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Abstract. There are well-known analogues of the prime number theorem and Mert-
ens’ Theorem for dynamical systems with hyperbolic behaviour. Here we consider the same
question for the simplest non-hyperbolic algebraic systems. The asymptotic behaviour of
the orbit-counting function is governed by a rotation on an associated compact group,
and in simple examples we exhibit uncountably many different asymptotic growth rates
for the orbit-counting function. Mertens’ Theorem also holds in this setting, with an ex-
plicit rational leading coefficient obtained from arithmetic properties of the non-hyperbolic
eigendirections. The proof of the dynamical analogue of Mertens” Theorem uses transcen-
dence theory and Dirichlet characters.

1. Introduction

A closed orbit 7 of length |t| = n for a continuous map 7 : X — X on a compact
metric space X is a set of the form

{x,T(x), T*(x),...,T"(x) = x}

with cardinality n. A dynamical analogue of the prime number theorem concerns the
asymptotic behaviour of expressions like

(1) nr(N) = [{z: |7 = N},

and a dynamical analogue of Mertens’ Theorem concerns asymptotic estimates for expres-
sions like

©) (M) = S

[l =N
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where A(T) denotes the topological entropy of the map. Results about the asymptotic be-
haviour of both expressions under the assumption that X has a metric structure with re-
spect to which 7 is hyperbolic may be found in the works of Parry [12], Parry and Pollicott
[13], Sharp [15] and others. An orbit-counting result on the asymptotic behaviour of (1) for
quasi-hyperbolic toral automorphisms has been found by Waddington [17], and an ana-
logue of Sharp’s dynamical Mertens’ Theorem for quasi-hyperbolic toral automorphisms
has been found by Noorani [11]. Both the current state of these kinds of results and the
seminal early work on geodesic flows is described in the book of Margulis [9] which also
has a survey by Sharp on periodic orbits of hyperbolic flows.

One of the tools used in studying orbit-growth properties of hyperbolic maps is the
dynamical zeta function. This may be viewed as a generalization of the Weil zeta func-
tion, which corresponds to the dynamical zeta function of the action of the Frobenius map
on the extension of an algebraic variety over a finite field to the field’s algebraic closure.
Writing

Frn)={xe X : T"x = x}|
for the number of points fixed by 7", the dynamical zeta function is defined by

7
n

NE

(3) {r(z) = exp Fr(n)

n=1

which has a formal expansion as an Euler product,

(4) {r(z) =TI =27,
T

where the product is taken over all orbits of 7. Just as the classical Euler product relates
analytic properties of the Riemann zeta function to asymptotic counting properties of the
prime numbers, the Euler expansion (4) relates analytic properties of the dynamical zeta
function to orbit-counting asymptotics. In the hyperbolic case, the zeta function (3) has ra-
dius of convergence e "7) and, crucially, has a meromorphic extension to a strictly larger
radius.

Our purpose here is on the one hand to study a very special class of maps of arithme-
tic origin, while on the other relaxing the hyperbolicity or quasi-hyperbolicity assumption.
In this setting, the simplest non-trivial example is the map ¢ dual to the map » — 2r on
Z[1/3]. This map is an isometric extension of the circle-doubling map 7 +— 2¢ (mod 1) on
the additive circle T by a cocycle taking values in the 3-adic integers Z3; it is non-expansive
and has topological entropy log?2. The dynamical zeta-function associated to the map ¢ is
shown to have a natural boundary by Everest, Stangoe and Ward [5], making it impossible
to find a meromorphic extension beyond the radius of convergence. The radius of conver-
gence is e "#) = 1/2 since easy estimates show that

1
. log Z4(n) — log2 asn— 0.

The bounds
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(5) L < i ing M7V

Nmy(N) _ |
3= W N+ =

2N+1

< limsup

N—oo

were found in [5]. A problem left open there is to describe the asymptotics exactly, and in

Nmy(N)

particular to show that SN

does not converge as N — 0.

A similar result is found for the dynamical analogue of Mertens’ Theorem. Write
O7(n) = |{r : tis a closed orbit of 7" of length |7| = n}|

for the number of orbits of length » under 7. Then

(6) %10gN+0(1) < v %W _oen+ o)

ns<N 27

is shown in [5].

A consequence of the results in this paper is a better explanation of the sequences
along which the expressions in (5) converge, a proof that there is a single asymptotic in
(6), and a three-term expansion for (6) in line with the classical Mertens’ Theorem. The
map considered in [5] is a special case of a more general construction of S-integer maps
described in [3]. These are parameterized by an A-field [K (for example, Q or [F,(¢)), a sub-
set S of the set of places of [, and an element £ € K* of infinite order (see the start of
Section 3 for the construction; the assumption that & has infinite multiplicative order is
equivalent to ergodicity for the resulting map). For the map ¢ above, these parameters are
chosen with K = Q, S = {3} = {2,3,5,7,11,...} and & = 2. If the A-field KK has character-
istic zero, then the resulting map is an endomorphism of a solenoid.

The essential starting point is to note from [3] that if 7 : X — X is an S-integer map
with S finite and X connected, then

1
. log Zr(n) — h(T) > 0,

so the dynamical zeta function has radius of convergence e (7). This suggests that the

Sh(D(N+1)
natural function to compare 77 (N) with is —x % define
- N7L'T<N)
7(N) = eh(T)(N+1)

Theorem 1.1. Let T : X — X be an ergodic S-integer map with X connected and S
finite. Then (I17(N)) is a bounded sequence, and

liminf [T7(N) > 0.
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Moreover, there is an assocj{fated pair (X*,ar), where X* is a compact group and ar € X*,
with the property that if ay’ converges in X* as j — oo, then Il (N;) converges in R as
J — o0.

