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Abstract

We give a generalisation of Deligne-Lusztig varieties for general and
special linear groups over finite quotients of the ring of integers in a non-
archimedean local field. Previously, a generalisation was given by Lusztig
by attaching certain varieties to unramified maximal tori inside Borel sub-
groups. In this paper we associate a family of so-called extended Deligne-
Lusztig varieties to all tamely ramified maximal tori of the group.

Moreover, we analyse the structure of various generalised Deligne-
Lusztig varieties, and show that the “unramified” varieties, including a
certain natural generalisation, do not produce all the irreducible repre-
sentations in general. On the other hand, we prove results which together
with some computations of Lusztig show that for SL2(Fq[[$]]/($2)), with
odd q, the extended Deligne-Lusztig varieties do indeed afford all the ir-
reducible representations.
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1 Introduction
Let F be a non-archimedean local field with finite residue field Fq. Let OF

be the ring of integers in F , and let p be its maximal ideal. If r ≥ 1 is a
natural number, we write OF,r for the finite quotient ring OF /pr. Let G be
a reductive group scheme over OF . The representation theory of groups of
the form G(OF,r), in particular for G = GLn, has recently attracted attention
from several different directions. On the one hand, there are the “algebraic”
approaches to the construction of representations. These include the method of
Clifford theory and conjugacy orbits, which can deal explicitly with the class
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of regular representations (cf. [13] and [33]). Another approach, due to Onn
[25], is based on a generalisation of parabolic induction for general automor-
phism groups of finite OF -modules. This approach and the associated notion
of cuspidality for GLn(OF,r) are developed in [1]. Moreover, by the work of
Henniart [3] and Paskunas [26], it is known that every supercuspidal represen-
tation of GLn(F ) has a unique type on GLn(OF ). Hence the representation
theory of the finite groups GLn(OF,r) encodes important information about the
infinite-dimensional representation theory of the p-adic group GLn(F ).

On the other hand, there is the cohomological approach to constructing
representations. The case r = 1 corresponds to connected reductive groups over
finite fields and was treated in the celebrated work of Deligne and Lusztig [6].
In [30], Springer asks whether the geometric methods employed for r = 1 can be
used to deal also with groups of the form G(OF,r), for r ≥ 2. The first step in
this direction was taken by Lusztig [19], where a cohomological construction of
certain representations of groups of the form G(OF,r) was suggested (without
proof). More recently, the proof was given in [20] for the case where F is of
positive characteristic, and this was generalised to groups over arbitrary finite
local rings in [34]. This construction attaches varieties and corresponding virtual
representations RT,U (θ) of G(OF,r) to certain maximal tori in G. However, this
construction has two limitations. Firstly, in contrast to the case r = 1, it is not
true for r ≥ 2 that every irreducible representation of G(OF,r) is a component
of some RT,U (θ). Secondly, the maximal tori in G correspond to unramified tori
in the group G × F , that is, maximal tori which are split after an unramified
extension. However, there also exist ramified maximal tori in G × F , and
these are known to play a role in the representation theory of GLn(OF,r) and
SLn(OF,r) analogous to that of the unramified maximal tori. In particular, since
the work of Howe [14] it has been known that tamely ramified supercuspidal
representations of GLn(F ) come in families attached to maximal tori. Given
the correspondence between supercuspidal representations of GLn(F ) and their
types on GLn(OF ), it is not surprising that ramified maximal tori should play
a role in the representation theory of GLn(OF,r).

It is thus natural to ask whether it is possible to generalise the “unramified”
construction of [20] and [34] to account also for the ramified maximal tori.
The main purpose of this paper is to introduce a family of so-called extended
Deligne-Lusztig varieties, corresponding to all the tamely ramified maximal tori.
Another part of the paper motivates our approach by showing the inadequacy
of varieties defined only with respect to unramified extensions of F . Finally, we
show in a non-trivial special case that our construction leads to the expected
result, namely, that varieties attached to a ramified maximal torus realise in
their cohomology a family of representations which is known (by the algebraic
construction) to be associated to this maximal torus.

The following is a more detailed outline of the paper. For a scheme X over
Fq, and a prime l different from p, we will consider the l-adic étale cohomology
groups with compact support Hi

c(X, Ql). In what follows, l will be fixed and
we will denote Hi

c(X, Ql) simply by Hi
c(X). We denote the alternating sum of

cohomologies
∑

i≥0(−1)iHi
c(X) by H∗

c (X). Let F ur be the maximal unrami-
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fied extension of F (inside a fixed algebraic closure of F ), and let OFur be its
ring of integers. The construction of [20] and [34] considers the finite group
G(OF,r) as the fixed-point subgroup of G(OFur,r) under a Frobenius endomor-
phism ϕ : Gr → Gr, typically induced by the (arithmetic) Frobenius element
in Gal(F ur/F ). The Greenberg functor allows one to view G(OFur,r) as a con-
nected affine algebraic group Gr over the algebraic closure Fq, and G(OF,r) is
naturally isomorphic to a subgroup GF,r of Gr. For instance, if ϕ comes from
the Frobenius in Gal(F ur/F ), then Gϕ

r
∼= GF,r. Similarly, for every subgroup

scheme H of G, we have a connected algebraic subgroup Hr
∼= H(OFur,r) of

Gr. For r ≥ r′ ≥ 1 we have a natural map ρr,r′ : Hr → Hr′ , and we denote its
kernel by Hr′

r .
Suppose that T is a maximal torus in G×OFur contained in a Borel subgroup

B with unipotent radical U such that T r and Ur are ϕ-stable. Let L : Gr → Gr

be the Lang map, given by g 7→ g−1ϕ(g). For any element w in the Weyl group
NG1(T1)/T1, and any lift ŵ ∈ NGr (Tr) of w, we can then define the varieties

Xr(w) = L−1(ẇBr)/Br ∩ ẇBrẇ
−1,

X̃r(ŵ) = L−1(ŵUr)/Ur ∩ ŵUrŵ
−1,

where X̃r(ŵ) is a finite cover of Xr(w). These varieties were first considered by
Lusztig [19], and coincide with classical Deligne-Lusztig varieties for r = 1. For
r = 1 the Bruhat decomposition in G1 implies that the varieties X1(w), and
hence the corresponding covers X̃1(ŵ), are attached to double B1-B1 cosets.

It was shown by Deligne and Lusztig [6] that every irreducible representation
of Gϕ

1 is a component of the cohomology of some variety X̃1(ŵ). In contrast,
using the varieties X̃r(ŵ) for r ≥ 2, this is no longer true in general. On the
other hand, for r ≥ 2 there exist double Br-Br cosets which are not indexed by
elements of the Weyl group. In order to construct the missing representations
it therefore seems natural to define the following varieties (first considered by
Lusztig)

L−1(xBr)/Br ∩ xBrx
−1, L−1(xUr)/Ur ∩ xUrx

−1, for any x ∈ Gr.

One may then hope that since these varieties account for all double Br-Br cosets
in Gr, they may also afford further representations of Gϕ

r , not obtainable by the
varieties X̃r(ŵ). However, it turns out that this is not the case, and we prove
in Section 3 that there are non-trivial cases where these varieties do not af-
ford any new representations beyond those given by the varieties X̃r(ŵ). In
Subsection 3.1 we give an explicit algebraic description of the irreducible repre-
sentations of SL2(OF,r), using Clifford theory and orbits. This construction is
well-known for odd q, but the case when q is a power of 2 requires a modification
and does not seem to have previously appeared in this form.

Assume for the moment that G = SL2, and let U and U− be the upper
and lower uni-triangular subgroups, respectively. If G is a finite group acting
on two varieties X and Y , we write X ∼ Y if H∗

c (X) ∼= H∗
c (Y ) as virtual

G-representations. In Subsection 3.2, we show
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Theorem 3.5. Let y ∈ (U−)12. Then L−1(yU2) ∼ X̃2(1), and hence

H∗
c (L−1(yU2)) ∼= IndGϕ

2
Uϕ

2
1

as Gϕ
2 -representations.

Together with Proposition 3.4 and Proposition 3.6 this result implies that any
irreducible representation of SL2(OF,2) which appears in the cohomology of a va-
riety of the form L−1(xB2)/B2∩xB2x

−1, L−1(xU2)/U2∩xU2x
−1, or L−1(xU2)

already appears in the cohomology of a variety X̃2(ŵ), where w is one of the two
elements of NG1(T1)/T1. Combining this with results of Lusztig on the cohomol-
ogy of X̃2(ŵ), for w 6= 1 and F of positive characteristic (cf. [20], 3), we deduce
as a corollary that there exist certain nilpotent representations of SL2(OF,2),
for F of positive characteristic, which do not appear in the cohomology of any
of the above varieties.

Having shown that the idea of attaching generalised Deligne-Lusztig varieties
to double Br-Br cosets does not lead to a satisfactory construction, we turn to
another point of view. In this paper we will primarily be concerned with the
cases G = GLn or G = SLn, and where ϕ is the standard Frobenius. Assume
now that we are in one of these cases.

Rather than using the varieties X̃r(ŵ), the unramified representations RT,U (θ)
of [20] and [34] can also be constructed by using another type of variety. A va-
riety of this kind is attached to a Borel subgroup containing certain maximal
torus. Let now T be any maximal torus of G ×OFur such that Tr is ϕ-stable.
Let B be a Borel subgroup containing T, and let U be the unipotent radical
of B. One can then attach a Deligne-Lusztig variety to the inclusion Tr ⊂ Br.
In the case r = 1, the group T1 is a maximal torus of G1, but in general Tr

is not a maximal torus, but a Cartan subgroup of Gr. A ϕ-stable Cartan sub-
group Tr is the connected centraliser of a regular semisimple element in Gϕ

r .
This shows the relation between regular semisimple elements in Gϕ

r and the
unramified Deligne-Lusztig construction. The work of Hill [13] for GLn, and
the results for SL2 (see Subsection 3.1) clearly show that the regular elements
in G(OF,r) and their centralisers play an important role in the representation
theory of G(OF,r). Among the elements in G(OFur,r), there are those with dis-
tinct eigenvalues in some extension of the ring OFur,r. We call such elements,
and the corresponding elements in Gr, separable. For r = 1 they are precisely
the regular semisimple elements, but in general there are non-regular unipotent
separable elements. The Cartan subgroups Tr are thus the reductions mod pr of
the OFur-points of unramified maximal tori in G × F ur defined over OFur , and
correspond to regular semisimple elements. In addition, there exist subgroups
of G(OFur,r) which come from ramified tori, and these are the centralisers of
regular separable elements which are not semisimple.

The idea in Section 4 is that one should attach generalised Deligne-Lusztig
varieties not only to unramified maximal tori, but to the centraliser of any
regular separable element in Gϕ

r . To achieve this, we consider an arbitrary
regular separable element x ∈ Gϕ

r , and its centraliser CGr (x), called a quasi-
Cartan subgroup. To generalise the unramified case, we would also need an
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inclusion of CGr
(x) into a group of the form Br. However, one feature of general

regular separable elements is that they may not be triangulable in Gr, that is,
x may not be conjugate in Gr to any element in Br. This means that unlike the
Cartan subgroups Tr, general quasi-Cartans may not lie inside any conjugate
of Br. We are thus lead to extend the base field F to a ramified extension.
More precisely, in Section 4 we show that given any element x ∈ GF,r′ , for some
r′ ≥ 1, there exists a finite extension L/F ur, an integer r ≥ r′, a connected
affine algebraic group GL,r

∼= G(OL,r), and a λ ∈ GL,r, such that GF,r′ ⊆ GL,r

and such that λ−1xλ ∈ BL,r. This implies that if x is regular separable, then

CGr (x) ⊆ λBL,rλ
−1.

