(x).

(d) Finally,

lim
t→∞

EN [Y
N
t ] =

∑
x∈SN

xνN(x) < ∞, and lim
t→∞

E[Yt] =
∑
x∈S

xν(x) < ∞.

Before getting into the details, we sketch the outline of the proof. The Foster-type
condition (8.2) will enable us to conclude that the Markov chains have a uniform (in N)
ergodicity property implying parts (a) and (b). We then couple Yt and Y N

t on an interval
[0, A] where A is chosen large enough so that the processes reach 0 before leaving [0, A]
with high probability. Given such an A, we choose N large enough so that on this finite
interval (8.3) ensures that the two Markov chains can, with high probability, be coupled
until the time that they reach 0. This strategy, which succeeds with high probability,
ensures that the two processes follow identical paths over an entire excursion; using the
excursion-representation of the stationary distributions will yield part (c).

An elementary but important consequence of the conditions of Theorem 8.1 is a
‘uniform irreducibility’ property that we will use repeatedly in the proof; we state this
property in the following result. Note that the condition (8.3) is stronger than is necessary
for parts (a) and (b) of Theorem 8.1: in the proof of Theorem 8.1 (a) and (b) below, we
use only the uniform irreducibility property given in Lemma 8.1.

Lemma 8.1. Under the conditions of Theorem 8.1, for any A ∈ (0,∞) there exist
ε1 := ε1(A) > 0, N1(A) ∈ N, and n0(A) ∈ N such that, for all N ≥ N1(A) and all
x, y ∈ SN ∩ [0, A] there exists n := n(x, y) ≤ n0(A) for which

PN [Y
N
n = y | Y N

0 = x] ≥ ε1. (8.5)

Proof. Fix A ∈ (0,∞). Local finiteness implies that S ∩ [0, A] is finite. Take N large
enough so that SN ∩ [0, A] = S ∩ [0, A]. Irreducibility of Yt implies that for any x, y ∈ S,
there exists n(x, y) < ∞ such that P [Yn(x,y) = y | Y0 = x] > 0. There are only finitely
many pairs x, y ∈ S ∩ [0, A], so for such x, y, in fact P [Yn(x,y) = y | Y0 = x] ≥ ε2(A) > 0
where n(x, y) ≤ n0(A) and ε2 and n0 depend only on A, not on x, y. Moreover, for
any x, y ∈ S ∩ [0, A], there are only finitely many paths of length at most n0(A) from
x to y. It follows that for any x, y ∈ [0, A] we can find a sequence of states of S,
x0 = x, x1, . . . , xn−1, xn = y with n = n(x, y) ≤ n0(A) for which

P [Y1 = x1, . . . , Yn = xn | Y0 = x0] ≥ ε3(A) > 0.

However, by (8.3) we have that, as N → ∞,

PN [Y
N
1 = x1, . . . , Y

N
n = xn | Y N

0 = x0] = qN(x0, x1)qN(x1, x2) · · · qN(xn−1, xn)

→ q(x0, x1)q(x1, x2) · · · q(xn−1, xn) = P [Y1 = x1, . . . , Yn = xn | Y0 = x0].

So for all N large enough, PN [Y
N
n = y | Y N

0 = x] ≥ ε3(A)/2, say.
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Now we move on to the proof of Theorem 8.1. The theorem and its proof are in
parts closely related to existing results in the literature, in particular certain results
from [2–4,11,18,22,25,26,30] amongst others. However, none of the existing results that
we have seen fits exactly into the present context, and rather than try to adapt various
parts of these existing results we give a largely self-contained proof. In the course of the
proof we give some more details of how the arguments relate to existing results.

Proof of Theorem 8.1 (a) and (b). First we prove part (a). Since Y N
t is an irreducible,

aperiodic Markov chain on the finite or countably infinite state-space SN , the drift con-
dition (8.2) enables us to apply Foster’s criterion (see e.g. [11]) to conclude that Y N

t

is positive-recurrent (ergodic) and in particular, since (8.2) is uniform in N , EN [τN ] is
uniformly bounded (independently of N).