Thus the pair (X*,ar) detects limit points in the orbit-counting problem. In the
hyperbolic case, the group X * is trivial, reflecting the fact that (HT(N )) n> itself con-
verges.

Example 1.2. The most familiar examples of non-hyperbolic automorphisms are
the quasi-hyperbolic toral automorphisms (see Lind [8] for a detailed account of their dy-
namical properties). Let k = Q(¢) where ¢ = —(1 +v2) — v/2v2+2, and S = 0. Then
the corresponding map T is the quasi-hyperbolic automorphism of the 4-torus defined by
the matrix

0 1 0 0
0 0 1 0
0 0 0 1
-1 -4 2 -4

There is a pair of eigenvalues A, 2 with || = 1. The corresponding system (X*, ar) is the
rotation z — Az on S!, and any sequence (N;) for which (A} converges has the property
that (IT7(N;)) converges as j — oo. This recovers in part a result of Waddington [17], who
explicitly identifies I17 (V) as an almost-periodic function of N.

In some cases the correspondence between convergent subsequences seen in the detec-
tor group X * and the orbit-counting problem is exact. For simplicity we state this for the
case K = Q, £ =2, § = {3}; the same method gives a similar conclusion whenever K = Q
and |S| = 1. The full extent of the phenomena (and, in particular, of the appearance of
uncountably many limit points) is not clear.

Theorem 1.3. For the map ¢ dual to the map x— 2x on Z[1/3], the sequence
(I4(N;)) converges as j — oo if and only if the sequence (2™) converges in the group Zs.
In particular, the sequence (H¢,(N )) has uncountably many limit points. Moreover, the upper
and lower limits are both transcendental.

The dynamical analogue of Mertens’ Theorem concerns the expression (2). In the
simplest case (an endomorphism of a 1-dimensional solenoid) precise results are readily
found, with a rational coefficient of the leading term.

Theorem 1.4. For an ergodic S-integer map T with K = Q and S finite, there are con-
stants kt € Q and Cr such that

Mr(N) = krlogN + Cr + O(1/N).

Example 1.5. Let ¢ = 2 in Theorem 1.4, so the map 7T is the map dual to x — 2x on
the ring Rs = {p/q € Q : primes dividing ¢ lie in S}. The constant k7 for various simple
sets S is given in Table 1.
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S value of ky
0 1
{3} 5/8

{3,5} 55/96
{3,7} 269/576
co-finite 0

Table 1. Leading coefficients in Mertens” Theorem.

In the general case there is less control of the error term (the error term in the dynam-
ical Mertens’ Theorem of Sharp [15] for the hyperbolic setting is improved to o(1/N) by
Pollicott [14]).

Theorem 1.6. Let T : X — X be an ergodic S-integer map with X connected and with
S finite. Then there are constants kr € Q, Cy and 6 > 0 with

(7) Mr(N) =krlogN + Cr + O(N™°).

Recent work of Miles [10] shows that the number of periodic points for an automor-
phism of a solenoid is a finite product of the numbers of periodic points for connected
S-integer systems, so the results above apply to those automorphisms of solenoids whose
resulting product only involves finitely many valuations.

The class of S-integer systems with |:S| infinite provides a range of subtle behaviours
that cannot readily be treated in this way. Possibilities include % (n) growing much slower
than exponentially; the ‘generic’ behaviour for S chosen randomly is discussed in [18] and
[19]. Some results on systems with S co-finite may be found in the thesis of Stangoe [16].

Example 1.7. Let T be an S-integer map dual to x — &x with K = Q and S co-
finite. For any finite place w € S there are constants 4, B > 0 with |£" — 1|, > 4/n5, so by
the product formula there is a constant C > 0 with Z7(n) < n€. It follows that .#7(N) is
bounded for all V.

Little can be said about compact group automorphisms in general. For example, it
is shown in [20] that for any C € [0, oo] there is a compact group automorphism 7" with

1
lim — log #,(T) — C.
n

n— oo

Allowing the compact group X to be infinite-dimensional is problematical for a dif-
ferent reason: the following example may be found in [16], Theorem §.1.

Example 1.8. For any sequence aj, ay, . .. there is an automorphism 7 of a compact
connected group with

ay < Fr(n) < o foralln=1.

To see this, define a sequence of maps 71, T, ... as follows. Let 77 be the map dual to
x+— 3xon Z. Let T, be the map dual to x — 2x on Z. Let T3 be the map dual to x — 3x
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on Z[1/2]. By Zsigmondy’s Theorem (see [22] for the original result; a convenient modern
source is [6]),

{p:p|3"—1forsomen <k} < {p:p|3"—1forsomen <k+ 1}
unless £ = 1. This allows the sequence of maps to be continued: Let 74 be the map
dual to x— 3x on Z[1/2,1/13] and, similarly 7} will be the map dual to x — 3x on
Z[1/s1,...,1/s], where
{s1,...,8) ={p: pisaprime with p|3” — 1 for some n < k}.