Given a ϕ-stable quasi-Cartan CGr (x), and a group λBL,rλ
−1 containing it, and

assuming that L/F ur is tamely ramified, we construct a variety XΣ
L,r(λ), where

Σ contains two endomorphisms of GL,r (including one Frobenius). The variety
XΣ

L,r(λ) is a subvariety of GL,r/BL,r, which is a generalisation of the flag variety
of Borel subgroups, and is provided with an action of the finite groups of fixed
points GΣ

L,r. When L/F ur is tamely ramified, we show that GΣ
L,r = GF,r′ .

It is also important to define finite covers of XΣ
L,r(λ), generalising X̃r(ŵ).

However, in general there does not seem to be any straightforward way to define
such a cover of the whole of XΣ

L,r(λ), but only of a certain subvariety of XΣ
L,r(λ).

The covers we construct are denoted X̃Σ
L,r(λ), and do indeed reduce to the covers

X̃r(ŵ) in the unramified case. In particular, X̃Σ
L,r(λ) also carries an action of

GΣ
L,r, and a commuting action of a finite group S(λ)/S(λ)0. This generalises

the action of Gϕ
r × T ŵϕ

r on X̃r(ŵ). We call the varieties XΣ
L,r(λ) and X̃Σ

L,r(λ)
extended Deligne-Lusztig varieties.

In Section 5 we study the extended Deligne-Lusztig varieties for G = GL2

and G = SL2, with F of odd characteristic and r = 3. In this case, only one
(tamely) ramified quadratic extension L/F ur occurs, and we have GΣ

L,3 = GF,2
∼=

G(OF,2). There are four conjugacy classes of rational quasi-Cartan subgroups of
G2. The two classes of Cartan subgroups give rise to the “unramified” varieties
X̃2(1) and X̃2(ẇ), respectively. The third class gives rise to an extended Deligne-
Lusztig variety X̃Σ

L,3(λ), and we show the following

Theorem 5.1. Let Z be the centre of G. Then there exists a GΣ
L,3-equivariant

isomorphism
X̃Σ

L,3(λ)/(Z1
L,3)

ϕ ∼= GΣ
L,3/(Z1

L,3)
Σ(U1

L,3)
Σ.

Here Z1
L,3 is the kernel of the natural reduction map ZL,3 → ZL,1, and similarly

for U1
L,3. Combining this result with results of Lusztig [20], we can show in

particular that every irreducible representation of SL2(Fq[[$]]/($2)), with odd
q appears in the cohomology of some extended Deligne-Lusztig variety.

In the final section, we state some open problems and indicate several direc-
tions in which our results could be taken further.
Acknowledgement. The main parts of this work were carried out under EP-
SRC Grant EP/C527402. The author also acknowledges support by EPSRC
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2 Notation and general facts
For any discrete valuation field F we denote by OF its ring of integers, by pF

the maximal ideal of OF , and by k = kF the residue field (which we always
assume to be perfect). If r ≥ 1 is a natural number, we let OF,r denote the
quotient ring OF /pr

F . Throughout the paper $ = $F will denote a fixed prime
element of OF .

Let X be a scheme of finite type over OF,r. Greenberg [10, 11] has defined
a functor FOF,r from the category of schemes of finite type over OF,r to the
category of schemes over k, such that there exists a canonical isomorphism

X(OF,r) ∼= (FOF,rX)(k),

and such that FOF,1 = Fk is the identity functor. Moreover, Greenberg has
shown that the functor FOF,r preserves schemes of finite type, separated schemes,
affine schemes, smooth schemes, open and closed subschemes, and group schemes,
over the corresponding bases, respectively. If X is smooth over OF,r and X× k
is reduced and irreducible, then FOF,r

X is reduced and irreducible ([11], 2,
Corollary 2).

Let G be an affine smooth group scheme over OF . By definition it is then
also of finite type over OF . For any natural number r ≥ 1 we define

GF,r := FOF,r
(G ×OF

OF,r)(k).

By the results of Greenberg, GF,r is then the k-points of a smooth affine group
scheme over k. It can thus be identified with the k-points of an affine algebraic
group defined over k. Since G is smooth over OF , it follows that for any natural
numbers r ≥ r′ ≥ 1, the reduction map OF,r → OF,r′ induces a surjective
homomorphism ρr,r′ : GF,r → GF,r′ . The kernel of ρr,r′ is denoted by Gr′

F,r.
The multiplicative representatives map k× → O×

F,r induces a section ir : GF,1 →
GF,r. In the case where F is of positive characteristic, there is an inclusion of
k-algebras k → OF,r, and ir is an injective homomorphism. When F is of
characteristic zero ir is not in general a homomorphism. However, if G is a
split torus, then ir is always a homomorphism, irrespective of the characteristic
of F .

Following [28], XIX 2.7, we call a group scheme G over a base scheme S
reductive if G is affine and smooth over S, and if its geometric fibres are con-
nected and reductive as algebraic groups. If G is a reductive group scheme
over S, we will speak of maximal tori and Borel subgroups of G, which are also
group schemes over S. For any Borel subgroup of G there is also a well-defined
unipotent radical. For these notions, see [28], XXII 1.3, XIV 4.5, and XXVI 1.6,
respectively. For more on reductive group schemes, see [34] and its references.
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From now on and throughout the paper, let F denote a local field with finite
residue field Fq of characteristic p. We will use the same symbol pF to denote
the maximal ideal in OF , as well as the maximal ideal in any of the quotients
OF,r. Let G be a reductive group scheme over OF . By definition, G is affine
and smooth over OF . We fix an algebraic closure of F in which all algebraic
extensions are taken. Denote by F ur the maximal unramified extension of F
with residue field Fq, an algebraic closure of Fq. Suppose that L is a finite
extension of F ur. Then L also has residue field Fq. We define

GL,r := (G ×OF OL)L,r = FOL,r (G ×OF OL,r)(Fq).

Thus GL,r is an affine algebraic group over Fq. Since G has connected fibres
(by definition), GL,r is connected. For F ur we will drop the subscript and write
Gr for GFur,r, and Gr′

r for the kernel Gr′

Fur,r.
If G is a finite group, we denote by Irr(G) the set of irreducible Ql-represen-

tations of G. Since the values of the characters in Irr(G) all lie in some finite
extension of Q, there is a character preserving bijection between Irr(G) and
the set of irreducible complex representations of G. For any finite group G we
denote its trivial representation by 1.

If x is a real number, we will write [x] for the largest integer ≤ x.
Many results about l-adic cohomology used in classical Deligne-Lusztig the-

ory are applicable also in the generalised situations we will consider, and through-
out we will assume familiarity with the results stated in [7], 10. In what follows,
all varieties will be separated reduced schemes of finite type over Fq, and we
identify every variety with its set of Fq-points. Suppose that G is a finite group
acting on a variety X. Then each g ∈ G induces an element of AutQl

(Hi
c(X)),

for each i ≥ 0, and this is a representation of G. The quantity

L (g,X) :=
∑
i≥0

(−1)i Tr(g | Hi
c(X)) = Tr(g | H∗

c (X))

is called the Lefschetz number of X at g. A virtual representation of G is an
element in the Grothendieck group of the semigroup generated by Irr(G) under
the direct sum operation. The function L (−, X) : G → Ql is the character of
the virtual representation H∗

c (X) given by the action of G on X. Let G be a
finite group that acts on the varieties X and Y , respectively. Recall that we
write X ∼ Y if H∗

c (X) = H∗
c (Y ) as virtual G-representations. We then have

X ∼ Y if and only if L (−, X) = L (−, Y ), and the relation ∼ is an equivalence
relation.

Lemma 2.1. Suppose that f : X → Y is a (set-theoretic) bijection between two
varieties such that fϕ = ϕf , for some Frobenius endomorphisms ϕ : X → X
and ϕ : Y → Y . Let g, g′ be automorphisms of finite order of X,Y such that
fg = g′f . Then L (g,X) = L (g′, Y ).
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Proof. As in the proof of [7], 10.12 (ii), we have that for sufficiently large m,

|Xgϕm

| =
∑

y∈Y g′ϕm

|f−1(y)g′ϕm

| = |Y g′ϕm

|,

which implies that L (g,X) = L (g′, Y ).

Let G be an affine algebraic group, and let X ⊆ G be a locally closed subset.
Suppose that H is a closed subgroup of G, acting by multiplication on G, such
that X is stable under the action of H. Then the quotient X/H is a locally closed
subset of G/H. For a proof of this fact, see for example [31], Lemma 1.5. This
shows that the quotient X/H has a natural structure of algebraic variety, which
ensures that certain sets we will define in the following are indeed varieties.

The following observations will be very useful in our analysis of the coho-
mology of varieties. Let G be a finite group that acts on the variety X, and let
H ⊂ G be a subgroup such that there exists a G-equivariant morphism

ρ : X −→ G/H,

that is, ρ satisfies ρ(gx) = gρ(x), for all g ∈ G, x ∈ X. It then follows that ρ
is a surjection, and for any a ∈ G, the stabiliser in G of the fibre ρ−1(aH) is
H ∩ aH. Let f be the fibre over the trivial coset H ∈ G/H. Then every fibre
of ρ is isomorphic to f via translation by an element of G. Hence every x ∈ X
has the form x = gy, for g ∈ G and y ∈ f which are uniquely determined up
to the action of H given by h(g, y) = (gh−1, hy). We thus have a G-equivariant
isomorphism

X −̃→ (G × f)/H, x 7−→ (g, y)H.

Here G acts on (G × f)/H via g′(g, y)H = (g′g, y)H. It follows that

H∗
c ((G × f)/H) ∼= Ql[G] ⊗Ql[H] H∗

c (f) = IndG
H H∗

c (f),

as virtual G-representations.

3 The unramified approach
Let G be a reductive group scheme over OF , and let r ≥ 1 be an integer. A
certain generalisation of the construction of Deligne and Lusztig to the case r ≥
1 was obtained by Lusztig [20] for F of characteristic p, and in [34] for general
F and also for groups over general finite local rings. The generalised Deligne-
Lusztig varieties in these constructions are attached to certain maximal tori in
G×OFur , and are close analogues of the classical Deligne-Lusztig varieties. Any
maximal torus in G×OFur is an unramified torus in G×OFur F ur in the sense
that it splits over an unramified extension of F . The construction given by these
varieties can thus be seen as an “unramified” generalisation of the construction
of Deligne and Lusztig. We give an outline of this construction.

