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Abstract. There are well-known analogues of the prime number theorem and Mert-
ens’ Theorem for dynamical systems with hyperbolic behaviour. Here we consider the same
question for the simplest non-hyperbolic algebraic systems. The asymptotic behaviour of
the orbit-counting function is governed by a rotation on an associated compact group,
and in simple examples we exhibit uncountably many di¤erent asymptotic growth rates
for the orbit-counting function. Mertens’ Theorem also holds in this setting, with an ex-
plicit rational leading coe‰cient obtained from arithmetic properties of the non-hyperbolic
eigendirections. The proof of the dynamical analogue of Mertens’ Theorem uses transcen-
dence theory and Dirichlet characters.

1. Introduction

A closed orbit t of length jtj ¼ n for a continuous map T : X ! X on a compact
metric space X is a set of the form

fx;TðxÞ;T 2ðxÞ; . . . ;T nðxÞ ¼ xg

with cardinality n. A dynamical analogue of the prime number theorem concerns the
asymptotic behaviour of expressions like

pTðNÞ ¼ jft : jtjeNgj;ð1Þ

and a dynamical analogue of Mertens’ Theorem concerns asymptotic estimates for expres-
sions like

MTðNÞ ¼
P

jtjeN

1

ehðTÞjtj ;ð2Þ
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where hðTÞ denotes the topological entropy of the map. Results about the asymptotic be-
haviour of both expressions under the assumption that X has a metric structure with re-
spect to which T is hyperbolic may be found in the works of Parry [12], Parry and Pollicott
[13], Sharp [15] and others. An orbit-counting result on the asymptotic behaviour of (1) for
quasi-hyperbolic toral automorphisms has been found by Waddington [17], and an ana-
logue of Sharp’s dynamical Mertens’ Theorem for quasi-hyperbolic toral automorphisms
has been found by Noorani [11]. Both the current state of these kinds of results and the
seminal early work on geodesic flows is described in the book of Margulis [9] which also
has a survey by Sharp on periodic orbits of hyperbolic flows.

One of the tools used in studying orbit-growth properties of hyperbolic maps is the
dynamical zeta function. This may be viewed as a generalization of the Weil zeta func-
tion, which corresponds to the dynamical zeta function of the action of the Frobenius map
on the extension of an algebraic variety over a finite field to the field’s algebraic closure.
Writing

FTðnÞ ¼ jfx A X : T nx ¼ xgj

for the number of points fixed by T n, the dynamical zeta function is defined by

zTðzÞ ¼ exp
Py
n¼1

zn

n
FTðnÞð3Þ

which has a formal expansion as an Euler product,

zTðzÞ ¼
Q
t

ð1 � zjtjÞ�1;ð4Þ

where the product is taken over all orbits of T . Just as the classical Euler product relates
analytic properties of the Riemann zeta function to asymptotic counting properties of the
prime numbers, the Euler expansion (4) relates analytic properties of the dynamical zeta
function to orbit-counting asymptotics. In the hyperbolic case, the zeta function (3) has ra-
dius of convergence e�hðTÞ and, crucially, has a meromorphic extension to a strictly larger
radius.

Our purpose here is on the one hand to study a very special class of maps of arithme-
tic origin, while on the other relaxing the hyperbolicity or quasi-hyperbolicity assumption.
In this setting, the simplest non-trivial example is the map f dual to the map r 7! 2r on
Z½1=3�. This map is an isometric extension of the circle-doubling map t 7! 2t ðmod 1Þ on
the additive circle T by a cocycle taking values in the 3-adic integers Z3; it is non-expansive
and has topological entropy log 2. The dynamical zeta-function associated to the map f is
shown to have a natural boundary by Everest, Stangoe and Ward [5], making it impossible
to find a meromorphic extension beyond the radius of convergence. The radius of conver-
gence is e�hðfÞ ¼ 1=2 since easy estimates show that

1

n
logFfðnÞ ! log 2 as n ! y:

The bounds

156 Everest, Miles, Stevens, and Ward, Orbit-counting in non-hyperbolic dynamical systems

Brought to you by | University of Durham
Authenticated | 129.234.252.67

Download Date | 12/14/12 1:07 PM



1

3
e lim inf

N!y

NpfðNÞ
2Nþ1

e lim sup
N!y

NpfðNÞ
2Nþ1

e 1ð5Þ

were found in [5]. A problem left open there is to describe the asymptotics exactly, and in

particular to show that
NpfðNÞ

2Nþ1
does not converge as N ! y.