Using the periodic point formula (17) from [3], the choice of primes ensures that Z7, (j) = 1
for j < k and 7, (k) > 1. Finally define the map 7 to be the infinite product

T=(T'xTix- xXT))X(TaxTyx--+XTy)X---.

so that co>Z7(1)>a so that 00>Z71(2)>a,

For any k = 1, all but finitely many terms in the product giving 7 (n) are 1, so the product
1s finite and exceeds a,,.

The paper is organized as follows. Theorem 1.3 and Theorem 1.4 for the same map ¢
dual to x — 2x on Z[1 /3] are proved in Section 2; this example illustrates some of the issues
that arise in the more general setting while avoiding the Diophantine subtleties. Theorem
1.1 is proved in Section 3. Theorem 1.6 without an error term is proved in Section 5; this
result may be found using soft methods. Theorem 1.4 is proved in Section 5, with the essen-
tial combinatorial step generalized to allow other fields. Finally, Section 6 assembles the
additional Diophantine ingredients for Theorem 1.6. Since the relevant zeta functions do
not have meromorphic extensions, we are unable to use Tauberian or complex-analytic
methods. Instead the proofs use the theorems of Abel, Baker and Dirichlet. The analogues
of Mertens’ Theorem require the most effort, requiring arguments from analytic number
theory.

2. Proof of Theorems 1.3 and 1.4 in a special case

The specific map ¢ dual to x — 2x on Z[1/3] already reveals some of the essential
features of these systems. In addition, the relatively simple nature of the map allows very
precise results. This section contains a self-contained proof of Theorem 1.3 which may be
read on its own or used to motivate some of the arguments in Section 3. It also contains a
self-contained proof of Theorem 1.4 for the case S = {3} and & = 2.

By [3], Lemma 5.2, the number of points fixed by ¢" is

Fylm) = (2" = )27 — 1],

so the number of orbits of length #» is given by

o =, S () @4 = D2 11

d|n
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by Mobius inversion, and hence

®) wN) = T2 Su(f)@r - D2 - 1,

ngNnd\n

We begin by replacing (8) with a more manageable expression. Let
1
©) G(N) = > =2"[2" —1};.
n<NH
Then
1 a
M) - G| S E (S e - tlr T 20pd i)

n<NM \d|n~~——~—" d|n,d<n
1

=

A
g

(n+d ZMZC’) = 02N,

so for the purposes of the asymptotic sought we can use G(N) in place of 74(N).

We next give a simple proof of the orbit-counting asymptotic for the circle-
multiplication by « =2, that is for the map y,(x) =ax (modl); for this map
Fy,(n) =a" — 1. Results like these are special cases of the more general picture in the
work of Parry and Pollicott [13]. We give an elementary proof here because the argument
used presages the estimates needed later.

aN+1

Lemma 2.1. 7, (N) ~ Na=1)

Proof. By Mobius inversion

Subtracting the dominant terms,

1 1
(10) my, (N)— > =d"|=1+|> - > u<ﬁ>ad
n<NT n<NMg|nd<n d
- d
= O( > a )
n=Nd<|n/2|
nsN

To estimate the dominant terms, let K(N) = | N'/4|. Then
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1 1
Z 4" — Z Za" < Z a"
n<NM1 N-K(N)sngN T n<N—K(N)
= O(aN’K(N)).

Finally,

Together with (10), this proves the lemma. []

Returning to the main problem, write

1 n n
IN)= > -2"2" -1
n<N,2|n

and

1

n=

so G(N) =I(N)+ J(N). Splitting into odd and even terms further simplifies the expres-
sions since an easy calculation shows that

1| |; if niseven
—|n n ven;
(11) |2n - 1|3 - 3 3

1 if nis odd,
SO

1
JIN)= > =2".
ngN,Z,{’nn
1 2N+1

Lemma 2.2. J(N)~§- N

Proof. Lemma 2.1 applied to the maps ¥/, and ¥, shows that

N+1
212”~2 and Z%4k~

nsNT k<K

4K+1
3K
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Hence
1 n 1 n
J(N)= > =2"— > =2
n<N M n<N,2|nl
1 1
— S An _4k
n;v” kgzzx;/zzk
2N+1 2 2N+1
TN 3 N
1 2N+1
=3 n U
We are therefore left with the expression
1 1 1
IN)= > =2"2"—13=7 > 2"l
ngN,Z\nn 3n§N,2\nn
1 1
=— Y —2%k],.
6 <npk ’
Define
1 n
LM) = . —4"|n|;
ngMn
and
ML(M)
ay :4T
Again it is enough to look only at the large terms, since
4" 4" n K(M)
>, s X —lnlyj = > 4"=0@).
M-K(M)snsm 1 n<m 1 n<K(M)

Expanding from the last term gives

M|, 4 YM -1 472 M -2
gy WMl AIM )y 4M =20

1 1—1/M 1-2/M
4-KM|M — K(M)|,
1—-K(M)/M
M|y M -1y M =2, |M — K(M)|;
=5 + p + yp + . —xan
o K(M)
* (,? M)’

163

and the error term is O(M~'/?). Thus the limit points mentioned in Theorem 1.3 come

from limit points of the sequence (b)) defined by
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My M-y M -2 M — K(M)|s
(12) by = 1 + ) + B + - AK0D)
Clearly
1 1
buslt i+t =5
and
1
> _

because 3| M implies that 3 4 (M — 1). These upper and lower bounds imply upper and

5 9 . .
lower bounds of 5 and 7 respectively in (5).