Let ϕ : Gr → Gr be a surjective endomorphism of algebraic groups such that
Gϕ

r is finite. We call such a map ϕ a Frobenius endomorphism. Let L : Gr → Gr,
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denote the map g 7→ g−1ϕ(g). Assume for simplicity that G ×OFur contains a
maximal torus T and a Borel subgroup B containing T, such that Tr and Br

are ϕ-stable. Let U be the unipotent radical of B. By the results in [32], we
know that Br is a self-normalising subgroup of Gr. Note that the assumption
that Br be ϕ-stable is not necessary for the construction of the representations
in [20] and [34], but it simplifies the models of the varieties we consider here.

Let Br be the set of subgroups conjugate to Br. Since Br is self-normalising
we have a bijection Br

∼= Gr/Br, giving Br a variety structure. As in the r = 1
case, we have a bijection

Gr\(Br × Br) −̃→ Br\Gr/Br.

However, for r > 1, the double Br-Br cosets are no longer in one-to-one
correspondence with elements of the group NGr (Tr)/Tr, and the structure of
Br\Gr/Br is too complex to admit any straightforward description. Let x ∈ Gr

be an arbitrary element. In analogy with the r = 1 case we can define a variety

Xr(x) := {B ∈ Br | (B,ϕ(B)) ∈ O(x)}
∼= {g ∈ Gr | g−1ϕ(g) ∈ BrxBr}/Br,

∼= {g ∈ Gr | g−1ϕ(g) ∈ xBr}/(Br ∩ xBrx
−1),

where O(x) denotes the orbit in Gr\(Br×Br) corresponding to the double coset
BrxBr. In the same way as for r = 1, the finite group Gϕ

r acts on Xr(x) by left
multiplication. For each ŵ ∈ NGr (Tr) we also have a variety

X̃r(ŵ) := {g ∈ Gr | g−1ϕ(g) ∈ ŵUr}/Ur ∩ ŵUrŵ
−1

= L−1(ŵUr)/Ur ∩ ŵUrŵ
−1.

The variety X̃r(ŵ) has a left action of Gϕ
r , and a commuting right action of

the group
T ŵϕ

r := {t ∈ Tr | ŵϕ(t)ŵ−1 = t}.

It is then not hard to verify, by the same method as for r = 1, that the va-
rieties X̃r(ŵ) are finite Gϕ

r -covers of Xr(ŵ). This depends on the fact that ŵ

normalises the group Tr. The varieties X̃r(ŵ) (or rather, certain models iso-
morphic to them) were used in [20] and [34] to construct certain generalised
Deligne-Lusztig representations. However, we will show in Subsection 3.2 that
the representations thus constructed leave out a non-trivial subset of Irr(Gϕ

r ),
for r ≥ 2. To remedy this situation one would like to define further varieties
that would produce the missing representations. Given the above construction
and the fact that the elements ŵ ∈ NGr (Tr) do not account for all of the double
cosets in Br\Gr/Br, it is a priori natural to define the following varieties (first
considered by Lusztig)

L−1(xUr) = {g ∈ Gr | g−1ϕ(g) ∈ xUr}, for any x ∈ Gr.
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Note that L−1(xUr) has an action of Ur ∩ xUrx
−1 by right multiplication,

and the quotient L−1(xUr)/Ur ∩ xUrx
−1 is a variety (see Section 2). For

x = ŵ ∈ NGr (Tr) we have L−1(ŵUr)/Ur ∩ ŵUrŵ
−1 = X̃r(ŵ), and as we ob-

served above, the variety X̃r(ŵ) is a finite cover of Xr(ŵ). However, we point
out that when x /∈ NGr (Tr), it is not in general the case that L−1(xUr), or
even its quotient L−1(xUr)/Ur ∩ xUrx

−1, is a finite cover of Xr(x). One might
then hope that in general any irreducible representation of Gϕ

r is realised by
some variety Xr(x) or L−1(xUr), for some x ∈ Gr. This however, turns out
to be not the case in general. In the present section we will show that there
exist irreducible representations of SL2(OF,2), with F of positive characteristic,
which are not realised in the cohomology of any variety of the form X2(x) or
L−1(xU2). Our proof proceeds as follows. First we give an algebraic descrip-
tion of the irreducible representations of SL2(OF,r), with particular emphasis on
the so-called nilpotent representations. We then analyse varieties of the form
L−1(xU2) and X2(x) and compare this to the algebraic description of repre-
sentations given earlier. Using computations of Lusztig, giving the irreducible
components of the cohomology of X̃2(ŵ), where B2ŵB2 6= B2, we can show
that there exist representations in Irr(SL2(OF,2)) which are not afforded by the
varieties L−1(xU2) or X2(x).

The following results will be applied in Subsection 3.2 to the case where
G = SL2, r = 2.

Lemma 3.1. The inclusion L−1(xUr) ↪→ L−1(UrxUr) induces an isomorphism

L−1(xUr)/Ur ∩ xUrx
−1 −̃→ L−1(UrxUr)/Ur,

commuting with the action of Gϕ
r on both varieties.

Proof. Let f be the composition of the maps

L−1(xUr) ↪→ L−1(UrxUr) → L−1(UrxUr)/Ur,

where the latter is the natural projection. Clearly f is surjective, because
if gUr ∈ L−1(UrxUr)/Ur, with L(g) ∈ uxu′ for u, u′ ∈ Ur, then L(gu) =
u−1uxu′ϕ(u) ∈ xUr, so gu ∈ L−1(xUr), and f(gu) = gUr.

On the other hand, the fibre of f at gUr is equal to

{gv ∈ L−1(xUr) | v ∈ Ur} = {gv | v−1L(g)ϕ(v) ∈ xUr, v ∈ Ur}
= {gv | v−1ux ∈ xUr, v ∈ Ur} = {gv | v−1u ∈ Ur ∩ xUrx

−1}
= {gv | v = u mod Ur ∩ xUrx

−1}.

Factoring L−1(xUr) by Ur ∩xUrx
−1 therefore gives an isomorphism which com-

mutes with the action of Gϕ
r .

Lemma 3.2. Let x ∈ Gr be an arbitrary element, and let λ be an element such
that L(λ) = x. Then there is an isomorphism

L−1(xUr) −̃→ L−1(ϕ(λ)Urϕ(λ)−1), g 7−→ gλ−1,

commuting with the action of Gϕ
r .
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Proof. Let g ∈ L−1(xUr). Then

L(gλ−1) = λL(g)ϕ(λ)−1 ∈ λxUrϕ(λ)−1 = ϕ(λ)Urϕ(λ)−1.

It is clear that this map is a morphism of varieties, and it has an obvious
inverse.

Lemma 3.3. Suppose that n ∈ NGr (Tr), and let x ∈ BrnBr. Then

L−1(xUr)/Ur ∩ xUrx
−1 ∼ L−1(nUr)/Ur ∩ nUrn

−1.

Proof. We can write x as utnt′u′, for some u, u′ ∈ Ur and t, t′ ∈ Tr. Since Ur

is isomorphic to an affine space, [7], 10.12 (ii) together with Lemma 3.1 imply
that

L−1(xUr)/Ur ∩ xUrx
−1 ∼ L−1(Urutnt′u′Ur)

= L−1(Urtnt′Ur) ∼ L−1(tnt′Ur)/Ur ∩ tnt′Ur(tnt′)−1

= L−1(t′′nUr)/Ur ∩ nUrn
−1,

for some t′′ ∈ Tr. Since t 7→ nϕ(t)n−1 is a Frobenius map on Tr, The Lang-
Steinberg theorem says that there exists a λ ∈ Tr such that λ−1nϕ(λ)n−1 = t′′.
The map

L−1(t′′nUr)/Ur ∩ nUrn
−1 −→ L−1(nUr)/Ur ∩ nUrn

−1

g(Ur ∩ nUrn
−1) 7−→ gλ−1(Ur ∩ nUrn

−1),

is then an isomorphism of varieties which preserves the action of Gϕ
r . The lemma

is proved.

3.1 The representations of SL2(OF,r)

Using results from Clifford theory and classification of conjugacy orbits in cer-
tain algebras over the rings OF,r, it is possible to completely describe the rep-
resentations of the groups SL2(OF,r), and GL2(OF,r). In most cases, these
algebras are the Lie algebras of the corresponding group, with SL2, p = 2 being
a notable exception, as we will see below. For SL2 with p 6= 2 this method
was employed by Kutzko in his thesis (unpublished, see the announcement [17])
and by Shalika (whose results remained unpublished until recently, cf. [29]).
Around the same time the representations of SL2(Z/prZ), including the case
where p = 2, were also constructed by Nobs and Wolfart [23, 24], by decom-
posing Weil representations. For GL2 with OF = Zp and p odd, the analogous
result was given by Nagornyj [22], and a general construction for all GL2(OF,r)
can be found in [33]. Recently, the SL2 case with p 6= 2 was also reproduced
in [16]. We will focus here on SL2, using the method of orbits and Clifford
theory, and without any restriction on p. The case where p = 2 requires special
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treatment, and does not seem to have previously appeared in the literature in
this form. Proofs of the results we use can be found in [29] and [33], and we will
therefore omit details that can be found in these references.

Assume until the end of Subsection 3.2 that G = SL2, viewed as group
scheme over OF . Let T be the diagonal split maximal torus in G, B be the
upper-triangular Borel subgroup of G, and U be the unipotent radical of B. Let
U− be the unipotent radical of the Borel subgroup opposite to B. As usual, we
identify GF,r with the matrix group SL2(OF,r). Let g = sl2 be the Lie algebra
of SL2, viewed as a scheme over OF . Thus gF,r

∼= g(OF,r) is identified with the
algebra of 2×2 matrices over OF,r whose trace is zero. Assume first that p 6= 2,
and fix a natural number r > 1. For any natural number i such that r ≥ i ≥ 1
let ρr,i : GF,r → GF,i be the canonical surjective homomorphism. For clarity,
we will use the notation Ki for the kernel Gi

F,r = Ker ρr,i. Assume from now
on that i ≥ r/2. Then Ki = 1 + pi

F gF,r−i and the map x 7→ 1 + $ix induces an
isomorphism gF,r−i →̃ Ki. The group GF,r acts on gF,r−i by conjugation, via
its quotient GF,r−i. This action is transformed by the above isomorphism into
the action of GF,r on the normal subgroup Ki.

Fix an additive character ψ : OF → Ql
× with conductor pr

F , and define for
any β ∈ gF,r−i a character ψβ : Ki → Ql

× by

ψβ(x) = ψ(Tr(β(x − 1))).

Then β 7→ ψβ gives an isomorphism

gF,r−i
∼= Hom(Ki, Ql

×),

and for g ∈ GF,r, we have ρr−i(g)βρr−i(g)−1 7→ (ψβ)g.
Set l = [ r+1

2 ], l′ = [ r
2 ]; thus l + l′ = r. Let π be an irreducible repre-

sentation of GF,r. By Clifford’s theorem, restricting π to Kl determines an
orbit of characters on Kl, and hence (by the above isomorphism) an orbit in
gF,l′ . If the orbit is in pF gF,l′ , then π is trivial on Kr−1, and so factors though
GF,r−1. We are only concerned with primitive representations, that is, those
which do not factor through GF,r−1. It is therefore enough to consider orbits
in gF,l′ \ pF gF,l′ . For any natural number r′ such that r ≥ r′ ≥ 1 we call
an element β ∈ gF,r′ regular if the centraliser CG1(ρr′,1(β)) in G1

∼= G(Fq)
is abelian. We then have CGr′ (β) = Or′ [β] ∩ Gr′ , in the connected algebraic
group Gr′ . The orbits in gF,l′ \ pF gF,l′ can be easily classified thanks to the
fact that they are all regular. More precisely, the orbits in gF,l′ \ pF gF,l′ are of
three basic types, according to their reductions mod pF : There are the orbits
with split characteristic polynomial and distinct eigenvalues mod pF , the ones
which have irreducible characteristic polynomial mod pF , and those which are
nilpotent mod pF . The primitive representations of these three types are called
split, cuspidal, and nilpotent, respectively.

