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Polynomial Zsigmondy theorems
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Abstract

We find analogues of the primitive divisor results of Zsigmondy, Bang, Bilu–
Hanrot–Voutier, and Carmichael in polynomial rings, following the methods of
Carmichael.
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A prime divisor of a term an of a sequence (an)n>1 is called primitive if
it divides no earlier term. The classical Zsigmondy theorem [4], generalizing
earlier work of Bang [1] (in the case b = 1), shows that every term beyond the
sixth in the sequence (an − bn)n>1 has a primitive divisor (where a > b > 0 are
coprime integers). Results of this form are important in group theory and in the
theory of recurrence sequences (see the monograph [3, Sect. 6.3] for a discussion
and references).

Our purpose here is to consider similar questions in polynomial rings. The
method of Carmichael [2] is used to find analogous results, with some modifica-
tions needed to avoid terms in the sequence where the Frobenius automorphism
precludes primitive divisors. In even characteristic the results take a slightly
different form, and an analogue of Bang’s theorem is found here.

1. Polynomial analogues

Let k be a field (of odd characteristic, unless stated otherwise), and consider
a sequence (fn)n>1 of elements of k[T ]. Since k[T ] is a unique factorization
domain, each term of the sequence factorizes into a product of irreducible poly-
nomials over k, so we may ask which terms have an irreducible factor which
is not a factor of an earlier term. Irreducible factors with this property will
be called primitive prime divisors. As usual, we write ordπ f (or ordp n) for
the maximal power to which an irreducible π divides f in k[T ] (or to which a
rational prime p divides n in Z).

The specific sequence we are interested in has fn = fn − gn, where f, g are
non-zero, coprime, polynomials in k[T ].
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Lemma 1.1. If π ∈ k[T ] is an irreducible dividing fn for some n > 1, then
for char(k) = p > 0,

ordπ(fmn) = pordp(m) ordπ(fn),

and for char(k) = 0,
ordπ(fmn) = ordπ(fn).

Proof. We may write
fn − gn = πordπ(fn)Q

for some Q ∈ k[T ] with π 6
∣∣ Q. Write a = ordπ(fn), so

fmn = (gn + πaQ)m = gmn +

m∑

i=1

(
m

i

)
πaiQign(m−i).

Thus

fmn = mπagn(m−1)Q+

m∑

i=2

(
m

i

)
πaiQign(m−i). (1)

We deduce that if char(k) = p > 0, then for p6
∣∣ m (or for char(k) = 0),

ordπ(fmn) = ordπ(fn).

Now suppose that m = pek with e > 0 and p6
∣∣ k. Then, for char(k) = p > 0,

fnm − gnm = (fnk − gnk)p
e

.

Now ordπ(fnk) = ordπ(fn) since p 6
∣∣ k, so ordπ(fmn) = pe ordπ(fn) as required.

Recall that a sequence (fn) is a divisibility sequence if fr |fs whenever r |s,
and is a strong divisibility sequence if gcd(fr, fs) = fgcd(r,s) for all r, s > 1.

Lemma 1.2. The sequence (fn)n>1 is a strong divisibility sequence.

Proof. Fixm,n ∈ N, and let ℓ = gcd(m,n). It is clear that the sequence (fn) is a
divisibility sequence, so fℓ |gcd(fm, fn). By Bézout’s lemma there exist c, d ∈ N

with ℓ = cn− dm, and

fcn(f
dm + gdm)− fdm(f cn + gcn) = 2fdmgdmfℓ. (2)

Any common divisor of fm and fn must divide fcn and fdm. Since k has odd
characteristic, 2 is a unit in k[T ] and so (2) shows that any common divisor
of fn and fm divides fdmgdmfℓ. Since both f and g are coprime to fk for any k,
any divisor of fm and fn divides fℓ, completing the proof.
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We will use the following simple observation several times. Let K be a
field, and let Φd ∈ K[x, y] denote the dth homogeneous cyclotomic polynomial.
If f, g ∈ K[T ] have deg(f) 6= deg(g), then it is clear that Φn(f, g) is not a unit
for any n ∈ N. If deg(f) = deg(g) = d, and ζ is a primitive nth root of unity
over K, then

Φn(f, g) =

n∏

i=1,
gcd(i,n)=1

(f − ζig).

For Φn(f, g) to be a unit requires that f − ζig is a unit for each i. Write

f =

d∑

j=1

ajT
j , g =

d∑

j=1

bjT
j.

For f − ζig to be a unit requires that ad = ζibd. Now for n > 2, the Euler
function φ(n) > 2, and so we can pick 0 < i1 < i2 < n with gcd(i1, n) =
gcd(i2, n) = 1. If ad = ζi1bd and ad = ζi2bd, then as ad, bd 6= 0 by assumption,
we must have ζi2−i1 = 1, contradicting the fact that ζ is a primitive nth root
of unity. We deduce that, for coprime polynomials f, g ∈ k[T ],

Φn(f, g) is not a unit if n > 2. (3)

These preparatory results give a polynomial form of Zsigmondy’s theorem
as follows.