The shape of the expression (12) suggests that the lower limit will be seen along se-
quences highly divisible by 3, and the upper limit along sequences not divisible by 3, and
this indeed turns out to be the case. To find limit points, it is easier to work with the infinite
sum rather than (12), so notice first that if

M-,
= &

then by — cpr| = O2KM=M) Now let | My|; = 37% so that (by the ultrametric inequality)

2, Bl

1
CMk+tk:3_k+T+F 4—+ c
1 © ]l 2x1 2=x1 22
*?+Z4_/_§Z:4__§Z:E_2_Z:

where

Z |j|3 Eu J|3 — 0(4—3/").
J=3%

Thus ¢y, converges as k — oo. Moreover, the limiting value is transcendental.

1
Lemma 2.3. The sum C = Z m is transcendental, and

liminf ¢y = % - 2C.

M— o0
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Proof. Let g, = 3°(4*" — 1). Then there is an integer p, such that

ps & 1
G=c-L- vy _
qs r=s+1 3 (43 - 1)

Thus C; = O(3+14-3"") 50

0< ‘C—? = 0(¢7%)

S

showing that C is too well-approximable to be algebraic.
To see that this does give the lower limit, notice that

1 1
Cpmy :3—k+§—2c—tk.

Any limit point along a sequence (M) with ord;(M)) bounded infinitely often is larger,
and any limit point with ord;(Mj) — oo must be this one. []

Essentially the same argument choosing M) with |Mj. + 1|; = 37 shows that

limsup cpr = 4 liminf ¢y,
M—0 M-

completing the proof of the first part of Theorem 1.3.

We now turn our attention to the remaining part of Theorem 1.3.

Lemma 2.4. Fix M,N € N with0 < ¢ = |M — N|5. Then

e <4
m<|cM—CN|= 38.

Proof. The second inequality is straightforward: By the reverse triangle inequality
(13) [IM = jl; = IN—jl;| £IM - Ny =¢

for any j, so that

2| M=l = IN=jh] _&e 4
ler — enl ZZ%) 4 =/§)4j 38~

For the first inequality a more careful analysis of where the series in ¢, and cy differ
is needed. Write ¢ = 3%, with k = 0. There exist unique integers 0 < jy, jy < 3! such
that

M — jul; < 3=+ and IN — jnls < 3—(k+1)



166 Everest, Miles, Stevens, and Ward, Orbit-counting in non-hyperbolic dynamical systems

Since |M — N|; = 37% we have [jy — jv|; = 37 also and we may assume that jy < jy
without loss of generality. By the ultrametric inequality,

|M — jly=IN—jl5 forj< ju,
so the series in ¢, and cy differ first at the term j = jj,. Thus

(M — july <375 <IN — jyly =37

and so

N —7 — M- © M—il.—IN— i

e — ey 2 W= duls 1M = juls & |IM = jly = N = jls|
Au Jin 41 47
SR VTR VI O¥ Y

—k —k

4m 3 3 3.4im T 343/
by (13). O

An immediate consequence of Lemma 2.4 is the following corollary, from which the
remainder of Theorem 1.3 follows.

Corollary 2.5. Given any o € Z3 and sequence of natural numbers (My) converging to

o in Z3, define ¢, to be Mlim cum,. Then ¢y is well-defined (the limit exists and is independent
0

of the choice of approximating sequence). Moreover, if f € Z3 and & = |o — [§|5 then

& . <4
m = |C“—C/f| = 58.

This completes the proof of Theorem 1.3.

Theorem 1.4 for the map ¢ concerns the sum

(14) ) = 3 G0

n=N 2"

where 0y(n) is the number of orbits of length » under ¢, so

o =1 S u() @ - 02t -1l

ndln

Let

(15) Fvy =y 21

ns<N n
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and notice that

167

1 n 24 ]
My(N) — F(N) = - — 24 -1 — 2" =1
JN) — F(V) ngNn<d|,f‘<d>' b | |3>
12" =1} , P
=y (=B 24
nSNn< on + E <d>| |3

d|n,d<n
L [2" -1

=l torTh
n=

n

1
" : TIS + 0(27N/2).
n=1

In particular, the difference between F(N) and the sum in (14) is a constant plus

027N/,
Some well-known partial sums related to the classical Mertens’ Theorem will be
needed. For x > 0,

1
logx+ ¢, + 0(—),
X

where the constant ¢, is the Euler-Mascheroni constant. It follows that

(16)

1
=

1 p—1 1
> (—) logx + c3(p) + 0(—)
k<x,ged(p,k) lk D X
for any prime p, where c3(p) is a constant depending on p (the implied constant in the
(1/x) term also depends on p).

The sum in (15) can be estimated using (11) as follows. The sum over the odd terms
is

1 1 1
-==1o N+C4—|—0(—>
n<N,2fn" 2 £ N

by (16), with ¢4 = ¢3(2). The sum over the even terms collapses just as before to give

2k<N
Now

|k|3 log N/log3 1 N/3"

7 B r=0

x| =

3% k=1, ged(3,k)=1
By (16), this is
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log N/log3 2

3)"
32T logN —rlog3 + cs + O(N)]’

r=0

where the constant in the O(3"/N) term is independent of r. The computation of each term
involves summing a geometric series. In each case the sum differs from the full series with
an error that is O(1/N); we deduce that

lkl; 3 1
= ="1logN — .
ngk 4og +c5+ 0 N

The sum over the odd and even terms gives

1 1 5 1
1ogN+§ logN +¢7 + 0<—> =3 logN +¢7 + O<N>’

13
6 4 N

completing the proof of Theorem 1.4 for the case £ =2 and S = {3}.