A similar result is found for the dynamical analogue of Mertens’ Theorem. Write

OTðnÞ ¼ jft : t is a closed orbit of T of length jtj ¼ ngj

for the number of orbits of length n under T . Then

1

2
logN þOð1Þe

P
neN

OfðnÞ
2n

e logN þOð1Þð6Þ

is shown in [5].

A consequence of the results in this paper is a better explanation of the sequences
along which the expressions in (5) converge, a proof that there is a single asymptotic in
(6), and a three-term expansion for (6) in line with the classical Mertens’ Theorem. The
map considered in [5] is a special case of a more general construction of S-integer maps
described in [3]. These are parameterized by an A-field K (for example, Q or FqðtÞ), a sub-
set S of the set of places of K, and an element x A K� of infinite order (see the start of
Section 3 for the construction; the assumption that x has infinite multiplicative order is
equivalent to ergodicity for the resulting map). For the map f above, these parameters are
chosen with K ¼ Q, S ¼ f3gH f2; 3; 5; 7; 11; . . .g and x ¼ 2. If the A-field K has character-
istic zero, then the resulting map is an endomorphism of a solenoid.

The essential starting point is to note from [3] that if T : X ! X is an S-integer map
with S finite and X connected, then

1

n
logFTðnÞ ! hðTÞ > 0;

so the dynamical zeta function has radius of convergence e�hðTÞ. This suggests that the

natural function to compare pTðNÞ with is
ehðTÞðNþ1Þ

N
, so define

PTðNÞ ¼ NpTðNÞ
ehðTÞðNþ1Þ :

Theorem 1.1. Let T : X ! X be an ergodic S-integer map with X connected and S

finite. Then
�
PTðNÞ

�
is a bounded sequence, and

lim inf
N!y

PTðNÞ > 0:
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Moreover, there is an associated pair ðX �; aTÞ, where X � is a compact group and aT A X �,
with the property that if a

Nj

T converges in X � as j ! y, then PTðNjÞ converges in R as

j ! y.

Thus the pair ðX �; aTÞ detects limit points in the orbit-counting problem. In the
hyperbolic case, the group X � is trivial, reflecting the fact that

�
PTðNÞ

�
Nf1

itself con-
verges.

Example 1.2. The most familiar examples of non-hyperbolic automorphisms are
the quasi-hyperbolic toral automorphisms (see Lind [8] for a detailed account of their dy-
namical properties). Let k ¼ QðxÞ where x ¼ �ð1 þ

ffiffiffi
2

p
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
2

p
þ 2

p
, and S ¼ j. Then

the corresponding map T is the quasi-hyperbolic automorphism of the 4-torus defined by
the matrix

0 1 0 0

0 0 1 0

0 0 0 1

�1 �4 2 �4

2
6664

3
7775:

There is a pair of eigenvalues l, l with jlj ¼ 1. The corresponding system ðX �; aTÞ is the
rotation z 7! lz on S1, and any sequence ðNjÞ for which ðlNjÞ converges has the property
that

�
PTðNjÞ

�
converges as j ! y. This recovers in part a result of Waddington [17], who

explicitly identifies PTðNÞ as an almost-periodic function of N.

In some cases the correspondence between convergent subsequences seen in the detec-
tor group X � and the orbit-counting problem is exact. For simplicity we state this for the
case K ¼ Q, x ¼ 2, S ¼ f3g; the same method gives a similar conclusion whenever K ¼ Q

and jSj ¼ 1. The full extent of the phenomena (and, in particular, of the appearance of
uncountably many limit points) is not clear.

Theorem 1.3. For the map f dual to the map x 7! 2x on Z½1=3�, the sequence�
PfðNjÞ

�
converges as j ! y if and only if the sequence ð2NjÞ converges in the group Z3.

In particular, the sequence
�
PfðNÞ

�
has uncountably many limit points. Moreover, the upper

and lower limits are both transcendental.

The dynamical analogue of Mertens’ Theorem concerns the expression (2). In the
simplest case (an endomorphism of a 1-dimensional solenoid) precise results are readily
found, with a rational coe‰cient of the leading term.

Theorem 1.4. For an ergodic S-integer map T with K ¼ Q and S finite, there are con-
stants kT A Q and CT such that

MTðNÞ ¼ kT logN þ CT þOð1=NÞ:

Example 1.5. Let x ¼ 2 in Theorem 1.4, so the map T is the map dual to x 7! 2x on
the ring RS ¼ fp=q A Q : primes dividing q lie in Sg. The constant kT for various simple
sets S is given in Table 1.
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In the general case there is less control of the error term (the error term in the dynam-
ical Mertens’ Theorem of Sharp [15] for the hyperbolic setting is improved to oð1=NÞ by
Pollicott [14]).