The construction of the representations of GF,r with a given orbit Ω ∈ gF,l′ \
pF gF,l′ proceeds as follows. Pick a representative β ∈ Ω, and consider the
corresponding character ψβ on Kl. The stabiliser in GF,r of ψβ is given by

StabGF,r (ψβ) = CGF,r (β̂)Kl′ ,
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where β̂ ∈ gF,r is an element such that ρr,l(β̂) = β. Assume first that r is
even so that l = l′. Since CGF,r

(β̂) is abelian, the character ψβ can be ex-
tended to a character on StabGF,r

(ψβ), and all the irreducible representations
of StabGF,r

(ψβ) containing ψβ are obtained in this way. Inducing a representa-
tion of StabGF,r

(ψβ) containing ψβ to GF,r gives an irreducible representation,
and it is clear that we get all the irreducible representations of GF,r with orbit
Ω in this way.

Now assume that r is odd. In this case there are several equivalent variations
of the construction, but they all involve (at least for some orbits) a step where a
representation of a group is shown to have a unique representation lying above
it in a larger group. The other steps consist of various lifts and induction from
StabGF,r

(ψβ), as in the case for r even. For full details, see [29] for SL2, and
[33] for the closely related case of GL2, respectively.

Now consider the case where p = 2. In this case the association β 7→ ψβ

does no longer give an isomorphism between gF,r−i and the character group of
Ki. To remedy this, we first consider the analogous situation for GL2 where the
role of gF,r−i is played by the matrix algebra M2(OF,r−i), and the analogous
map β 7→ ψβ is indeed an isomorphism (for any p). The ith congruence kernel in
GL2(OF,r) has the form 1+pi

F M2(OF,r−i), and so it contains Ki as a subgroup
of index |OF,r−i|. For every β ∈ M2(OF,r−i) we have a character ψβ |Ki obtained
by restricting the character ψβ on 1 + pi

F M2(OF,r−i) to Ki. Then β 7→ ψβ |Ki

is obviously a surjective homomorphism M2(OF,r−i) → Hom(Ki, Ql
×). It is

easily seen that the kernel of this homomorphism is the subgroup Zr−1 of scalar
matrices in M2(OF,r−i). We therefore have an isomorphism

M2(OF,r−i)/Zr−i −̃→ Hom(Ki, Ql
×), β + Zr−i 7→ ψβ |Ki .

Since Zr−i is centralised by GF,r, we see that for any g ∈ GF,r, we have

ρr−i(g)βρr−i(g)−1 7→ (ψβ |Ki)
g.

As before, let l = [ r+1
2 ], l′ = [ r

2 ]. If β ∈ pF M2(OF,l′)/Zl′ , then ψβ |Kl
is trivial

on Kr−1, and so an irreducible representation of GF,r whose restriction to Kl

contains this ψβ |Kl
must factor through GF,r−1, and hence is not primitive. To

construct the primitive representations, the first task is now to classify the orbits
under the action of GF,r on M2(OF,l′)/Zl′ \ pF M2(OF,l′)/Zl′ . The following is
a list a representatives of these orbits:

1.
(

a 0
0 0

)
, a ∈ O×

F,l′ ,

2.
(

0 1
∆ s

)
, where ∆, s ∈ OF,l′ , and x2 − sx − ∆ is irreducible mod pF ,

3.
(

0 1
∆ s

)
, where ∆, s ∈ pF .

The construction of representations then proceeds as in the case p 6= 2.
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Remark. Clearly the method used in the case p = 2 could also be applied
when p 6= 2. We have however chosen to give the two separate cases in order
to illustrate their contrasts. Note that when p 6= 2 the embedding gF,l′ ↪→
M2(OF,l′) induces a GF,r-equivariant isomorphism

gF,l′ −̃→ M2(OF,l′)/Zl′ ,

so in general the algebra M2(OF,l′)/Zl′ is the right object, rather than the Lie
algebra gF,l′ , in which to consider orbits.

In the following we will be especially interested in the nilpotent represen-
tations of GF,2

∼= SL2(OF,2), that is, the irreducible primitive representations
whose orbits mod pF are nilpotent, or contain a nilpotent element mod Z1 when
p = 2, respectively. We call the corresponding orbits nilpotent (although in the
p = 2 case, they are strictly speaking only nilpotent mod centre). The construc-
tion of representations given above shows that the nilpotent representations are
induced from 1-dimensional representations on StabGF,2(ψβ |K1), where β is a
representative of a nilpotent orbit. When p 6= 2 there are exactly two nilpotent
orbits in gF,1 \ pF gF,1, given by the representatives(

0 1
0 0

)
,

(
0 ζ
0 0

)
,

respectively (here ζ ∈ F×
q is a non-square element). When p = 2 there is

just one nilpotent-mod-Z1 orbit in M2(OF,1)/Z1 \ pF M2(OF,1)/Z1, given by
the representative ( 0 1

0 0 ). If we let β be any of these representatives, then the
stabiliser StabGF,2(ψβ |K1) is given by

S := StabGF,2(ψβ |K1) = {±1}UF,2K1,

where {±1} denotes a subgroup of scalar matrices (which is equal to the centre
of GF,2 for p 6= 2, and is trivial for p = 2), and UF,2 is isomorphic to the
subgroup of G(OF,2) of upper unitriangular matrices. The index of S in GF,2 is
equal to (q2−1)/2 when p 6= 2, and equal to q2−1 when p = 2. It is not hard to
show that the commutator subgroup of S is [S, S] = B1

F,2 = BF,2∩K1. Thus all
nilpotent representations of GF,2 are components of the induced representation
IndGF,2

B1
F,2

1. Each ψβ has |S/K1| extensions to S, and each such extension induces
to a distinct nilpotent representation. When p 6= 2 we thus have 4q nilpotent
representations, all of which have dimension (q2 − 1)/2. When p = 2 we have q
nilpotent representations, all of which have dimension q2 − 1.

We will have occasion to consider the question of which nilpotent represen-
tations occur as components of IndGF,2

UF,2
1. By the above we know that any nilpo-

tent representation of GF,2 is of the form IndGF,2
S ρ, for some ρ such that ρ|K1

contains ψβ , with β one of the above nilpotent representatives. By Mackey’s
intertwining number formula, we have

〈IndGF,2
S ρ, IndGF,2

UF,2
1〉 =

∑
x∈S\GF,2/UF,2

〈ρ|S∩xUF,2 ,1〉,
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and since S contains K1 we can identify S\GF,2/UF,2 with UF,1\GF,1/UF,1.
To calculate the value of the right-hand side it is thus enough to let x run
through elements in TF,2 and elements in ŵTF,2, respectively (ŵ ∈ NGF,2(TF,2)
denotes a lift of the non-trivial element of the Weyl group of SL2(k)). Since TF,2

normalises UF,2, it is moreover enough to consider only x = 1 and x = ŵ. For
x = 1 we get a term 〈ρ|UF,2 ,1〉, and for x = ŵ we get a term 〈ρ|(U−)1F,2

,1〉. The
latter is always zero, since ρ|(U−)1F,2

= ψβ |(U−)1F,2
6= 1 for our choice of β. Hence

we conclude that IndGF,2
S ρ is contained in IndGF,2

UF,2
1 if and only 〈ρ|UF,2 ,1〉 = 1.

In particular, since there exist representations of S which are lifts of ψβ and
which are non-trivial on UF,2, we see that there exist nilpotent representations
which are not components of IndGF,2

UF,2
1.

3.2 Inadequacy of the unramified varieties
We keep the assumption G = SL2 until the end of this subsection. We will
show that there exist nilpotent representations of GF,2 which cannot be re-
alised as components of the cohomology of varieties of the form L−1(xU2),
L−1(xU2)/U2 ∩ xU2x

−1, or X2(x), for x ∈ G2. More precisely, we show that
the only nilpotent representations which can be realised in this way are the ir-
reducible components of IndGF,2

UF,2
1. As we saw above, these do not account for

all the nilpotent representations of GF,2.
Let ϕ : G2 → G2 be the standard Frobenius endomorphism induced by the

map which sends every matrix entry to its qth power. Then GF,2 = Gϕ
2 , and

we will use either of these ways of writing the group, depending on the context.
Moreover, each of the subgroups T2, B2, U2, and (U−)2 is ϕ-stable. We need
a description of the double cosets B2\G2/B2. One checks directly that a set of
representatives is given by{

1, w :=
(

0 1
−1 0

)
, e :=

(
1 0
$ 1

)}
.

Note that e ∈ (U−)12 and that for any a ∈ (U−)12 −{1}, we have U2 ∩ aU2a
−1 =

U1
2 , which is an affine space. In this case, [7], 10.12 (ii) implies that L−1(aU2) ∼

L−1(aU2)/U1
2 . Note also that U2 ∩ wU2w

−1 = {1}.

Proposition 3.4. Let x ∈ G2 be an arbitrary element. Then there exists an
element y ∈ {1, w} ∪ (U−)12 such that L−1(xU2) ∼ L−1(yU2).

Proof. The elements 1 and w normalise T2 so, by Lemma 3.3, for any element x ∈
B2 we have L−1(xU2) ∼ L−1(U2), and for any x ∈ B2wB2 we have L−1(xU2) ∼
L−1(wU2).

In contrast, no element in B2eB2 normalises T2. Assume that x = utet′u′,
where u, u′ ∈ U2 and t, t′ ∈ T2. Then L−1(utet′u′U2) ∼ L−1(U2tet

′U2) ∼
L−1(tet′U2), and by Lemma 3.2 we have L−1(tet′U2) ∼ L−1(ϕ(λ)U2ϕ(λ)−1),
where λ ∈ G2 is such that L(λ) = tet′. Since tet′ ∈ (U−)12T2 and the group
(U−)12 is ϕ-stable, we can take λ ∈ (U−)12T2, by the Lang-Steinberg theorem.
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Writing λ = vs, with some v ∈ (U−)12 and s ∈ T2, we get

L−1(ϕ(λ)U2ϕ(λ)−1) =

L−1(ϕ(vs)U2ϕ(vs)−1) = L−1(ϕ(v)U2ϕ(v)−1) ∼ L−1(L(v)U2).

Since the group (U−)12 is ϕ-stable, we have L(v) = v−1ϕ(v) ∈ (U−)12. Hence,
for every x ∈ B2eB2, we have L−1(xU2) ∼ L−1(yU2), for some y ∈ (U−)12.

Theorem 3.5. Let y ∈ (U−)12. Then L−1(yU2) ∼ X̃2(1), and hence

H∗
c (L−1(yU2)) ∼= IndGϕ

2
Uϕ

2
1

as Gϕ
2 -representations.