In fact, we have the much stronger result (8.4). The exponential moments result (8.4)
for a specific N is essentially a classical result, closely related to results in [11, 22, 26],
for instance, and follows from the drift condition (8.2) together with the bounded jumps
condition (8.1) and irreducibility: concretely, one may use, for example, Theorem 2.3
of [18] or the a = 0 case of Corollary 2 of [2]. The uniformity in (8.4) follows from the
fact that (8.2) and (8.1) hold uniformly in N , and that the irreducibility is also uniform
in the sense of Lemma 8.1. Indeed, the results of [2, 18] apply not to τN itself but to
σN := min{t ∈ Z+ : Y N

t ≤ A0} where A0 is the constant in (8.2): standard arguments
using the uniform irreducibility condition extend the uniform bound on EN [e

δσN ] to the
desired uniform bound on EN [e

δτN ]. In particular, (8.4) implies that for any k ∈ N there
exists Ck < ∞ such that

E[τ k] ≤ Ck, and sup
N≥N0

EN [τ
k
N ] ≤ Ck, (8.6)

a fact that we will need later. This completes the proof of part (a).
By positive-recurrence, there exist (unique) stationary distributions νN on SN and ν

on S such that limt→∞ PN [Y
N
t = x] = νN(x) and limt→∞ P [Yt = x] = ν(x). Next we

prove the uniform exponential decay of νN and ν. Again these results are closely related
to existing results in the literature, such as those in [18,25,30], Chapters 6 and 7 of [11],
Section 2.2 of [3], or Section 16.3 of [26].

For δ ∈ (0, 1), let Wt := eδYt . We show that Wt has negative drift outside a finite
interval, provided δ > 0 is small enough. We have that

E[Wt+1 −Wt | Yt = x] = eδxE[eδ(Yt+1−Yt) − 1 | Yt = x].

Taylor’s theorem with Lagrange remainder implies that for all y ∈ [−B,B] and all δ ∈
(0, 1), eδy−1 ≤ δy+Kδ2, where K := K(B) < ∞. Using this inequality and the bounded
jumps assumption (8.1), we obtain

E[Wt+1 −Wt | Yt = x] ≤ δeδx (E[Yt+1 − Yt | Yt = x] +Kδ)

≤ δeδx (−ε0 +Kδ) ,

when x > A0, by (8.2). Hence, for δ := δ(B, ε0) ∈ (0, 1) sufficiently small, we have that

E[Wt+1 −Wt | Yt = x] < 0, (8.7)

for x > A0.
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Let σ := min{t ∈ Z+ : Yt ≤ A0} and νx := min{t ∈ Z+ : Yt ≥ x}. By irreducibility,
σ ∧ νx < ∞ a.s.. Moreover, by (8.7), Wt∧σ∧νx is a nonnegative supermartingale. Hence
Wt∧σ∧νx → Wσ∧νx a.s. as t → ∞, and

eδY0 = W0 ≥ E[Wσ∧νx ] ≥ E[Wνx1{σ > νx}] ≥ eδxP [σ > νx].

The same argument holds for WN
t := eδY

N
t , uniformly in N ≥ N0. Thus we have

P [νx < σ | Y0 = y] ≤ e−δ(x−y), and PN [νN,x < σN | Y N
0 = y] ≤ e−δ(x−y), (8.8)

where νN,x := min{t ∈ Z+ : Y N
t ≥ x} and σN := min{t ∈ Z+ : Y N

t ≤ A0}.
We deduce from (8.8), with the uniform irreducibility property described in Lemma

8.1, that the probability of reaching [x,∞) before returning to 0 decays exponentially in
x, uniformly in N . We will show that

P [νx < τ ] ≤ Ce−δx, and PN [νN,x < τN ] ≤ Ce−δx. (8.9)

By uniform irreducibility (Lemma 8.1) and the bounded jumps assumption (8.1), we
have that there exist A1 ∈ (A0,∞) and θ > 0 for which

inf
y∈S∩[0,A0]

P [τ < νA1 | Y0 = y] > θ, and min
N≥N0

inf
y∈SN∩[0,A0]

PN [τN < νN,A1 | Y N
0 = y] > θ.