Theorem 1.6. Let T : X ! X be an ergodic S-integer map with X connected and with

S finite. Then there are constants kT A Q, CT and d > 0 with

MTðNÞ ¼ kT logN þ CT þOðN�dÞ:ð7Þ

Recent work of Miles [10] shows that the number of periodic points for an automor-
phism of a solenoid is a finite product of the numbers of periodic points for connected
S-integer systems, so the results above apply to those automorphisms of solenoids whose
resulting product only involves finitely many valuations.

The class of S-integer systems with jSj infinite provides a range of subtle behaviours
that cannot readily be treated in this way. Possibilities include FðnÞ growing much slower
than exponentially; the ‘generic’ behaviour for S chosen randomly is discussed in [18] and
[19]. Some results on systems with S co-finite may be found in the thesis of Stangoe [16].

Example 1.7. Let T be an S-integer map dual to x 7! xx with K ¼ Q and S co-
finite. For any finite place w A S there are constants A;B > 0 with jxn � 1jw > A=nB, so by
the product formula there is a constant C > 0 with FTðnÞe nC . It follows that MTðNÞ is
bounded for all N.

Little can be said about compact group automorphisms in general. For example, it
is shown in [20] that for any C A ½0;y� there is a compact group automorphism T with

lim
n!y

1

n
logFnðTÞ ! C.

Allowing the compact group X to be infinite-dimensional is problematical for a dif-
ferent reason: the following example may be found in [16], Theorem 8.1.

Example 1.8. For any sequence a1; a2; . . . there is an automorphism T of a compact
connected group with

an eFTðnÞ < y for all nf 1:

To see this, define a sequence of maps T1;T2; . . . as follows. Let T1 be the map dual to
x 7! 3x on Z. Let T2 be the map dual to x 7! 2x on Z. Let T3 be the map dual to x 7! 3x

S value of kT

j
f3g
f3; 5g
f3; 7g
co-finite

1
5=8
55=96
269=576
0

Table 1. Leading coe‰cients in Mertens’ Theorem.

159Everest, Miles, Stevens, and Ward, Orbit-counting in non-hyperbolic dynamical systems

Brought to you by | University of Durham
Authenticated | 129.234.252.67

Download Date | 12/14/12 1:07 PM



on Z½1=2�. By Zsigmondy’s Theorem (see [22] for the original result; a convenient modern
source is [6]),

fp : p j 3n � 1 for some ne kgk fp : p j 3n � 1 for some ne k þ 1g

unless k ¼ 1. This allows the sequence of maps to be continued: Let T4 be the map
dual to x 7! 3x on Z½1=2; 1=13� and, similarly Tk will be the map dual to x 7! 3x on
Z½1=s1; . . . ; 1=st�, where

fs1; . . . ; stg ¼ fp : p is a prime with p j 3n � 1 for some n < kg:

Using the periodic point formula (17) from [3], the choice of primes ensures that FTk
ð jÞ ¼ 1

for j < k and FTk
ðkÞ > 1. Finally define the map T to be the infinite product

T ¼ ðT1 � T1 � � � � � T1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
so that y>FT ð1Þ>a1

�ðT2 � T2 � � � � � T2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
so that y>FT ð2Þ>a2

� � � � :

For any kf 1, all but finitely many terms in the product giving FTðnÞ are 1, so the product
is finite and exceeds an.

The paper is organized as follows. Theorem 1.3 and Theorem 1.4 for the same map f

dual to x 7! 2x on Z½1=3� are proved in Section 2; this example illustrates some of the issues
that arise in the more general setting while avoiding the Diophantine subtleties. Theorem
1.1 is proved in Section 3. Theorem 1.6 without an error term is proved in Section 5; this
result may be found using soft methods. Theorem 1.4 is proved in Section 5, with the essen-
tial combinatorial step generalized to allow other fields. Finally, Section 6 assembles the
additional Diophantine ingredients for Theorem 1.6. Since the relevant zeta functions do
not have meromorphic extensions, we are unable to use Tauberian or complex-analytic
methods. Instead the proofs use the theorems of Abel, Baker and Dirichlet. The analogues
of Mertens’ Theorem require the most e¤ort, requiring arguments from analytic number
theory.

2. Proof of Theorems 1.3 and 1.4 in a special case

The specific map f dual to x 7! 2x on Z½1=3� already reveals some of the essential
features of these systems. In addition, the relatively simple nature of the map allows very
precise results. This section contains a self-contained proof of Theorem 1.3 which may be
read on its own or used to motivate some of the arguments in Section 3. It also contains a
self-contained proof of Theorem 1.4 for the case S ¼ f3g and x ¼ 2.