Proof. We use the observations from the end of Section 2. Consider the com-
position of the maps

ρ : L−1(yU2)/U1
2

ρ2,1−−−−→ X1(U1) −→ Gϕ
1 /Uϕ

1
∼= Gϕ

2 /Uϕ
2 (G1

2)
ϕ,

where the first map is the restriction of ρ2,1 : G2 → G1, and the second
map is given by g 7→ gUϕ

1 . Then ρ is clearly Gϕ
2 -equivariant. The fibre

f := ρ−1(Uϕ
2 (G1

2)
ϕ) over the trivial coset in Gϕ

2 /Uϕ
2 (G1

2)
ϕ is given by

f = {um ∈ U2G
1
2 | (um)−1ϕ(um) ∈ yU2}/U1

2 .

Pick a λ ∈ (U−)12 such that λ−1ϕ(λ) = y. Then the translation x 7→ xλ−1

induces a Uϕ
2 (G1

2)
ϕ-equivariant isomorphism

f −̃→ fλ−1 = {um ∈ U2G
1
2 | (um)−1ϕ(um) ∈ ϕ(λ)U2ϕ(λ)−1}/U1

2 .

We now observe that the group ϕ(λ)U2ϕ(λ)−1 is contained in U2T
1
2 . Thus,

every element in fλ−1 is ϕ-fixed up to right multiplication by some element in
U2T

1
2 . Hence there is a map

ρ′ : fλ−1 −→ (U2G
1
2/U2T

1
2 )ϕ ∼= Uϕ

2 (G1
2)

ϕ/Uϕ
2 (T 1

2 )ϕ, x 7−→ xUϕ
2 (G1

2)
ϕ,

which is clearly Uϕ
2 (G1

2)
ϕ-equivariant. Define f ′ to be the fibre of ρ′ over the

trivial coset. Then

f ′ = {um ∈ U2T
1
2 | (um)−1ϕ(um) ∈ ϕ(λ)U2ϕ(λ)−1}/U1

2 ,

which has a left action of Uϕ
2 (T 1

2 )ϕ, and a right action of (T 1
2 )ϕ.

We now show that the Uϕ
2 (T 1

2 )ϕ-representation afforded by f ′ is isomorphic
to IndUϕ

2 (T 1
2 )ϕ

Uϕ
2

1. Define the variety

V = {g ∈ U2T
1
2 | g−1ϕ(g) ∈ U2} = U2(T 1

2 )ϕ.
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This has a left action of Uϕ
2 (T 1

2 )ϕ and a right action of Uϕ
2 . We have V/U2

∼=
Uϕ

2 (T 1
2 )ϕ/Uϕ

2 , so V affords the representation IndUϕ
2 (T 1

2 )ϕ

Uϕ
2

1, that is

H∗
c (V ) ∼= IndUϕ

2 (T 1
2 )ϕ

Uϕ
2

1,

as Uϕ
2 (T 1

2 )ϕ-representations. Now, for every u ∈ U2 there exists a tu ∈ T 1
2 such

that utu ∈ f ′, and this tu is unique up to multiplication by (T 1
2 )ϕ. Hence,

by choosing such a tum for each um ∈ f ′, we can write each element in f ′

uniquely in the form utua, where u ∈ U1
2 , tu ∈ T 1

2 , and a ∈ (T 1
2 )ϕ. Moreover,

we may always choose the same tu for all elements vsus−1, where v ∈ Uϕ
2 and

s ∈ (T 1
2 )ϕ. Similarly, we may always choose tu so that ϕm(tu) = tϕm(u), for all

natural numbers m ≥ 1. We can then define a bijective function

η : f ′ −→ V, utua 7−→ ua.

For vs ∈ Uϕ
2 (T 1

2 )ϕ we have

η(vsutua) = η(v(sus−1tusa)) = v(sus−1)sa = vsua,

so η is Uϕ
2 (T 1

2 )ϕ-equivariant. Let m be a natural number such that ϕm(λ) = λ.
Then ϕm is a Frobenius endomorphism on f ′. Furthermore, ϕm is clearly a
Frobenius endomorphism which stabilises V . The bijection η satisfies

η(ϕm(utua)) = η(ϕm(u)ϕm(tu)a) = η(ϕm(u)tϕm(u)a) = ϕm(u)a = ϕm(ua),

so η commutes with the Frobenius endomorphisms ϕm on f ′ and V , respectively.
By Lemma 2.1 f ′ and V afford the same Uϕ

2 (T 1
2 )ϕ-representation, and so

H∗
c (L−1(yU2))

∼= IndGϕ
2

Uϕ
2 (G1

2)
ϕ IndUϕ

2 (G1
2)

ϕ

Uϕ
2 (T 1

2 )ϕ IndUϕ
2 (T 1

2 )ϕ

Uϕ
2

1 = IndGϕ
2

Uϕ
2

1

∼= H∗
c (X̃2(1)).

The representations realised by the variety X̃2(1), that is, the irreducible
components of IndGϕ

2
Uϕ

2
1, are just the irreducible components of the representa-

tions obtained by lifting characters of Tϕ
2 to Bϕ

2 , and inducing to Gϕ
2 . As we

saw in the end of Section 3.1, not all of the nilpotent representations are of this
form.

When F is a local field of characteristic p, Lusztig [20] has identified the
representations realised by the variety X̃2(w). In particular, none of them is
of dimension (q2 − 1)/2 when p 6= 2, or of dimension q2 − 1 when p = 2, so in
this case the variety X̃2(w) does not realise any of the nilpotent representations
of Gϕ

2 = GF,2. Thus the results of this section imply that there are nilpotent
representations of SL2(Fq[[$]]/($2)) which are not realised in the cohomology
of any of the varieties L−1(xU2), or equivalently, the varieties L−1(xU2)/U2 ∩
xU2x

−1, for x ∈ G2.
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Remark. It seems likely that Lusztig’s result on the representations afforded by
X̃2(w) hold in any characteristic, in particular, that X̃2(w) does not afford any
nilpotent representation of GF,2, for any non-archimedean local field F . More
precisely, every irreducible representation of GF,2 afforded by X̃2(w) should be
either non-primitive or cuspidal. Since the results in this section hold uniformly
in any characteristic, this would imply the inadequacy of the varieties L−1(xU2)
also for the group SL2(Z/prZ).

As we remarked in the beginning of the section, the variety L−1(eU2)/U1
2

is not a finite cover of X2(e), so the representations afforded by the latter are
not necessarily all afforded by the former (as is the case for the covers X̃r(ŵ) of
Xr(ŵ), for ŵ ∈ NGr

(Tr)). It is thus a priori conceivable that X2(e) may yield
further representations not obtainable by L−1(eU2). The following result shows
that this is not the case.

Proposition 3.6. We have

H∗
c (X2(e)) =

(
IndGϕ

2
Bϕ

2 (G1
2)

ϕ 1
)
− IndGϕ

2
Bϕ

2
1,

as virtual Gϕ
2 -representations.

Proof. Consider the composition of the maps

X2(e)
ρ2,1−−−−→ L−1(B1)/B1 −̃→ Gϕ

1 /Bϕ
1 −̃→ Gϕ

2 /Bϕ
2 (G1

2)
ϕ.

This gives a Gϕ
2 -equivariant map X2(e) → Gϕ

2 /Bϕ
2 (G1

2)
ϕ. The fibre of the trivial

coset under this map is

f := {g ∈ B2G
1
2 | g−1ϕ(g) ∈ B2eB2}/B2.

Thus we have
H∗

c (X2(e)) = IndGϕ
2

Bϕ
2 (G1

2)
ϕ H∗

c (f).

Now an element in Bϕ
2 (G1

2)
ϕ must lie in exactly one of the double cosets B2 and

B2eB2. Hence

f t {g ∈ B2G
1
2 | g−1ϕ(g) ∈ B2}/B2 = B2G

1
2/B2.

Since B2G
1
2/B2

∼= G1
2/B1

2 is an affine space, the Gϕ
2 -representation afforded by

it is the trivial representation. Moreover, the variety

{g ∈ B2G
1
2 | g−1ϕ(g) ∈ B2}/B2

is isomorphic to Bϕ
2 (G1

2)
ϕ/Bϕ

2 , and so affords the representation IndBϕ
2 (G1

2)
ϕ

Bϕ
2

1.
Putting these results together, we get

H∗
c (f t {g ∈ B2G

1
2 | g−1ϕ(g) ∈ B2}/B2) = H∗

c (f) + IndBϕ
2 (G1

2)
ϕ

Bϕ
2

1 = 1,

whence the result.
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The irreducible components of the representation IndGϕ
2

Bϕ
2 (G1

2)
ϕ 1 are all non-

primitive, since they have (G1
2)

ϕ in their respective kernels. Moreover, the
irreducible components of IndGϕ

2
Bϕ

2
1 form a subset of the irreducible components

of IndGϕ
2

Uϕ
2

1. Thus, the variety X2(e) does not afford any nilpotent representations
of Gϕ

2 = GF,2 which are not already afforded by L−1(eU2).

4 Extended Deligne-Lusztig varieties
As before, Let F be an arbitrary local field with finite residue field Fq. Let
L0 be a finite totally ramified Galois extension of F , and set L = Lur

0 . Then
L is a finite extension of F ur (cf. [9], II 4), and thus L is a Henselian discrete
valuation field with the same residue field as F ur, namely Fq. We have the
relation pFOL = pe

L, where e = [L0 : F ] is the ramification index of L0/F .
Restriction of automorphisms gives a map

α : Gal(L/F ) −→ Gal(F ur/F ) −̃→ Gal(Fq/Fq) ⊃ Z,

where the subgroup Z is generated by the Frobenius map x 7→ xq. The corre-
sponding Frobenius element in Gal(F ur/F ) is denoted by ϕF . Let Γ = Γ(L/F )
be the group α−1(Z) ⊂ Gal(L/F ). This is a relative variant of the Weil group
and sits in the following commutative diagram.

1 // Gal(L/F ur) // Γ(L/F ) //

_Ä

²²

〈ϕF 〉 //

_Ä

²²

1

1 // Gal(L/F ur) // Gal(L/F ) // Gal(F ur/F ) //

∼=
²²

1

Gal(L/L0)
3 S

eeLLLLLLLLLL

We see that ϕL0 ∈ Gal(L/L0) defines an element in Γ which is not in
Gal(L/F ur). Hence Γ is generated by Gal(L/F ur) together with the element
ϕL0 . The group Gal(L0/F ) is naturally isomorphic to Gal(L/F ur), and we
shall identify elements in the former with their corresponding images in the
latter.

From now on, let G be either GLn or SLn, viewed as group schemes over OF .
Let T be the standard split maximal torus in G. Let B be the upper-triangular
Borel subgroup scheme of G, and let U be the unipotent radical of B.