Together with (8.8), this will yield the result (8.9): the idea is that each time the process
enters [0, A0], it has uniformly positive probability of reaching 0 before it exits [0, A1],
otherwise, by (8.8), starting from [A1, A1 +B] the process reaches [x,∞) before its next
return to [0, A] with an exponentially small probability, and (8.9) follows. We write out
a more formal version of this idea for Yt only; a similar argument holds for Y N

t .
Let κ0 := 0 and for n ∈ Z+ define iteratively the stopping times ηn := min{t ≥ κn :

Yt > A1} and κn+1 := min{t ≥ ηn : Yt ≤ A0}. By successively conditioning at these times
(all of which are a.s. finite), we have

P [νx < τ ] ≤ P [νx < κ1 | Yη0 ] + E [P [νx < τ | Yκ1 ] | Yη0 ]

≤ P [νx < κn+1 | Yη0 ] + E [P [η1 < τ | Yκ1 ]E[P [νx < τ | Yη1 ] | Yκ1 ] | Yη0 ]

≤ Ce−δx
(
1 + (1− θ) + (1− θ)2 + · · ·

)
,

since P [ηn < τ | Yκn ] ≤ 1− θ a.s., and P [νx < κn+1 | Yηn ] ≤ Ce−δx by (8.8) and the fact
that Yηn ≤ A1 +B a.s., by (8.1). Thus we verify (8.9).

Let LN(x) denote the total occupation time of state x ∈ SN by Y N
t before time τN ,

i.e., during the first excursion of Y N
t ; similarly for L(x) with respect to Yt. That is,

LN(x) :=

τN−1∑
t=0

1{Y N
t = x}, and L(x) :=

τ−1∑
t=0

1{Yt = x}.

Standard theory for irreducible, positive-recurrent Markov chains (see e.g. [1, Corollary
I.3.6, p. 14]) gives

νN(x) =
EN [LN(x)]

EN [τN ]
, and ν(x) =

E[L(x)]

E[τ ]
. (8.10)

By (8.9), the probability of visiting x during a single excursion decays exponentially. In
order to bound the expected occupation time, we need an estimate for the probability of
returning to x starting from x. We claim that there exists ε2 > 0 for which

max
N≥N0

max
x∈SN∩[A0,∞)

PN [return to x before hitting 0 | Y N
0 = x] ≤ 1− ε2, (8.11)
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and also maxx∈S∩[A0,∞) P [return to x before hitting 0 | Y0 = x] ≤ 1−ε2. To verify (8.11),
note that from (8.2) and (8.1) there exists ε′ > 0 such that P [Yt+1−Yt ≤ −ε′ | Yt = x] ≥ ε′

for all x ≥ A0, and the same for Y N
t (uniformly in N). Then (8.8) yields (8.11). It follows

from (8.11) that, starting from x, the number of returns (before hitting 0) of Yt or Y
N
t

to x is stochastically dominated (uniformly in N and x) by a geometric random variable.
In particular,

EN [LN(x)] ≤ CPN [νN,x < τN ], and E[L(x)] ≤ CP [νx < τ ],

which, with (8.10), yields the claimed tail bounds on νN and ν.

Proof of Theorem 8.1 (c) and (d). First we prove part (c). We will again use the repres-
entation (8.10). We use a coupling argument to show that, as N → ∞, for any x ∈ S,

EN [LN(x)] → E[L(x)], and EN [τN ] → E[τ ]. (8.12)

Let ε > 0. Take A ∈ (0,∞) large enough so that BC1/A < ε, where C1 is the constant
in the k = 1 version of (8.6) and B is the bound in (8.1). Also, for convenience, choose
A so that A/B is an integer. We claim that

lim
N→∞

sup
x∈SN∩[0,2A]

∑
y∈S

|qN(x, y)1{y ∈ SN} − q(x, y)| = 0. (8.13)

To see this, note that since S (and hence also SN ⊆ S) is locally finite, in the supremum
in (8.13) x takes only finitely many values (uniformly in N), and, by (8.1), only finitely
many terms in the sum are non-zero (again, uniformly in N). Hence by condition (8.3)
we verify the claim (8.13). By (8.13), we can choose N large enough such that

sup
x∈SN∩[0,2A]