3. Proof of Theorem 1.1

We are given an algebraic number field K with set of places P(I<) and set of infi-
nite places P, (), an element of infinite multiplicative order ¢ e [K*, and a finite set
S < P(K)\ P, (IK) with the property that |£|,, =1 for all w¢ S U P, (IK). The associated
ring of S-integers is

Rs={xeK:|x|,=1forallwé¢SuP,(K)}.

The compact group X is the character group of Rg, and the endomorphism 7 is the dual of
the map x — &x on Rg. Examples of this construction may be found in [3]. Following Weil
[21], Chap. IV, write K,, for the completion at w, and for w finite, write r,, for the maximal
compact subring of [K,,.

Define the compact group X, by

s' if weP,(K)and |¢], = 1;
X, =qr: if w¢P(K)and ], =1;
{1} 1in all other cases.
Finally, let X* =[] X;}. The element ar = (ar,),, of X* is defined by ar ,, = 1,,(£) where

v, 1s the corresponding embedding of K into C or K, whenever X is non-trivial, and
ar,,» = 1 in all other cases.

By [3], Lemma 5.2, the number of points in X fixed by 77" is

(17} 97]“(7’1) = H |én - 1|w7

weSUP, (K)

so the number of orbits of length # is
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1 n n
o=, u(f) T e,
Ngn we SUP,(K)
by Mobius inversion, and hence
1 n n
(18) nr(N) = 2, -2 u{ o)< =11,
néNnd|n w

where w is restricted to run through the places in S U P, () only (both here and below).

We begin by replacing (18) with a more manageable expression just as in (9). Let

GN) = S L T T e -

nENTE S, =1

w=

w*

By [3], the topological entropy of T is

(19) hT) = |§|Z110g|é|w > 0.

It follows that (IT7(N)) is a bounded sequence. Let 4'(7) denote the maximum value
1 . . . . .
of Eh(T) and the expression (19) with one term omitted; notice in particular that

h'=h(T) < h=h(T). Write
Co = 4IPo (8],

Now

|G(N) —nr(N)[ = X l<Z o) 1 |g* =1, + Z; l;[|f” -1 w>
< |n,d<n

n=NT \d|n ¢, =1
=Ck
1 ,
- 5 (n0e)+ £ -1, )
ns<NH1 d<[nj2] w
O(Enh/l)
= 0(e™).

Since A’ < h, this means that (Il7(N;)) converges if and only if

N;G(N;)
TN+ 1)

converges. Write

GN) = 5 - A(n)B(n)

ns<N
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where
A(n) =TT I},
€], >1
and

B(”) - H |én - 1|w'

€l =1

w=

Notice that 4(n) = e, B(n) < Cy, and a subsequence (B(N;)) of (B(N)) converges when-
ever (a]Tv/) converges in X'* (since the terms in B(N) with |£|,, < 1 simply converge to 1).

As before, let K(N) = | N'/4], and consider the expression

_ N N 1 A(\B
an —”:N§<(N)eh(N+l) " (n)B(n)
K(N) N 1
Now
(20) 4o GINN N NA(N —t)B(N — 1)
N — =
eh(N+1) =K (M) 41 (N _ [)eh(NH)
N .
< > Nl
=K1 D
= O(Ne KN

so in order to show that (HT(N])) converges it is enough to show that the subsequence
(an,) converges. The expression for ay can be further simplified, since

K(N) N 1

)1 1

K(N
- zgo eh(+D) 1 t/NB(N_ )

_ K(N)i % —1/2
—ay+ 0% L) =ay+ 0N,
t:ON

where

Choose 0 with
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I .
0 <5:§ min{|&/ — 1], : [¢|, =1,1 = j = |S|,we S}

If [¢Y — 1], <6, then
VT =1, = e -+ =, 2 ¢ 1], —6>8 forl = j<S].
Notice that ay can only be small if B(N), B(N —1),...,B(N —|S|) are small, but if
|B(N — j)| < forj=0,...,]8| -1
then |B(N) — |S|)| > 6'5I. Tt follows that there is no sequence (N ;) with
T 1EY* —1], -0 fork=0,1,2,.

e, <1
and, indeed liminf ay = oISl > 0.
— o0

Assume now that () is a sequence with the property that (aT ) converges in X *, so

in particular each sequence (|¢" — 1|,,) is Cauchy for we S, |&|, < 1, hence (|¢V~" — 1 w)
and ( (N; — l)) are Cauchy for each . Moreover, these sequences are umformly Cauchy in
t, since [ENVT1 — Nt = 1EN — ¢Ne| for all 1. We claim that (ay,) also converges, which

(by the estimates (20) and (21)) will complete the proof of Theorem 1.1. Let k < J be fixed.
Then

R U KWo
lay, —ay,| < IZZO e BN — 1) — EOWB(N/‘_[)

K(Ne)  q 1
= ZO —arn BN — 1) = B(N, — 1)| + Z iy B = 1)
1=

[KNk 1

0(()—11K(Nk))
— 0 ask — oo,

since

K(Ne) 1
2%) —an BN — 1) = B(N — 1)
t=

lIA

x 1
<§m> max  |B(N; —1) — BNy —1)].