Let r ≥ 1 be a natural number. Every automorphism σ ∈ Gal(L/F )
stabilises OL and pr

L, respectively (cf. [9], II Lemma 4.1). Therefore, each
σ ∈ Gal(L/F ) defines a morphism of OF -algebras σ : OL,r → OL,r, and hence
a homomorphism of groups σ : G(OL,r) → G(OL,r). Moreover, OL,r has
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the structure of algebraic ring (isomorphic to affine r-space over Fq), and each
σ ∈ Γ such that σ ∈ α−1(Z≥0) gives rise to an algebraic endomorphism of OL,r.
Hence each σ ∈ Gal(L/F ur) and each non-negative power of ϕL0 induces (via
the canonical isomorphism G(OL,r) ∼= GL,r) an endomorphism of the algebraic
group GL,r. For σ ∈ Gal(L/F ur), the resulting endomorphism of GL,r is also
denoted by σ. Furthermore, the Frobenius map ϕL0 ∈ Gal(L/L0) induces a
Frobenius endomorphism of the algebraic group GL,r, which we denote by ϕ.
It is clear that TL,r, BL,r, and UL,r are stable under ϕ and under each of the
endomorphisms induced by σ ∈ Gal(L/F ur).

In Section 3 the finite group GF,r was identified with the fixed points of Gr

under a Frobenius map. However, this is not the only way to realise GF,r as
a group of fixed points of a connected algebraic group. The following lemma
and its corollary make this more precise for tamely ramified extensions. The
following is an additive Hilbert 90 for powers of the maximal ideal pL.

Lemma 4.1. Suppose that L0/F is tamely ramified. Then Gal(L0/F ) is cyclic.
Let σ be a generator of Gal(L0/F ), m ≥ 1 be a natural number, and y ∈ pm

L0

be an element such that TrL0/F (y) = 0. Then there exists an element x ∈ pm
L0

such that x − σ(x) = y.

Proof. Since L0/F is totally and tamely ramified, the Galois group Gal(L0/F )
is cyclic of order e (cf. [9], II 4.4). Tamely ramified extensions are characterised
by the fact that Tr maps units to units. In particular e = TrL0/F (1) is a unit
in OL0 , and TrL0/F (1/e) = 1. Let

x =
e−1∑
n=1

(
σn(1/e) ·

n−1∑
i=0

σi(y)

)
.

Then x ∈ pm
L , and it is easily verified that x − σ(x) = y.

Corollary 4.2. Suppose that L0/F is tamely ramified, and let r ≥ 1 be a natural
number. Then OΓ

L,r = OF,r′ , where r′ = [ r−1
e ] + 1.

Proof. Since L0/F is totally and tamely ramified, it is cyclic, and we choose a
generator σ of Gal(L0/F ). Following our convention, we also use σ to denote
the corresponding generator of Gal(L/F ur). Now Γ is generated by ϕL0 and σ
and since OϕL0

L,r = OL0,r, it is enough to show that Oσ
L0,r = OF,r′ . It is well-

known that (pr
L0

)σ = pr
L0

∩ OF = pr′

F , where r′ = [ r−1
e ] + 1. The functor of

σ-invariants is left exact, so we have an injection OF,r′ = Oσ
L0

/(pr
L0

)σ ↪→ Oσ
L0,r.

Lemma 4.1 shows that H1(L0/F, pm
L0

) = 0, and so this injection is surjective,
and this yields the result.

Recall that a Bézout domain is an integral domain in which every finitely
generated ideal is principal.
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Lemma 4.3. Let R be a Bézout domain, and let x ∈ GLn(R) be an arbitrary
element, where n ≥ 2. Suppose that the characteristic polynomial of x splits
into linear factors over R. Then there exists an element λ ∈ SLn(R), such that
λ−1xλ ∈ B(R).

Proof. Let a1 ∈ R be an eigenvalue of x with corresponding eigenvector v =(
v1

...
vn

)
∈ Rn, so that xv = a1v. If g ∈ GLn(R), then gv is obviously an

eigenvector of g−1xg. We claim that we can choose g such that gv has an entry
equal to 1. Without loss of generality, we may assume that there exists two
integers 1 ≤ m,m′ ≤ n, such that gcd(vm, vm′) = 1. Then, since R is a Bézout
domain, there exist elements α, β ∈ R such that

αvm + βvm′ = 1.

Let g = (gij) be the matrix such that gmm = α, gmm′ = β, gm′m = −vm′ ,
gmm′ = vm, gii = 1 for all i /∈ {m,m′}, and all other entries equal to 0. We
have g ∈ SLn(R), and the mth entry of gv equals 1, which proves the claim.
This implies that there exists a matrix λ1 ∈ SLn(R) matrix whose first column
is the vector gv. We then have

λ−1
1 g−1xgλ1 =


∗ ∗ · · · ∗
0
... x1

0

 ,

where x1 ∈ GLn−1(R). We can now repeat the process by choosing an eigenvalue
of x1. Working inductively, we obtain an element λ ∈ SLn(R) such that λ−1xλ ∈
B(R).

The above lemma shows in particular that for any x ∈ G(OFur), there
exists a finite field extension L/F ur, and an element λ ∈ G(OL) such that
λ−1xλ ∈ B(OL). Reducing modulo pr

L we see that for any x ∈ GF,r′ with r′

such that GF,r′ ⊆ GL,r, there exists a λ ∈ GL,r such that λ−1xλ ∈ BL,r.
Recall that an element x ∈ Gr is called regular if its centraliser CGr (x)

has minimal dimension (cf. [13] or [7], 14). Note that this is a more general
definition than that given in [2], 12.2 (which coincides with the notion of regular
semisimple).

Definition 4.4. An element in G(OFur,r) is called separable if it has distinct
eigenvalues. Similarly, an element in Gr is called separable if its corresponding
element in G(OFur,r) (via the canonical isomorphism Gr

∼= G(OFur,r)) is sep-
arable. If x ∈ Gr is a regular separable element, we call its centraliser CGr

(x)
a quasi-Cartan subgroup (of Gr). Similarly, we call the finite group CGF,r

(x) a
quasi-Cartan subgroup (of GF,r).
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Note that if r = 1, then an element is regular semisimple if and only if it
is separable. In general, regular semisimple elements in Gr are separable, but
there also exist unipotent regular separable elements.

From now on, let x ∈ Gr be a regular separable element. Since x is regular
we then have

CGr (x) = OFur,r[x] ∩ Gr.

Let L/F ur be a finite field extension and r′ ≥ r a natural number such that
Gr′ is a subgroup of GL,r and such that there exists an element λ ∈ GL,r such
that λ−1xλ ∈ BL,r (which is possible thanks to Lemma 4.3). From now on, let
r′ = [ r−1

e ]+1. Let Σ0 be a set of generators of the finite group Gal(L/F ur), and
put Σ := {ϕ} ∪ Σ0. Notice that if L0/F is tamely ramified, then Lemma 4.1
and Corollary 4.2 show that we can take Σ0 to be a one-element set, and that
GΣ

L,r = GΓ
L,r = Gr′ .

A subgroup of GL,r conjugate to BL,r will be called a strict Borel subgroup.
Strict Borel subgroups are solvable, but are not in general Borel subgroups of
the algebraic group GL,r. Since x is regular, we see that the group CGr (x) lies
in the strict Borel λBL,rλ

−1.

Lemma 4.5. Assume that G is either GLn or SLn. Then strict Borel subgroups
in GL,r are self-normalising, that is, if g ∈ GL,r and gBL,rg

−1 ⊆ BL,r, then
g ∈ BL,r.

Proof. It is sufficient to prove the assertion for the group BL,r. In [18], Lemma
1.2, it is shown that B(R) is self-normalising in GLn(R), when R is a finite local
PIR. The same proof goes through for rings of the form OL,r, so the assertion
holds for G = GLn. Since for any ring R we have GLn(R) = Z(R) SLn(R),
where Z(R) is the subgroup of scalar matrices, the corresponding assertion for
G = SLn follows. It remains to use the isomorphisms G(OL,r) ∼= GL,r and
B(OL,r) ∼= BL,r.

Lemma 4.6. Let G be a connected algebraic group, and ϕ : G → G a Frobenius
endomorphism, that is, ϕ is surjective and Gϕ is finite. Then the corresponding
Lang map L : G → G, g 7→ g−1ϕ(g) is an open and closed morphism.

Proof. By the Lang-Steinberg theorem L is surjective, so it is in particular a
dominant map of irreducible varieties. Let W ⊆ G be a closed irreducible
subset. Since the fibres of L are all of the form Gϕx, for x ∈ G, the map
L : L−1(W ) → W is an orbit map. By [2], II 6.4, Gϕ then acts transitively on
the set of irreducible components of L−1(W ), and hence they all have the same
dimension, equal to the dimension of Gϕ\L−1(W ) ∼= W . By [15], Theorem 4.5,
the map L is thus open.

Now let X ⊆ G be a closed subset. The set GϕX is then a closed subset
which is a union of fibres. Hence

L(G − GϕX) = L(G) − L(GϕX) = G − L(X),

and since G − X is open, and L is open, L(X) is closed in G.
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Let BL,r denote the set of strict Borel subgroups of GL,r. Since BL,r is self-
normalising in GL,r, strict Borels are in one-to-one correspondence with points
of the variety XL,r := GL,r/BL,r. Consider the product

∏
σ∈{1}∪Σ XL,r, with

GL,r acting diagonally. For (Bσ)σ∈{1}∪Σ ∈
∏

σ∈{1}∪Σ XL,r, we thus have the
corresponding GL,r-orbit GL,r(Bσ)σ∈{1}∪Σ.

Definition 4.7. We define the variety

XΣ
L,r(λ) = {B ∈ BL,r | GL,r(σ(B))σ∈{1}∪Σ = GL,r(σ(λBL,rλ

−1))σ∈{1}∪Σ}
= {B ∈ BL,r | h(σ(B))σ∈{1}∪Σ = (σ(λBL,rλ

−1))σ∈{1}∪Σ for some h ∈ GL,r}.

Identifying BL,r with XL,r we can rewrite the variety as

XΣ
L,r(λ)

= {g ∈ GL,r | σ(λ)−1hσ(g) ∈ BL,r for all σ ∈ {1}∪Σ and some h ∈ GL,r}/BL,r

= {g ∈ GL,r | g−1σ(g) ∈ bλ−1σ(λ)BL,r for all σ ∈ Σ and some b ∈ BL,r}/BL,r,

and by making the substitution g 7→ gb−1, we can normalise the defining rela-
tions so that

XΣ
L,r(λ) = {g ∈ GL,r | g−1σ(g) ∈ λ−1σ(λ)BL,r ∀σ ∈ Σ}/BL,r(λ),

where
BL,r(λ) :=

∩
σ∈{1}∪Σ

λ−1σ(λ)BL,rσ(λ)−1λ.

From now on we will use this last model for XΣ
L,r(λ). The finite group GΣ

L,r =
GΓ

L,r acts on XΣ
L,r(λ) by left multiplication.

We would now like to define finite covers of the varieties XΣ
L,r(λ) in a way

that naturally generalises the finite covers X̃r(ŵ), defined in the unramified case
where L = F ur, and ŵ ∈ NGr (Tr). In general, however, there does not seem to
be any straightforward way to define an analogous cover of the whole of XΣ

L,r(λ),
but only of a certain GΓ

L,r-stable subvariety. For ease of notation, write ε for
λ−1ϕ(λ). Let

A := {ε−1bεϕ(b)−1 | b ∈ BL,r(λ)}.