By [3], Lemma 5.2, the number of points fixed by fn is

FfðnÞ ¼ ð2n � 1Þj2n � 1j3;

so the number of orbits of length n is given by

OfðnÞ ¼
1

n

P
d j n

m
n

d

� �
ð2d � 1Þj2d � 1j3
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by Möbius inversion, and hence

pfðNÞ ¼
P
neN

1

n

P
d j n

m
n

d

� �
ð2d � 1Þj2d � 1j3:ð8Þ

We begin by replacing (8) with a more manageable expression. Let

GðNÞ ¼
P
neN

1

n
2nj2n � 1j3:ð9Þ

Then

jpfðNÞ � GðNÞje
P
neN

1

n

�P
d j n

j2d � 1j3|fflfflfflfflffl{zfflfflfflfflffl}
e1

þ
P

d j n;d<n

2d j2d � 1j3
�

e
P
neN

1

n

�
nþ

P
debn=2c

2d

�
¼ Oð2N=2Þ;

so for the purposes of the asymptotic sought we can use GðNÞ in place of pfðNÞ.

We next give a simple proof of the orbit-counting asymptotic for the circle-
multiplication by af 2, that is for the map caðxÞ ¼ ax ðmod 1Þ; for this map
Fca

ðnÞ ¼ an � 1. Results like these are special cases of the more general picture in the
work of Parry and Pollicott [13]. We give an elementary proof here because the argument
used presages the estimates needed later.

Lemma 2.1. pca
ðNÞ@ aNþ1

Nða� 1Þ .

Proof. By Möbius inversion

pca
ðNÞ ¼

P
neN

1

n

P
d j n

m
n

d

� �
ðad � 1Þ ¼

P
neN

1

n

P
d j n

m
n

d

� �
ad � 1:

Subtracting the dominant terms,

����pca
ðNÞ �

P
neN

1

n
an

���� ¼ 1 þ
���� P
neN

1

n

P
d j n;d<n

m
n

d

� �
ad

����ð10Þ

¼ O

� P
neN

P
debn=2c

ad

�

¼ O

� P
neN

an=2

�
¼ OðaN=2Þ:

To estimate the dominant terms, let KðNÞ ¼ bN 1=4c. Then
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���� P
neN

1

n
an �

P
N�KðNÞeneN

1

n
an

����e P
neN�KðNÞ

an

¼ OðaN�KðNÞÞ:

Finally,

P
N�KðNÞeneN

1

n
an ¼ aN

N

PKðNÞ

r¼0

a�r 1 � r

N

� ��1

¼ aN

N

a

a� 1
�Oða�KðNÞÞ þO

� PKðNÞ

r¼0

r

N

�" #

¼ aNþ1

Nða� 1Þ þO

�
aN

N 2

PKðNÞ

r¼0

r

�

¼ aNþ1

Nða� 1Þ þO
aN

N 3=2

� �
:

Together with (10), this proves the lemma. r

Returning to the main problem, write

IðNÞ ¼
P

neN;2 j n

1

n
2nj2n � 1j3

and

JðNÞ ¼
P

neN;2F n

1

n
2nj2n � 1j3;

so GðNÞ ¼ IðNÞ þ JðNÞ. Splitting into odd and even terms further simplifies the expres-
sions since an easy calculation shows that

j2n � 1j3 ¼
1

3
jnj3 if n is even;

1 if n is odd;

8<
:ð11Þ

so

JðNÞ ¼
P

neN;2F n

1

n
2n:

Lemma 2.2. JðNÞ@ 1

3
� 2Nþ1

N
.

Proof. Lemma 2.1 applied to the maps c2 and c4 shows that

P
neN

1

n
2n @

2Nþ1

N
and

P
keK

1

k
4k @

4Kþ1

3K
:
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Hence

JðNÞ ¼
P
neN

1

n
2n �

P
neN;2 j n

1

n
2n

¼
P
neN

1

n
2n �

P
keN=2

1

2k
4k

@
2Nþ1

N
� 2

3
� 2Nþ1

N

¼ 1

3
� 2Nþ1

N
: r

We are therefore left with the expression

IðNÞ ¼
P

neN;2 j n

1

n
2nj2n � 1j3 ¼ 1

3

P
neN;2 j n

1

n
2njnj3

¼ 1

6

P
keN=2

1

k
22kjkj3:

Define

LðMÞ ¼
P

neM

1

n
4njnj3

and

aM ¼ MLðMÞ
4M

:

Again it is enough to look only at the large terms, since���� P
M�KðMÞeneM

4n

n
jnj3 �

P
neM

4n

n
jnj3
����e P

neKðMÞ
4n ¼ Oð4KðMÞÞ:

Expanding from the last term gives

aM ¼ jMj3
1

þ 4�1jM � 1j3
1 � 1=M

þ 4�2jM � 2j3
1 � 2=M

þ � � �

þ 4�KðMÞjM � KðMÞj3
1 � KðMÞ=M

¼ jMj3
1

þ jM � 1j3
4

þ jM � 2j3
42

þ � � � þ jM � KðMÞj3
4KðMÞ

þO

� PKðMÞ

r¼1

r

M

�
;

and the error term is OðM�1=2Þ. Thus the limit points mentioned in Theorem 1.3 come
from limit points of the sequence ðbMÞ defined by
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bM ¼ jMj3
1

þ jM � 1j3
4

þ jM � 2j3
42

þ � � � þ jM � KðMÞj3
4KðMÞ :ð12Þ

Clearly

bM e 1 þ 1

4
þ 1

42
þ � � � ¼ 4

3

and

bM f
1

4

because 3 jM implies that 3F ðM � 1Þ. These upper and lower bounds imply upper and

lower bounds of
5

9
and

9

24
respectively in (5).

The shape of the expression (12) suggests that the lower limit will be seen along se-
quences highly divisible by 3, and the upper limit along sequences not divisible by 3, and
this indeed turns out to be the case. To find limit points, it is easier to work with the infinite
sum rather than (12), so notice first that if

cM ¼
Py
j¼0

jM � jj3
4 j

then jbM � cM j ¼ Oð2KðMÞ�MÞ. Now let jMkj3 ¼ 3�k so that (by the ultrametric inequality)

cMk
þ tk ¼ 1

3k
þ j1j3

4
þ j2j3

42
þ j3j3

43
þ � � �

¼ 1

3k
þ
Py
j¼1

1

4 j
� 2

3

Py
j¼1

1

43j
� 2

9

Py
j¼1

1

49j
� 2

27

Py
j¼1

1

427j
� � � �

¼ 1

3k
þ 1

3
� 2

Py
r¼1

1

3rð43 r � 1Þ

where

tk ¼
Py
j¼3k

j jj3 � jM � jj3
4 j

¼ Oð4�3kÞ:

Thus cMk
converges as k ! y. Moreover, the limiting value is transcendental.

Lemma 2.3. The sum C ¼
Py
r¼1

1

3rð43 r � 1Þ is transcendental, and

lim inf
M!y

cM ¼ 1

3
� 2C:
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Proof. Let qs ¼ 3sð43 s � 1Þ. Then there is an integer ps such that

Cs ¼ C � ps

qs
¼
Py

r¼sþ1

1

3rð43 r � 1Þ :

Thus Cs ¼ Oð3�sþ14�3 sþ1Þ, so

0 < C � ps

qs

����
���� ¼ Oðq�3

s Þ

showing that C is too well-approximable to be algebraic.

To see that this does give the lower limit, notice that

cMk
¼ 1

3k
þ 1

3
� 2C � tk:

Any limit point along a sequence ðMkÞ with ord3ðMkÞ bounded infinitely often is larger,
and any limit point with ord3ðMkÞ ! y must be this one. r

Essentially the same argument choosing Mk with jMk þ 1j3 ¼ 3�k shows that

lim sup
M!y

cM ¼ 4 lim inf
M!y

cM ;

completing the proof of the first part of Theorem 1.3.

We now turn our attention to the remaining part of Theorem 1.3.

Lemma 2.4. Fix M;N A N with 0 < e ¼ jM �Nj3. Then

e

3 � 43=e
< jcM � cN je

4

3
e:

Proof. The second inequality is straightforward: By the reverse triangle inequality

�� jM � jj3 � jN � jj3
��e jM �Nj3 ¼ eð13Þ

for any j, so that

jcM � cN je
Py
j¼0

�� jM � jj3 � jN � jj3
��

4 j
e
Py
j¼0

e

4 j
¼ 4

3
e:

For the first inequality a more careful analysis of where the series in cM and cN di¤er
is needed. Write e ¼ 3�k, with kf 0. There exist unique integers 0e jM ; jN < 3kþ1 such
that

jM � jM j3 e 3�ðkþ1Þ and jN � jN j3 e 3�ðkþ1Þ:
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Since jM �Nj3 ¼ 3�k we have j jM � jN j3 ¼ 3�k also and we may assume that jM < jN
without loss of generality. By the ultrametric inequality,

jM � jj3 ¼ jN � jj3 for j < jM ;

so the series in cM and cN di¤er first at the term j ¼ jM . Thus

jM � jM j3 e 3�ðkþ1Þ < jN � jM j3 ¼ 3�k

and so

jcM � cN jf
jN � jM j3 � jM � jM j3

4 jM
�

Py
j¼jMþ1

j jM � jj3 � jN � jj3j
4 j

f
3�k � 3�ðkþ1Þ

4 jM
� 3�k

4 jM

Py
j¼1

1

4 j

f
3�k

4 jM
1 � 1

3
� 1

3

� �
¼ 3�k

3:4 jM
>

e

3:43=e

by (13). r

An immediate consequence of Lemma 2.4 is the following corollary, from which the
remainder of Theorem 1.3 follows.