0=<t1<K(Ny)

—0 as k— o0 by the uniform Cauchy property

4. Mertens’ Theorem without error term

The setting is an S-integer map 7 : X — X with X connected and S finite. We first
give a simple argument to show a form of Theorem 1.6 without error term, and then con-
sider how an error term is obtained. Recall that
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Let

and

Define

and write
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w

Mr(N) = T lzﬂ@) [Tl -1,

h
n=NMd[n e

Cln)= TI [&" 1],

‘é‘w =.= 1

D(”) = H ’én - 1’w'
<], =1

h*= 11 [&l,

1€],>1,
w]| oo

for the Archimedean contribution to the entropy. Then

Mr(N) — F(N) = <N% (Z“<d> ol l;ﬂéd _1

in which the implied constants are uniformly bounded. It follows that .#;(N) — F(N) may
be written as the difference between a sum of a convergent series and the sum from N to oo
of that series, and this tail of the series is O(e™"""). Thus in order to prove Theorem 1.6 it is

n

w D(”))

1
= u(() p(@) T1 16 - 11,5~ £ 200)
<, >1, nsN

w| oo

- ;NE(D(n)(l —0(e ™)) = D)) + ¥ 10< 3 D(d)eh*(dn>>

n n<NN

enough to consider F(N).

Lemma 4.1.

(g9") is uniformly distributed in the smallest closed subgroup of G containing g.

Pro

of. This is essentially the Kronecker-Weyl lemma. Write X for the closure of the

set {¢g" : n e Z} and uy for the Haar measure on X. In order to show that

Let g be an element of a compact abelian group G. Then the sequence
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_Zf ffdﬂx

for all continuous functions f : X — C, it is enough to show this for characters. If
% : X — S'is a non-trivial character on X, then

1 N-1 1 N-1
T = |y o
|1 129"
N 1-x(9)
1 2
éﬁ]—ix(g)—)O aSN—>OO,

so the sequence is uniformly distributed. [

Lemma 4.1 may be applied to the element ay € X*: the function

x— J] Ix=1

1], =1

w

is continuous on X *, so

1 N
ﬁZD(”)—’kT asN — o
where
kT: f H |x_ 1|wdﬂX*'
X g, =1
Thus

FN) = 2 (5= 7) D) + 5 X D)

n=1\" n+1 m=1

~ krlogN,

giving Theorem 1.6 without error term.

5. Mertens’ Theorem with K = Q

Section 2 contains a proof of Theorem 1.4 for the case S = {3} and & = 2. In this sec-
tion we prove Theorem 1.4; the essential difference between this and Theorem 1.6 is that
the assumption I = @ does not permit ¢ to induce an ergodic map (that is, & is not a unit
root) while exhibiting non-hyperbolicity in an infinite place. The argument in this section,
with simple modifications, would give Theorem 1.4 under the assumption that KK does not
contain any Salem numbers ([l : @] < 3 would suffice, for example).

Fix a finite set S of primes, a rational r € Q with r + +1 and
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I, <1 = pes.
Consider the map 7 : X — X dual to the map x — rx on the additive group of the ring
Rs={reQ:|r[, < 1forall p ¢S}
By [3], Lemma 5.2, the number of points fixed by 7" is

Fr(n) = \V—HH!V—H (" = D" =1,

where we write |x[g for [] |x|,, and so
peS

Ortn) =5 () =11 < 1l
Just as in Section 4, it is sufficient to work with the sum F(N).

The analogue of Mertens’ Theorem in this setting is most easily proved by isolat-
ing the following arithmetic argument. A function f is called totally multiplicative if
f(mn) = f(m)f(n) for all m,n e N.

Lemma 5.1. Let f: N — C be a totally multiplicative function with
1
> f(n) =kslogN + ¢/ + O(—),
n<N N

for constants ¢y and ky. Let E be a finite set of natural numbers and, for D S E, let
np =lem{n : n e D}. Then there is a constant cs g for which

1
f(n) =ks glogN +c¢r g+ 0(—),
n<N,kfnforkeE N

where

krp =k 3 (—=1)Pf (ng).

DSE
Proof.  Notice that

>, Sm)=f(np) > f(n)

n<N,np|n n=N/np
= f(np) (ks log(N /np) + ¢r + O(1/N))
= kyf (np)logN + ¢ n, + O(1/N),

for some constant ¢/ ,,. The result follows by an inclusion-exclusion argument. []

Notice that, if E is a set of pairwise coprime natural numbers, then

ki k= ky I;IE(l — f(n)).
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Now let 2 be a finite set of (rational) primes. For r = (1), » € 7V, write

p=1IIpr"
pe?P
and abbreviate p = p(l»1) = ] p. Define a partial order on |2|-tuples by
peEP
r=0p)yer SS=(p)per & 1,55, Vpe?

and write 0 = (0)

peP:

Fort = (4)),c» € N1, write
fr.4(n) = H |n‘;p;

notice that this is a totally multiplicative function.

Proposition 5.2.  There is a constant ¢ ¢ for which

1
Z fyvt(}’l) = k%thgN-f— C?,t + O(N>
n<N

1 1\
where k¢ is the product |] (1 - ;) (1 - —) .

pe plrtl

175

Note that, since f , is totally multiplicative, Lemma 5.1 may be applied to this result

to get asymptotics for sums over subsets of N.