Clearly, A is the image of BL,r(λ) under the morphism GL,r → GL,r given by
the map g 7→ ε−1gεϕ(g)−1. Thus A is conjugate to the image of the map g 7→
gεϕ(g)−1ε−1, which in turn is equal to the image of the map g 7→ g−1εϕ(g)ε−1.
This last map is the Lang map corresponding to the Frobenius endomorphism
g 7→ εϕ(g)ε−1, so by Lemma 4.6, it sends BL,r(λ) to a closed set. Hence A is a
closed subset of GL,r.

Define the following subvariety of XΣ
L,r(λ), given by

XΣ
L,r(λ,A) :=

(
{g ∈ GL,r | g−1ϕ(g) ∈ εAUL,r} ∩ XΣ

L,r(λ)
)
/BL,r(λ).
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Note that BL,r(λ) acts on {g ∈ GL,r | g−1ϕ(g) ∈ εAUL,r} by right multiplica-
tion, and that GΓ

L,r acts on XΣ
L,r′(λ,A) by left multiplication. Since GΓ

L,r and
BL,r(λ) act on XΣ

L,r(λ) and XΣ
L,r(λ,A), the complement XΣ

L,r(λ) \XΣ
L,r(λ,A) is

also stable under these actions. We can now normalise the defining relations in
XΣ

L,r(λ,A) by using the action of BL,r(λ), so that

XΣ
L,r(λ,A) =

(
{g ∈ GL,r | g−1ϕ(g) ∈ εUL,r} ∩ XΣ

L,r(λ)
)
/S(λ),

where
S(λ) := {b ∈ BL,r(λ) | ε−1b−1εϕ(b) ∈ UL,r}.

Using the fact that BL,r(λ) ⊆ BL,r normalises UL,r, it is easy to see that S(λ)
is a subgroup of BL,r(λ). Moreover, S(λ) contains UL,r ∩ εUL,rε

−1 ∩ BL,r(λ)
and acts on {g ∈ GL,r | g−1ϕ(g) ∈ εUL,r} by right multiplication. Let S(λ)0

denote the connected component of S(λ). We define the finite cover

X̃Σ
L,r(λ) :=

(
{g ∈ GL,r | g−1ϕ(g) ∈ εUL,r} ∩ XΣ

L,r(λ)
)
/S(λ)0 −→ XΣ

L,r(λ,A).

We see that the finite group S(λ)/S(λ)0 acts on X̃Σ
L,r(λ). Together with the

respective GΓ
L,r-actions this clearly makes X̃Σ

L,r(λ) → XΣ
L,r(λ,A) a GΓ

L,r ×
S(λ)/S(λ)0-equivariant cover.

Remark. We call the varieties XΣ
L,r(λ) and the covers X̃Σ

L,r(λ) extended Deligne-
Lusztig varieties, for the following reasons. Firstly, the varieties typically cor-
respond to a (non-trivial) extension of the maximal unramified extension. Sec-
ondly, the various groups involved are iterated extensions of groups over the
corresponding residue fields. Thirdly, there are at least three other construc-
tions which could be referred to as generalisations of (certain) Deligne-Lusztig
varieties, neither of which is in the direction given here. One of these is the
varieties of Deligne associated to elements in certain braid monoids (cf. [5]); an-
other is the affine Deligne-Lusztig varieties of Kottwitz and Rapoport (cf. [27]),
and the third is the varieties of Digne and Michel [8], defined with respect to
not necessarily connected, reductive groups.

We close this section by showing that extended Deligne-Lusztig varieties are
a natural generalisation of classical Deligne-Lusztig varieties as well as of the
varieties which appear in [20] and [34] (in the case of general and special linear
groups over finite local PIRs with their standard Frobenius maps ϕ).

Let T′ be a maximal torus in G ×OFur such that the group T ′
r is ϕ-stable.

Then T ′
r = CGr (x), for some regular semisimple element x ∈ Gϕ

r , and by [34], 2
we have T ′

r = λTrλ
−1 for some λ ∈ Gr. Hence λ is an element such that λ−1xλ ∈

Tr ⊆ Br, and the condition that T ′
r be ϕ-stable implies that λ−1ϕ(λ) ∈ NGr (Tr).

Let ŵ := λ−1ϕ(λ). Take L0 = F (i.e., L = F ur), r′ = r, so that Γ = 〈ϕ〉, and
Σ = {ϕ}. The resulting extended Deligne-Lusztig variety attached to this data
is

X
{ϕ}
Fur,r(λ) = {g ∈ Gr | g−1ϕ(g) ∈ ŵBr}/(Br ∩ ŵBrŵ

−1),
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and since ŵ normalises Tr it follows that Br(λ) = Tr(Ur ∩ ŵUrŵ
−1), and the

Lang-Steinberg theorem implies that A ⊇ Tr. Hence X
{ϕ}
Fur,r(λ, A) = X

{ϕ}
Fur,r(λ).

Furthermore, we have

S(λ) = {tu ∈ Tr(Ur ∩ ŵUrŵ
−1) | ŵ−1u−1t−1ŵϕ(tu) ∈ Ur}

= {tu ∈ Tr(Ur ∩ ŵUrŵ
−1) | ŵt−1ŵϕ(t) ∈ Ur}

= {t ∈ Tr | ŵt−1ŵϕ(t) = 1}(Ur ∩ ŵUrŵ
−1),

and so S(λ)0 = Ur ∩ ŵUrŵ
−1 and S(λ)/S(λ)0 ∼= {t ∈ Tr | ŵt−1ŵϕ(t) = 1}.

The corresponding cover is

X̃
{ϕ}
Fur,r(λ) = {g ∈ Gr | g−1ϕ(g) ∈ ŵUr}/(Ur ∩ ŵUrŵ

−1),

and hence X
{ϕ}
Fur,r(λ) = Xr(ŵ) and X̃

{ϕ}
Fur,r(λ) = X̃r(ŵ) are the varieties we

considered in Section 3. We thus see that the classical Deligne-Lusztig varieties
as well as the generalisations in [20] and [34] (in the case of general or special
linear groups over finite local PIRs with their standard Frobenius maps ϕ)
appear as special cases of the construction of extended Deligne-Lusztig varieties
given in this section.

5 Extended Deligne-Lusztig varieties for GL2 and
SL2

Throughout this section G will denote either of the groups GL2 or SL2, over
OF . The subgroups T, B, and U of G are the same as in Section 4. As in the
preceding section we treat the two types of groups simultaneously in a uniform
way. Assume that F is a local function field (i.e., charF = p). Assume also
that F has residue characteristic different from 2. In this section we will study
extended Deligne-Lusztig varieties for groups of the form GF,2.

Let ζ denote an arbitrary fixed non-square unit in OF,2. In GF,2 the four
distinct conjugacy classes of quasi-Cartans are given by the following represen-
tatives:

TF,2,

CGF,2

(
0 1
ζ 0

)
=

{(
a b
ζb a

)}
∩ GF,2,

CGF,2

(
0 1
$ 0

)
=

{(
a b

$b a

)}
∩ GF,2,

CGF,2

(
0 1

ζ$ 0

)
=

{(
a b

ζ$b a

)}
∩ GF,2.

The first two of these quasi-Cartans are unramified in the sense that each of
them is the OF,2-points of some maximal torus of the group scheme G. They
are also unramified in the sense that they can be brought into triangular form
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over OFur,2, that is, there exists a λ ∈ G2 such that λ−1CGF,2

(
0 1
ζ 0

)
λ ⊆ B2

(for TF,2 this is a trivial fact). For the maximal torus TF,2, we can take λ = 1,

and this gives rise to the variety X2(1). Each λ that triangulises CGF,2

(
0 1
ζ 0

)
gives rise to the variety X2(λ) = X2(ŵ), where w is the non-trivial Weyl group
element in G1. Now the cover X̃2(λ) of X2(λ) depends on λ, that is, on the
choice of strict Borel subgroup containing the Cartan subgroup in question.
However, it is known that the possible finite covers of X2(1) and X2(ŵ) of the
type we are considering all give rise to equivalent representations RT,θ in their
cohomology (cf. [34], Corollary 3.4).

We will refer to the last two of the above quasi-Cartans as ramified. We
now attach extended Deligne-Lusztig varieties and corresponding representa-
tions also to the ramified quasi-Cartans. Let L0 = F (

√
$) be one of the two

ramified quadratic extensions of F (recall that p 6= 2, so we have only tame
ramification). Then L = Lur

0 is independent of the choice of ramified quadratic
extension of F . The group Γ is generated by the Frobenius ϕL0 together with
an involution σ ∈ Gal(L/F ur), so we take Σ = {ϕ, σ}. Let r = 3, so that
OΓ

L,3 = OΣ
L,3 = OF,2. We then have GΓ

L,3 = GF,2. Define the following elements
of G(OL,3):

λ =
(

1 0√
$ 1

)
, µ =

(
1 0√
ζ$ 1

)
.

Then we clearly have

λ−1CG2

(
0 1
$ 0

)
λ ⊆ B(OL,3), µ−1CG2

(
0 1

ζ$ 0

)
µ ⊆ B(OL,3).

This defines the associated extended Deligne-Lusztig varieties

XΣ
L,3(λ) = {g ∈ GL,3 | g−1ϕ(g) ∈ BL,3, g−1σ(g) ∈ λ−1σ(λ)BL,3}/BL,3(λ),

XΣ
L,3(µ) = {g ∈ GL,3 | g−1ϕ(g) ∈ µ−1ϕ(µ)BL,3, g−1σ(g) ∈ µ−1σ(µ)BL,3}/BL,3(µ),

(note that ϕ(λ) = λ, and that ϕ(µ) = σ(µ) = µ−1).
The corresponding covers are given by

X̃Σ
L,3(λ) = {g ∈ GL,3 | g−1ϕ(g) ∈ UL,3, g−1σ(g) ∈ λ−1σ(λ)BL,3}/S(λ)0,

X̃Σ
L,3(µ) = {g ∈ GL,3 | g−1ϕ(g) ∈ µ−1ϕ(µ)UL,3, g−1σ(g) ∈ µ−1σ(µ)BL,3}/S(µ)0,

where

S(λ) = {b ∈ BL,r(λ) | b−1ϕ(b) ∈ UL,r},
S(µ) = {b ∈ BL,r(λ) | ϕ(µ)−1µb−1µ−1ϕ(µ)ϕ(b) ∈ UL,r}.

Theorem 5.1. Let Z be the centre of G. Then there exists a GΣ
L,3-equivariant

isomorphism
X̃Σ

L,3(λ)/(Z1
L,3)

ϕ ∼= GΣ
L,3/(Z1

L,3)
Σ(U1

L,3)
Σ.
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Proof. We begin by determining S(λ) explicitly. For simplicity we shall write
e for λ−1σ(λ), in what follows. First consider BL,r(λ) = BL,r ∩ eBL,re

−1. We
write elements in OL,3 in the form a0 + a1

√
$ + a2$, where ai ∈ Fq. We then

have

ϕ(a0 + a1

√
$ + a2$) = aq

0 + aq
1

√
$ + aq

2$,

σ(a0 + a1

√
$ + a2$) = a0 − a1

√
$ + a2$.