Theorem 1.3. Suppose char(k) = p > 0, and let P be the sequence obtained
from (fn)n>1 by deleting the terms fn with p|n. Then each term of P beyond the
second has a primitive prime divisor. If char(k) = 0, then the sequence (fn)n>1

has the property that all terms beyond the second have a primitive prime divisor.

Proof. Notice that

fn =
∏

d|n

Φd(f, g), (4)

and so
Φn(f, g) =

∏

d|n

f
µ(n/d)
d

by Möbius inversion. Thus

ordπ(Φn(f, g)) =
∑

d|n

µ(nd ) ordπ(fd) (5)

for any prime π ∈ k[T ]. Suppose now that π is a prime divisor of fn which is
not primitive, so that π | fm for some m < n chosen to be minimal with that
property. Then m|n by Lemma 1.2 and

ordπ(fmk) = ordπ(fm)
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for any k with p6
∣∣ k, by Lemma 1.1. In addition, we claim it follows that ordπ(fc) =

0 unless m | c. Suppose this were not the case, then ordπ(fc) > 0 for some c

with m6
∣∣ c, and Lemma 1.2 yields π | fgcd(m,c). However, since m6

∣∣ c, gcd(m, c) <
m, so this contradicts the minimality of m. Thus (5) gives

ordπ(Φn(f, g)) =
∑

d| n
m

µ( n
dm ) ordπ(fdm)

=
∑

d| n
m

µ( n
dm ) ordπ(fm)

= ordπ(fm)
∑

d| n
m

µ( n
dm ) = 0

as m < n. We deduce that any non-primitive prime divisor of fn does not
divide Φn(f, g). By (3) above, Φn(f, g) is non-constant for n > 2, and so Φn(f, g)
has a prime divisor in k[T ]. Therefore, as any prime divisor of Φn(f, g) is
primitive, every term in P beyond the second has a primitive prime divisor.
The proof for the characteristic zero case follows in exactly the same way.

We record two simple observations that arise from this argument.

1. In fact (4) shows a little more: any primitive prime divisor of fn must
divide Φn(f, g), and so the primitive part (that is, the product of all the
primitive prime divisors to their respective powers) of fn is exactly Φn(f, g).
This gives a lower bound for the size of the primitive part f∗

n of fn under
the assumption that deg(f) 6= deg(g):

deg(f∗
n) = φ(n)max{deg(f), deg(g)} > n1−δ max{deg(f), deg(g)}

for δ > 0 and large enough n.
2. It is also clear that we need to remove all the terms from the sequence with

index divisible by p. If n = pc for some c > 1, then fn = fpc = (fc)
p, so

any term with index divisible by p fails to have a primitive prime divisor.

Theorem 1.3 is a form of Zsigmondy theorem for polynomial rings, but it
is not clear how to prove strong divisibility when char(k) = 2. Computations
suggest that the result is still true in this case. When g = 1 and char(k) = 2, the
sequence (fn)n>1 satisfies the strong divisibility property, giving the analogue
of Bang’s Theorem in all characteristics.

Lemma 1.4. Let char(k) = 2 and let f ∈ k[T ] be a non-zero non-unit. Then
the sequence (hn = fn − 1)n>1 is a strong divisibility sequence.

Proof. As before, let ℓ = gcd(m,n) so hℓ |gcd(hm, hn) by the divisibility prop-
erty. As before, there exist c, d ∈ N with ℓ = cn− dm. A common divisor of hn

and hm must divide hcn and hdm, and

hcn − hdm = fdmhℓ,

so any common divisor of hn and hm must divide fdmhℓ. Since f and hk are
coprime for any k, any divisor of hm and hn must divide hℓ.
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Corollary 1.5. Assume that char(k) = p > 2 and hn ∈ k[T ] is as in Lemma 1.4.
Then the sequence obtained from (hn)n>1 by deleting terms with index divisible
by p has the property that all terms beyond the first have a primitive prime
divisor.

2. Polynomial Lucas sequences

In this section we provide an analogue of the result of Bilu, Hanrot and
Voutier on primitive prime divisors in Lucas sequences. Let k be a field, and
fix α ∈ k̄ such that [k(α) : k] = 2. Let σ be the non-identity k-automorphism
of k(α), and define the polynomial sequence (Ln)n>1 by

Ln =
Pn − (Pσ)

n

P − Pσ
,

where for P =
∑d

i=0 aiT
i we write Pσ =

∑d
i=0 σ(ai)T

i. Then Ln ∈ k[T ] and we
can again ask which terms of the sequence see new irreducible factors.

We follow the path of Carmichael [2] in deducing some elementary arithmetic
properties of the sequence. In order to do this, there is a degenerate possibility
that must be avoided, so from now on we assume that P has the property
that P +Pσ and PPσ are coprime in k[T ]. Without this property, the sequence
is not a strong divisibility sequence. For example, if k = Q, α =

√
2, and P =

T 2 + (1 +
√
2)T +

√
2, then gcd(L2, L3) = T + 1 6= 1 = L1.