Proof. The proof is by induction on m = |#|, the case m = 0 being the familiar

statement

1
S —=logN +c+ON).

n<N

Write p” || nif r = ord,(n) is the exact order with which p divides n. Put 2 = {py, ..

P ={p2-- s Pm} 1 =l and t; = ({,,. .., 1p,). Then

log N/log p
> fra(n) = X > Jri(n)
nsN n=0 n<N,pln

log N/log p 1

= X rmn X Jaa)

n=0 P n<N/p',p1kn
longjogm 1 (1 1 )k
= ——— |1 —— ) kg,
Ao plnthn pi) "

8
- [logN— rilog py + ¢’ + 0([;\17”

. )pm}a
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using the inductive hypothesis and Lemma 5.1 (applied to f = f . and E = {p;}). Note
that the implied constants in the O(p{' /N) terms are independent of r;. The computation
of each term involves summing some geometric series, and in each case the sum differs from
the full series with an error term that is O(1/N). [

The next argument will be needed again in Section 6 in a more general setting, so we
now allow K to be a number field. Theorem 1.4 will follow at once, since the sum con-
sidered here is the F(N) from Section 4.

Proposition 5.3. Let K be a number field, & € K and S a finite set of non-Archimedean
places of K such that ||, =1 for all ve S. Write |x|g = [] |x|, for x € K. Then there are
constants ks € Q) and cs € R such that ves

"1 1
Z %_kSIOgN‘i‘CS"_O(N)

n<N

Proof. Forwve S, let 0o, denote the order of £ in the residue field at v, that is, the least
positive integer o such that |” — 1|, < 1. Then

E"—1|,=1 & o, fn.

Let p be the rational prime such that v | p. It is sometimes more convenient to use the ex-
tension of the p-adic absolute value | - |, which is related to | - |, by

where K, is the completion of K at v.

(K Q)
P

)

Let m, be the least positive integer m such that

m 1
|£ — 1|P <W.

Then m, = p™o,, for some r, = 0. Moreover, if m, | n then
&" =1, = In],[log¢&],,
where log is here the p-adic logarithm.
Finally, if n = kp”o,, with (k, p) = 1, then
& =1, = |7 —1],.

For T a subset of S, put o7 = Ilcm{o, : v e T}. Split up the sum according to the sub-
sets of S, giving

" "

n<N n T<Sn<N,or|n,o0, fnVv¢ T n
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We show that each internal sum has the required form and, since there are only a finite
number of subsets of S, we will be done.

So let T be a subset of S and let 2 be the set of rational primes divisible by some
ve T. Putting my = lem{m, : ve T}, there exists r = (r,) = 0 such that my = p"or. Then
we have

&' 1] |7 — 1| 1

> re 50— > =

n<N,or|n n 0<s<r por n<N/p'or
oy fnVu¢T (n,p)=1

o, ¥nplor Yo¢ T

+|émr_1|T E w

mr n<N/mr n
o, ¥ nmp Yo¢ T

Now |n|; = [] \n];,”, where 1, = > [K,:Q,], so Il = f».+(n). So this again gives a
pe? veT,v|p n
finite number of sums, each of which has the required form, by applying Lemma 5.1 to

Proposition 5.2. [

This completes the proof of Theorem 1.4. The constants appearing in Theorem 1.4
may be found explicitly for any given set S, by following the recipe in the proof of Propo-
sition 5.3 and using Proposition 5.2, leading to Example 1.5.

6. Allowing infinite places

The estimate in (7) requires several improvements to the argument above. From now
on S denotes a finite set of non-Archimedean valuations on the number field K and ¢ € IK*
is an element of infinite multiplicative order with ||, =1 for allv e S.

Lemma 6.1. Let M € N denote any integral S-unit. The solutions of the equation

n _1
"= ls =

consist of O(M'~) cosets mod M' where M' = pM for some fixed integer p and some
d > 0, both independent of M.

Proof. For each ve S, the set Uy = {neZ:ord,(¢" — 1) = k} is a subgroup of Z.
For sufficiently large k, the cosets of Uy in Uy are defined by either 1 or p congruence
classes modulo sp¥*! for a uniform constant s. Now for n € Ui\ U1, |n|, = sp~™* for
d = [IK : Q], so n lies in O(p*¥¥=*) = O(M'~'/?) classes. Choose p = m, in the notation of
the proof of Proposition 5.3. The Chinese Remainder Theorem then gives the same bound
for the product of the finitely many valuations in S. []

Write >’ for a sum taken only over integral S-units.
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Lemma 6.2. For any ¢ > 0, the series

log M
22 '
22) S e
converges. The tail of the series satisfies
log M
S SR = 0(1/X9),
Msx M¢

forany e < c.