Corollary 2.5. Given any a A Z3 and sequence of natural numbers ðMkÞ converging to

a in Z3, define ca to be lim
Mk!y

cMk
. Then ca is well-defined (the limit exists and is independent

of the choice of approximating sequence). Moreover, if b A Z3 and e ¼ ja� bj3 then

e

3:43=e
e jca � cbje

4

3
e:

This completes the proof of Theorem 1.3.

Theorem 1.4 for the map f concerns the sum

MfðNÞ ¼
P
neN

OfðnÞ
2n

ð14Þ

where OfðnÞ is the number of orbits of length n under f, so

OfðnÞ ¼
1

n

P
d j n

m
n

d

� �
ð2d � 1Þj2d � 1j3:

Let

FðNÞ ¼
P
neN

j2n � 1j3
n

;ð15Þ
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and notice that

MfðNÞ � FðNÞ ¼
P
neN

1

n

P
d j n

m
n

d

� �
j2d � 1j3

2d � 1

2n
� j2n � 1j3

 !

¼
P
neN

1

n

j2n � 1j3
2n

þ
P

d j n;d<n

m
n

d

� �
j2d � 1j3

2d � 1

2n

 !

¼
P
neN

1

n
� j2

n � 1j3
2n

þOð2�N=2Þ

¼
Py
n¼1

1

n
� j2

n � 1j3
2n

þOð2�N=2Þ:

In particular, the di¤erence between FðNÞ and the sum in (14) is a constant plus Oð2�N=2Þ.

Some well-known partial sums related to the classical Mertens’ Theorem will be
needed. For x > 0,

P
nex

1

n
¼ logxþ c2 þO

1

x

� �
;

where the constant c2 is the Euler-Mascheroni constant. It follows that

P
kex;gcdðp;kÞ¼1

1

k
¼ p� 1

p

� �
log xþ c3ðpÞ þO

1

x

� �
ð16Þ

for any prime p, where c3ðpÞ is a constant depending on p (the implied constant in the
Oð1=xÞ term also depends on p).

The sum in (15) can be estimated using (11) as follows. The sum over the odd terms
is

P
neN;2F n

1

n
¼ 1

2
logN þ c4 þO

1

N

� �

by (16), with c4 ¼ c3ð2Þ. The sum over the even terms collapses just as before to give

P
2keN

j3kj3
2k

:

Now

P
keN

jkj3
k

¼
PlogN=log 3

r¼0

1

32r

PN=3 r

k¼1;gcdð3;kÞ¼1

1

k
:

By (16), this is
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PlogN=log 3

r¼0

2

32rþ1
logN � r log 3 þ c6 þO

3r

N

� �� 	
;

where the constant in the Oð3r=NÞ term is independent of r. The computation of each term
involves summing a geometric series. In each case the sum di¤ers from the full series with
an error that is Oð1=NÞ; we deduce that

P
keN

jkj3
k

¼ 3

4
logN þ c5 þO

1

N

� �
:

The sum over the odd and even terms gives

1

6
� 3

4
logN þ 1

2
logN þ c7 þO

1

N

� �
¼ 5

8
logN þ c7 þO

1

N

� �
;

completing the proof of Theorem 1.4 for the case x ¼ 2 and S ¼ f3g.

3. Proof of Theorem 1.1

We are given an algebraic number field K with set of places PðKÞ and set of infi-
nite places PyðKÞ, an element of infinite multiplicative order x A K�, and a finite set
SHPðKÞnPyðKÞ with the property that jxjwe 1 for all w B SWPyðKÞ. The associated
ring of S-integers is

RS ¼ fx A K : jxjwe 1 for all w B SWPyðKÞg:

The compact group X is the character group of RS, and the endomorphism T is the dual of
the map x 7! xx on RS. Examples of this construction may be found in [3]. Following Weil
[21], Chap. IV, write Kw for the completion at w, and for w finite, write rw for the maximal
compact subring of Kw.