∑
y∈S

|qN(x, y)1{y ∈ SN} − q∞(x, y)| ≤ εB/A. (8.14)

We couple Y N
t and Yt. We take N large enough so that SN ∩ [0, 2A+B] = S∩ [0, 2A+

B]. We use the notation P ∗
N for the probability measure on the space on which we are

going to construct coupled instances of Y N
t and Yt, and write E∗

N for the corresponding
expectation. We start at Y N

0 = Y0 ≤ A. We claim that one can construct (Y N
t , Yt) as a

Markov chain under P ∗
N so that P ∗

N [Y
N
t = y | Y N

t = x] = qN(x, y), P
∗
N [Yt = y | Yt = x] =

q(x, y), and

P ∗
N [(Y

N
t , Yt) = (y, y) | (Y N

t , Yt) = (x, x)] ≥ min{qN(x, y), q(x, y)}.

To see this, observe that when Y N
t = Yt = x we may choose transition probab-

ilities rx(y, z) = P ∗
N [(Y

N
t , Yt) = (y, z) | (Y N

t , Yt) = (x, x)] satisfying rx(y, y) =
min{qN(x, y), q(x, y)},

∑
z ̸=y rx(y, z) = qN(x, y), and

∑
y ̸=z rx(y, z) = q(x, z): these con-

straints can always be satisfied by some choice of rx. If Y
N
t ̸= Yt, we define P

∗
N by allowing

the two processes to evolve independently.
Let σ := min{t ∈ N : Y N

t ̸= Y ∞
t } denote the time at which the processes first separate.

For any t ≤ A/B, we have from (8.1) that max{Y N
t , Yt} ≤ 2A a.s., and together with

the fact that the state-spaces of the two processes coincide on [0, 2A+B], (8.14) implies
that, for t ≤ A/B, P ∗

N [σ > t+ 1 | σ > t] ≥ 1− (Bε/A). Hence, for any t ≤ A/B,

P ∗
N [σ > t] ≥ 1−

(
tBε

A

)
. (8.15)
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Let Et denote the event Et := {σ > t} ∩ {τN ≤ t}, i.e., that the paths of Yt and Y N
t

coincide up until time t and visit zero by time t. Then, by (8.15),

P ∗
N [E

c
A/B] ≤ P ∗

N [σ ≤ A/B] + P ∗
N [τN > A/B] ≤ ε+ (BC1/A) ≤ 2ε, (8.16)

using Markov’s inequality and (8.6) to bound P ∗
N [τN > A/B], and the choice of A to

obtain the final inequality. On Et, {τN = τ}, so that

E∗
N [|τN − τ |] ≤ E∗

N [|τN − τ |1(Ec
A/B)]

≤ (E∗
N [τ

2
N ] + E∗

N [τ
2])1/2(P ∗

N [E
c
A/B])

1/2,

by the Cauchy–Schwarz inequality. By (8.16) and the k = 2 case of (8.6), this last
expression is bounded above by ε1/2 times a constant not depending on N . Since ε > 0
was arbitrary, the second statement in (8.12) follows.

Similarly, on Et, {LN(x) = L(x)} for any x ∈ S, so that

E∗
N [|LN(x)− L(x)|] ≤ E∗

N [|LN(x)− L(x)|1(Ec
A/B)]

≤ (E∗
N [τ

2
N ] + E∗

N [τ
2])1/2(P ∗

N [E
c
A/B])

1/2,

since LN(x) ≤ τN and L(x) ≤ τ a.s.. Thus we obtain the first statement in (8.12).
Combining the two statements in (8.12) with the representation in (8.10) we obtain
νN(x) → ν(x) for any x ∈ S, completing the proof of part (c).

Finally we prove part (d). The convergence results follow from, for example, Theorem
2 of [30] once the integrability of the stationary distributions is established. But the fact
that

∑
xνN(x) and

∑
xν(x) are finite follows from the bounds in part (b).
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