Proof. Let pi,...,p, be the distinct rational primes dividing the elements of S.
Write each integral S-unit M in the form p{'...po with 0 <e; for i =1,...,r. The sum
in (22) is then a finite sum of terms, each of which may be written as a finite product of
convergent geometric progressions and their squares, showing the convergence. To estimate
the error notice that if M > X then at least one term ¢; > xlog X for some uniform con-
stant x, depending on S only. Hence the error is bounded above by

r t
ZKI' Z TR

i=1  r>rlogX Di

for some constants K;, and this sum is O(log X/ X ) by Euler Summation. []

Theorem 6.3. Let a denote a complex algebraic number with |a| = 1 and a not a root
of unity. Then for some 6 > 0 and constant /,
alg" — 1
n

> S—/4+O(N7).

n<N

Proof. Decompose the sum according to the integral S-units M with

1
"1 =—.
1< s M
Consider the sum
1 a”
Fy(X) = Z/ﬂ > —
M<X Mo njen—1]g=L 1t

We claim that there is a constant Z for which

(23) Fu(X) =7+ O(max{%lg,%}),

where e > 0 is a constant depending on S and & only and B is a constant depending on &
only. To see this, we use Lemma 6.1: Let {«;} be representatives for the O(M'~1/9) cosets
modulo M’ = pM which are solutions to [£" — 1| = 1/M. Then each of the sums

al‘l

n<N:n=u; (mod M) n



Everest, Miles, Stevens, and Ward, Orbit-counting in non-hyperbolic dynamical systems 179

can be written using Dirichlet characters in the form

M/ cl’l n
Z ch] n 9

n<N j=1

where |c;| = 1/M’ and each {; is an M'th root of unity (see Apostol [1], Chap. 6 for exam-
ple). We can rearrange this double sum to get

M’ C”
oY,

j=1  n<N

The inner sum is a partial sum of a convergent power series for the logarithm since (;a =+ 1
(convergence to the logarithm is an instance of Abel’s Theorem; see [7], Th. 2.6.4). Thus

a’ M {la"
> ___ZCUIOg(l_C/)‘f'ZCUZ—
n<N:n=u; (mod M") n = j=1 n>N
Applying Abel Summation to the last sum gives
> L S loe(l—Ga)+ 0
= Cii Og — (C:a + (—>7
n<N:n=a; (mod M") ! j=1 Y / lenj“ - Cja|

using the bound |c;| < 1/M’. Thus the sum sought is

(24) Fy(X) == 2> ZZculog( —(a)

Max M 5 =

1
_|_ —
E 5w i)

in which there are O(M'~1/) terms o;.

Both sums in (24) require a lower bound for |1 — {a| for { an M'th root of unity. A
bound of the form |1 — {a| > A/M'® for constants 4, B > 0 when { is an M’th root of
unity follows from Baker’s Theorem [2]: writing a = ™’ and { = ¢*™/M’ the quantity

|1 — /M’ o270 is small if and only if ﬁ + 0 is close to some integer K, in which case

eZrl/M'+0) _ 1 is close to 2mi <ﬁ+0—K>; by Baker’s Theorem there are constants
A,C > 0 with

I . A
| M log(e*™/™") — M'log e*™| = |27iR — M'loga| > 27T

for any choice of branches of the logarithm (here R — j € M'Z). 1t follows that there are
constants 4, B > 0 with |1 — (a| > 4/M'5.
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The first sum in (24) is bounded in absolute value by

1 M
£ 1 Xlal g1 - ol = o T i
% j=1 M<X

M<X

using the existence of an absolute bound on the number of the ¢; from Lemma 6.1 as well

as the bound |¢;| < 1/M’. Thus this term is 0( 3 log M’/Ml/d) and we obtain conver-
gence by comparison with the series M<X

Jdog M
% Ml/d

since M’ and M are commensurate. Thus at this point, in relation to (23), any e < 1/d will
do.

To estimate the second sum in (24) use Baker’s Theorem in the same way to get an

estimate
1 M/B> (XB)
(0] —. =0(—).
(gj M§<:XM N N

This concludes the proof of claim (23). To complete the proof of Theorem 6.3, note that the
sum over those n with

1
n_l <
< |S_Nf

is O(N~°) since

a"|le" = 1ls

" §N_621:0(N_‘5) forany o < e.

n<N T

Ién_l‘sgNﬂ
Thus in estimating the error term, we are allowed to assume that

1 1
— =" =1 —.
M < |S>Nf

In other words, we may write X = N°¢ in claim (23), where € =
an error term O(1/N“?) = O(1/NV4+1y O

1 . .
m. This finally gives

As we saw in Proposition 5.3, a similar result holds for the case a = 1. We have as-
sembled the material needed to prove Theorem 1.6. By the arguments of Section 4 above, it
is enough to show that

F(N) =krlogN + Cr + O(N™%)

for some 6 > 0, where F(N) = > %D(n) and
n<N
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D(I’l) = H |f”l - 1|w
1], =1
= H |én -1 w X H |én - 1|w
€] =1,w] o0 €], =1, w<o0
=flaf,- ey < IT &' 1],
€], =1, w<o0
where £ is an integral polynomial in r variables, and a; € S' for i = 1,...,r are multiplica-

tively independent.

This reduces the problem to expressions of the form

1
— }’l_l
> ale" 1l

n<N

with @ an algebraic number of modulus one that is not a root of unity, to which Theorem
6.3 can be applied, or of the same form with ¢ = 1, to which Proposition 5.3 may be ap-
plied. Notice in particular that the coefficient of the leading term comes entirely from the
case a = 1 covered by Proposition 5.3, and is therefore rational.

Remark 6.4. The leading coefficient in Theorem 1.6 can also be described as

lim — > |&" — 1|5, which is redolent of an integral. There is a sophisticated theory
NHOONn<N

showing that many p-adic integrals must be rational (see Denef [4] for example); is it pos-
sible to identify the limit with an S-adic integral, and is it possible to extend that theory to
handle finitely many valuations?
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