Define the compact group X �
w by

X �
w ¼

S1 if w A PyðKÞ and jxjw ¼ 1;

r�w if w B PyðKÞ and jxjw ¼ 1;

f1g in all other cases:

8><
>:

Finally, let X � ¼
Q
w

X �
w : The element aT ¼ ðaT ;wÞw of X � is defined by aT ;w ¼ {wðxÞ where

{w is the corresponding embedding of K into C or Kw whenever X �
w is non-trivial, and

aT ;w ¼ 1 in all other cases.

By [3], Lemma 5.2, the number of points in X fixed by T n is

FTðnÞ ¼
Q

w ASWPyðKÞ
jxn � 1jw;ð17Þ

so the number of orbits of length n is
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OTðnÞ ¼
1

n

P
d j n

m
n

d

� � Q
w ASWPyðKÞ

jxn � 1jw

by Möbius inversion, and hence

pTðNÞ ¼
P
neN

1

n

P
d j n

m
n

d

� �Q
w

jxn � 1jw;ð18Þ

where w is restricted to run through the places in SWPyðKÞ only (both here and below).

We begin by replacing (18) with a more manageable expression just as in (9). Let

GðNÞ ¼
P
neN

1

n

Q
jxjw>1

jxjnw
Q

jxjwe1

jxn � 1jw:

By [3], the topological entropy of T is

hðTÞ ¼
P

jxjw>1

logjxjw > 0:ð19Þ

It follows that
�
PTðNÞ

�
is a bounded sequence. Let h 0ðTÞ denote the maximum value

of
1

2
hðTÞ and the expression (19) with one term omitted; notice in particular that

h 0 ¼ h 0ðTÞ < h ¼ hðTÞ. Write

CK ¼ 4jPyðKÞj:

Now

jGðNÞ � pTðNÞj ¼
P
neN

1

n

�P
d j n

Oðenh 0 Þ
Q

jxjwe1

jxd � 1jw|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
eCK

þ
P

d j n;d<n

Q
w

jxn � 1jw
�

¼
P
neN

1

n

�
nOðenh 0 Þ þ

P
debn=2c

Q
w

jxn � 1jw|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oðenh=2Þ

�

¼ OðeNh 0 Þ:

Since h 0 < h, this means that
�
PTðNjÞ

�
converges if and only if

NjGðNjÞ
ehðTÞðNjþ1Þ

converges. Write

GðNÞ ¼
P
neN

1

n
AðnÞBðnÞ
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where

AðnÞ ¼
Q

jxjw>1

jxjnw;

and

BðnÞ ¼
Q

jxjwe1

jxn � 1jw:

Notice that AðnÞ ¼ ehn, BðnÞeCK, and a subsequence
�
BðNjÞ

�
of
�
BðNÞ

�
converges when-

ever ðaNj

T Þ converges in X � (since the terms in BðNÞ with jxjw < 1 simply converge to 1).

As before, let KðNÞ ¼ bN 1=4c, and consider the expression

aN ¼
PN

n¼N�KðNÞ

N

ehðNþ1Þ �
1

n
� AðnÞBðnÞ

¼
PKðNÞ

t¼0

N

ehðNþ1Þ �
1

N � t
AðN � tÞBðN � tÞ:

Now

aN � GðNÞN
ehðNþ1Þ

����
���� ¼ PN

t¼KðNÞþ1

NAðN � tÞBðN � tÞ
ðN � tÞehðNþ1Þð20Þ

e
PN

t¼KðNÞþ1

N � CK

ehðtþ1Þ

¼ OðNe�KðNÞÞ

so in order to show that
�
PTðNjÞ

�
converges it is enough to show that the subsequence

ðaNj
Þ converges. The expression for aN can be further simplified, since

aN ¼
PKðNÞ

t¼0

N

ehðNþ1Þ �
1

N � t
AðN � tÞBðN � tÞð21Þ

¼
PKðNÞ

t¼0

1

ehðtþ1Þ �
1

1 � t=N
BðN � tÞ

¼ a�
N þO

� PKðNÞ

t¼0

t

N
CK

�
¼ a�

N þOðN�1=2Þ;

where

a�
N ¼

PKðNÞ

t¼0

1

ehðtþ1Þ � BðN � tÞ:

Choose d with
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0 < d ¼ 1

2
minfjx j � 1jw : jxjw ¼ 1; 1e je jSj;w A Sg:

If jxN � 1jw < d, then

jxN�j � 1jw ¼ jx�jðxN � 1Þ þ x�j � 1jwf jx�j � 1jw � d > d for 1e je jSj:

Notice that a�
N can only be small if BðNÞ;BðN � 1Þ; . . . ;BðN � jSjÞ are small, but if

jBðN � jÞj < djSj for j ¼ 0; . . . ; jSj � 1

then jBðNÞ � jSjÞj > djSj. It follows that there is no sequence ðNjÞ with

Q
jxjwe1

jxNjþk � 1jw ! 0 for k ¼ 0; 1; 2; . . . ;

and, indeed lim inf
N!y

a�
N f djSj > 0.