Note in particular that ϕ and σ commute. As usual, we identify subgroups of
G(OL,3) with their corresponding subgroups in GL,3. Then

BL,r(λ) =
{(

a0 + a1
√

$ + a2$
d1−a1

2 + b1
√

$ + b2$
0 a0 + d1

√
$ + d2$

)
| ai, bi ∈ Fq

}
∩ GL,r,

and so

S(λ) =
{(

a0 + a1
√

$ + a2$
d1−a1

2 + b1
√

$ + b2$
0 a0 + d1

√
$ + d2$

)
| aq

i = ai, dq
i = di

}
∩GL,r.

Hence, the connected component of S(λ) is

S(λ)0 = U1
L,3,

and S(λ)/S(λ)0 ∼= Zϕ
L,1(T

1
L,3)

ϕ = Zϕ
1 (T 1

L,3)
ϕ.

Let Y := {g ∈ GL,3 | g−1ϕ(g) ∈ UL,3, g−1σ(g) ∈ eBL,3}, so that X̃Σ
L,3(λ) =

Y/U1
L,3. For g ∈ Y we have g−1ϕ(g) = u, and g−1σ(g) = eb, for some u ∈ UL,3,

b ∈ BL,3. The commutativity of ϕ and σ yields σ(gu) = ϕ(geb), and since
ϕ(e) = e this implies

ebσ(u) = ueϕ(b).

Hence we obtain e−1ue ∈ BL,3, so that u ∈ UL,3 ∩ eBL,3e
−1 = U1

L,3. We thus
have Y = {g ∈ GL,3 | g−1ϕ(g) ∈ U1

L,3, g−1σ(g) ∈ eBL,3}. If we set

Y ′ := {g ∈ Gϕ
L,3 | g−1σ(g) ∈ eBL,3}/(Z1

L,3)
ϕ(U1

L,3)
ϕ,

we then have a natural GΣ
L,3-equivariant isomorphism

X̃Σ
L,3(λ)/(Z1

L,3)
ϕ = Y/(Z1

L,3)
ϕU1

L,3 −̃→ Y ′.

Now the translation map g 7→ gλ−1 is an equivariant isomorphism Y ′ →̃ Y ′λ−1,
and we have

Y ′λ−1 = {g ∈ Gϕ
L,3 | g−1σ(g) ∈ σ(λ)BL,3σ(λ)−1}/(Z1

L,3)
ϕλ(U1

L,3)
ϕλ−1.

If g ∈ Y ′λ−1, then g−1σ(g) ∈ σ(λ)BL,3σ(λ)−1, and we then also have g−1σ(g) ∈
λBL,3λ

−1, since σ has order 2. Therefore g−1σ(g) ∈ σ(λ)BL,3σ(λ)−1∩λBL,3λ
−1,

which is equivalent to

λ−1g−1σ(g)λ ∈ eBL,3e
−1 ∩ BL,3 = BL,3(λ).
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We thus have g−1σ(g) ∈ λBL,3(λ)λ−1. Now, the image of the map Lσ : GL,3 →
GL,3 given by g 7→ g−1σ(g) clearly lies in G1

L,3. Thus

g−1σ(g) ∈ λBL,3(λ)λ−1 ∩ G1
L,3

= λ

{(
1 + a1

√
$ + a2$ b1

√
$ + b2$

0 1 + a1
√

$ + d2$

)
| ai, bi ∈ Fq

}
λ−1 ∩ Gϕ

L,3,

and since λ normalises the above set of matrices, we get

g−1σ(g) ∈
{(

1 + a1
√

$ + a2$ b1
√

$ + b2$
0 1 + a1

√
$ + d2$

)
| ai, bi ∈ Fq

}
∩ Gϕ

L,3

= (Z1
L,3)

ϕ(T 2
L,3)

ϕ(U1
L,3)

ϕ.

Now we can obviously replace the relation g−1σ(g) ∈ (Z1
L,3)

ϕ(T 2
L,3)

ϕ(U1
L,3)

ϕ by
g−1σ(g) ∈ (Z1

L,3)
ϕ(T 2

L,3)
ϕ(U1

L,3)
ϕ ∩ Lσ(Gϕ

L,3), without loss of generality. We
thus have

Y ′λ−1

= {g ∈ Gϕ
L,3 | g−1σ(g) ∈ (Z1

L,3)
ϕ(T 2

L,3)
ϕ(U1

L,3)
ϕ∩Lσ(Gϕ

L,3)}/(Z1
L,3)

ϕλ(U1
L,3)

ϕλ−1.

One shows by direct computation that

Lσ((Z1
L,3)

ϕλ(U1
L,3)

ϕλ−1) ⊇ (Z1
L,3)

ϕ(T 2
L,3)

ϕ(U1
L,3)

ϕ ∩ Lσ(Gϕ
L,3).

This implies that there is a natural equivariant isomorphism

Y ′λ−1 −̃→GΣ
L,3/((Z1

L,3)
ϕλ(U1

L,3)
ϕλ−1)Σ = GΣ

L,3/(Z1
L,3)

Σ(U1
L,3)

Σ = GF,2/Z
1
F,2U

1
F,2.

Since X̃Σ
L,3(λ)/(Z1

L,3)
ϕ ∼= Y ′λ−1, the theorem is proved.

The above theorem, together with [7], 10.10 (i) shows that the variety
X̃Σ

L,3(λ) affords the representation

IndGF,2

Z1
F,2U1

F,2
1

as a subrepresentation of its cohomology. In particular, for G = SL2, we have
Z1

F,2 = {1} (using p 6= 2). Moreover, it is easy to show that for G = GL2, each
nilpotent representation of GL2(OF,2) is an irreducible constituent of IndGF,2

B1
F,2

1

(cf. [12], Lemma 2.12; note that we have defined nilpotent representations to be
primitive). Thus X̃Σ

L,3(λ) affords in particular all the nilpotent representations of
GF,2, both for G = SL2 and G = GL2. Together with the results of Lusztig [20],
Section 3, this proves that every irreducible representation of SL2(Fq[[$]]/($2)),
with p odd, appears in the cohomology of some extended Deligne-Lusztig variety
attached to a (possibly ramified) quasi-Cartan subgroup.
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6 Further directions
In the proof of Theorem 5.1, the hypothesis that F be a function field was only
used to calculate the explicit form of the various groups involved, and the image
of Lσ. It is therefore likely that the argument can be extended to any non-
archimedean local field F with p 6= 2, using similar methods. Furthermore, the
question of whether the action of the finite group S(λ)/S(λ)0 on X̃Σ

L,3(λ) can
be used to decompose IndGF,2

Z1
F,2U1

F,2
1 into irreducible components, remains open.

However, the techniques used in the proof of Theorem 5.1 should prove useful
for answering this. Provided Lusztig’s computations in [20], Section 3 could be
carried out for GL2, it would follow from the results of this paper that every
irreducible representation of GL2(Fq[[$]]/($2)), with p odd, is realised by an
extended Deligne-Lusztig variety.

A natural problem is to generalise the construction of extended Deligne-
Lusztig varieties to reductive group schemes G over OF other than GLn or
SLn. The ingredients required for such a generalisation are as follows. First,
one needs a generalisation of Lemma 4.5 to any G. This has recently been given
in [32]. Moreover, one would need the result that any quasi-Cartan is contained
in a strict Borel subgroup of some GL,r, which requires a version of Lemma 4.3
for a Borel subgroup of G.

It is also a natural question to ask whether our construction can be extended
to the wildly ramified case. When L/F is tamely ramified, we have shown that
GΣ

L,r = GF,r′ , but in the wildly ramified case this may no longer hold. The
difficulties in the wildly ramified case are perhaps a reflection of the fact that
the representation theory of the p-adic group G(F ) is radically different in the
wildly ramified case. In particular, one cannot expect in this case that all the
interesting representations are parametrised in a straightforward way by data
attached to maximal tori. Our present construction can thus be seen as dealing
efficiently only with the cases where L/F is tamely ramified. It should however
be noted that the only obstacle to defining extended Deligne-Lusztig varieties
in the wildly ramified case it due to the problem of descending from GL,r to
GF,r′ by taking fixed-points. This is therefore mainly a problem about Galois
theoretic properties of finite ring extensions. To go further in the wildly ramified
case, it seems that one has to consider either elements in AutOF,r′ (OL,r) other
than those coming from elements in Gal(L/F ), or a larger field extension E/L,
such that E/F is tamely ramified.

A fundamental result of Deligne and Lusztig (cf. [6], Corollary 7.7) is that
every irreducible representation of Gϕ

1 appears in the l-adic cohomology of some
variety X̃1(ŵ). An important question is whether something similar holds for
the groups Gϕ

r′ = GΣ
L,r, with respect to the extended Deligne-Lusztig varieties

X̃Σ
L,r(λ). Some aspects of the representation theory of the groups GLn(OF )

are analogous to the representation theory of the p-adic group GLn(F ). In
particular, the construction of tamely ramified supercuspidal representations
via certain characters of maximal tori, due to Howe [14], provides some of the
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motivation for attaching extended Deligne-Lusztig varieties to quasi-Cartans.
Given this analogy, and the results obtained for nilpotent representations in
Section 5, we state the following open problem:

Suppose that n is prime to p. Is it true that any irreducible rep-
resentation of GLn(OF,r′) which is a type for a supercuspidal rep-
resentation of GLn(F ), appears in the l-adic cohomology of some
extended Deligne-Lusztig variety X̃Σ

L,r(λ)?

Here r′ = [ r−1
e ]+1, with e = e(L/F ur), as before. For the definition of types, see

[3] and [4]. In particular, any depth zero supercuspidal type on GLn(OF ) factors
through GLn(k), corresponds to an unramified maximal torus, and is realised
in the cohomology of some variety X̃1(ŵ), by the result of Deligne and Lusztig
mentioned above. Moreover, the results in Section 5 show that every nilpotent
representation of GL2(OF,2), for F a function field, is realised by some X̃Σ

L,r(λ).
Thus, the answer to the question is affirmative at least as far as nilpotent types
on GL2(OF,2) are concerned.

It is interesting to ask about the possible connections between the construc-
tions in this paper, and the theory of character sheaves. In [21], Lusztig dis-
cusses, among other things, the possibility of defining character sheaves on Gr,
where F is a function field, and G is a reductive group scheme over kF . The
conjecture in [21], 8 predicts that there is a theory of character sheaves on Gr

for generic principal series representations (i.e., those that correspond to regu-
lar characters of a split unramified Cartan). However, Lusztig remarks that one
cannot expect to have a complete theory of character sheaves on Gr, citing the
irreducible representations of dimension q2 − 1 of GF,2 (for G = GL2, F a func-
tion field) as a reason for this. Note that these representations are nilpotent. By
the results in Section 3.2 for the closely related case where G = SL2, one may
indeed expect that the nilpotent representations cannot all be accounted for by
character sheaves on Gr. One of the principal aims of this paper has been to
demonstrate that the correct algebraic groups for constructing nilpotent repre-
sentations of Gϕ

r′ = GΣ
L,r for G = GL2 or G = SL2 in the tamely ramified case,

are not the “unramified” groups Gr′ , but groups of the form GL,r, where L is a
finite non-trivial extension of F ur. One may therefore ask whether there exists
a theory of character sheaves on the groups GL,r, pertaining to (some of) the
representations which do not correspond to character sheaves on groups of the
form Gr′ .
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