Lemma 2.1. The polynomials PPσ and Ln are coprime in k[T ] for n > 1.

Proof. The binomial expansion shows that

(P + Pσ)
n−1 = Pn−1 + (Pσ)

n−1 + PPσQ1 (6)

for some Q1 ∈ k[T ]. Moreover,

Ln = Pn−1 + (Pσ)
n−1 + PPσQ2 (7)

for some Q2 ∈ k[T ]. If Q3 ∈ k[T ] is irreducible and divides both PPσ and Ln

then, by (7), we have Q3 |Pn−1 + (Pσ)
n−1. Then, by (6), Q3 |P + Pσ, contra-

dicting the standing assumption that P + Pσ and PPσ are coprime. Thus the
greatest common divisor of PPσ and Ln must be a unit.

As mentioned above, we deduce the strong divisibility property for our se-
quence.

Lemma 2.2. Assume that char(k) 6= 2. Then the sequence (Ln)n>1 is a strong
divisibility sequence.

Proof. It is clear that (Ln)n>1 is a divisibility sequence. As before, let ℓ =

gcd(m,n) and choose c, d ∈ N with cn−dm = ℓ. For brevity write L̂n = Pn+Pn
σ ,

and notice that
LcnL̂dm − LdmL̂cn = 2(PPσ)

dmLℓ.

Hence a common divisor of Ln and Lm divides (PPσ)
dmLℓ, and hence must

divide Lℓ by Lemma 2.1.
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The next result shows that in characteristic p we can still expect to find that,
in general, terms with index divisible by p once again fail to produce primitive
divisors.

Lemma 2.3. Let char(k) = p > 2. Then for n divisible by p (with the possible
exception of n = p), Ln fails to have a primitive prime divisor.

Proof. Write L′
n = Pn − Pn

σ , and assume that n = cp for some c > 1. Then

L′
cp = (L′

c)
p +

(p−1)/2∑

i=1

(−1)i−1

(
p

i

)
(PPσ)

icL′
(p−2i)c.

However p|
(
p
i

)
for 1 6 i 6 p−1

2 , so L′
cp = (L′

c)
p, and therefore Lcp = (L′

1)
p−1Lp

c .

Thus, once again, terms whose index is divisible by the characteristic must
be removed in order to find primitive divisors.

One more lemma is needed before making the key divisibility observation
for the sequences (Ln)n>1.

Lemma 2.4. Assume that char(k) 6= 2. Then L̂m and Lm are coprime in k[T ].

Proof. Clearly
L̂2
m − (L′

m)2 = 4(PPσ)
m,

so
L̂2
m − (L′

1)
2L2

m = 4(PPσ)
m.

By assumption, 4 is a unit in k[T ], so any prime π ∈ k[T ] dividing L̂m and Lm

also divides PPσ, completing the proof by Lemma 2.1.

Lemma 2.5. Let Ln be as defined above. If π ∈ k[T ] is a prime dividing Ln,
then for char(k) = p > 0 and m,n coprime to p,

ordπ(Lmn) = ordπ(Ln),

and for char(k) = 0,
ordπ(Lmn) = ordπ(Ln).

Proof. For m odd, this proceeds as in the proof of Lemma 2.3. The result is
clearly true for m = 1. So now suppose that

ordπ(Lbn) = ordπ(Ln)

for each odd integer b < m. Then we note that

Lmn = (P − Pσ)
m−1Lm

n +

(m−1)/2∑

i=1

(−1)i
(
m

i

)
(PPσ)

inL(m−2i)n.
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Not all terms inside the summation are zero, since m is coprime to p, so by the
inductive assumption we conclude the statement of the lemma by the ultrametric
property of the valuation ordπ. For m even, note that it is sufficient to prove
this for m = 2. However, since

L2m =
P 2m − P 2m

σ

P − Pσ
=

Pm − Pm
σ

P − Pσ
· (Pm + Pm

σ ),

we see that
L2m = L̂mLm.

By Lemma 2.4, L̂m, Lm are coprime in k[T ], and so

ordπ(L2m) = ordπ(Lm).

As before, we are now ready for our Zsigmondy theorem.

Theorem 2.6. Suppose char(k) = p > 2, and let Q be the sequence obtained
from (Ln)n>1 by deleting the terms with p|n. Then each term of Q beyond the
second has a primitive prime divisor. If char(k) = 0, then the sequence (Ln)n>1

has the property that all terms beyond the second have a primitive prime divisor.

Proof. We begin by noting the fact that

Ln =
∏

d|n,

d>1

Φd(P, Pσ),

where Φd is the dth homogeneous cyclotomic polynomial. By Möbius inversion,

Φn(P, Pσ) =
∏

d|n,

d>1

L
µ(n/d)
d =

∏

d|n

L
µ(n/d)
d .

The rest of the proof proceeds along the same lines as the proof of Theorem 1.3,
combining Lemmas 2.2 and 2.5 with (3).
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