Assume now that ðNjÞ is a sequence with the property that ðaNj

T Þ converges in X �, so
in particular each sequence ðjxNj � 1jwÞ is Cauchy for w A S, jxjw e 1, hence ðjxNj�t � 1jwÞ
and

�
BðNj � tÞ

�
are Cauchy for each t. Moreover, these sequences are uniformly Cauchy in

t, since jxNj�t � xNk�tjw ¼ jxNj � xNk jw for all t. We claim that ða�
Nj
Þ also converges, which

(by the estimates (20) and (21)) will complete the proof of Theorem 1.1. Let k < j be fixed.
Then

ja�
Nj

� a�
Nk
je

���� PKðNjÞ

t¼0

1

ehðtþ1Þ BðNj � tÞ �
PKðNkÞ

t¼0

1

ehðtþ1Þ BðNk � tÞ
����

e
PKðNkÞ

t¼0

1

ehðtþ1Þ jBðNj � tÞ � BðNk � tÞj þ
PKðNjÞ

t¼KðNkÞþ1

1

ehðtþ1Þ BðNj � tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oðe�hKðNk ÞÞ

! 0 as k ! y;

since

PKðNkÞ

t¼0

1

ehðtþ1Þ jBðNj � tÞ � BðNk � tÞj

e

�Py
t¼0

1

ehðtþ1Þ

�
max

0eteKðNkÞ
jBðNj � tÞ � BðNk � tÞj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

!0 as k!y by the uniform Cauchy property

:

4. Mertens’ Theorem without error term

The setting is an S-integer map T : X ! X with X connected and S finite. We first
give a simple argument to show a form of Theorem 1.6 without error term, and then con-
sider how an error term is obtained. Recall that
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MTðNÞ ¼
P
neN

1

n

P
d j n

m
n

d

� � Q
w

jxd � 1jw
ehn

0
B@

1
CA:

Let

CðnÞ ¼
Q

jxjw31

jxn � 1jw

and

DðnÞ ¼
Q

jxjw¼1

jxn � 1jw:

Define

FðNÞ ¼
P
neN

1

n
DðnÞ;

and write

h� ¼
Q

jxjw>1;
w jy

jxjw

for the Archimedean contribution to the entropy. Then

MTðNÞ � FðNÞ ¼
P
neN

1

n

P
d j n

m
n

d

� �
e�hn

Q
w

jxd � 1jw �DðnÞ
 !

¼
P
neN

1

n

P
d j n

m
n

d

� �
DðdÞ

Q
jxjw>1;
w jy

jxd � 1jwjxj
n
w �

P
neN

1

n
DðnÞ

¼
P
neN

1

n

�
DðnÞ

�
1 �Oðe�h�nÞ

�
�DðnÞ

�
þ
P
neN

1

n
O

� P
d<n=2

DðdÞeh�ðd�nÞ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oðe�h�n=2Þ

�

¼
P
neN

1

n
DðnÞOðe�h�nÞ þ

P
neN

1

n
Oðe�h�n=2Þ

in which the implied constants are uniformly bounded. It follows that MTðNÞ � FðNÞ may
be written as the di¤erence between a sum of a convergent series and the sum from N to y
of that series, and this tail of the series is Oðe�h�NÞ. Thus in order to prove Theorem 1.6 it is
enough to consider FðNÞ.

Lemma 4.1. Let g be an element of a compact abelian group G. Then the sequence

ðgnÞ is uniformly distributed in the smallest closed subgroup of G containing g.

Proof. This is essentially the Kronecker-Weyl lemma. Write X for the closure of the
set fgn : n A Zg and mX for the Haar measure on X . In order to show that
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1

N

PN
n¼1

f ðgnÞ !
Ð
f dmX

for all continuous functions f : X ! C, it is enough to show this for characters. If
w : X ! S1 is a non-trivial character on X , then���� 1

N

PN�1

n¼0

wðgnÞ
���� ¼

���� 1

N

PN�1

n¼0

wðgÞn
����

¼ 1

N
� 1 � wðgÞN

1 � wðgÞ

�����
�����

e
1

N
� 2

1 � wðgÞ ! 0 as N ! y;

so the sequence is uniformly distributed. r

Lemma 4.1 may be applied to the element aT A X �: the function

x 7!
Q

jxjw¼1

jx� 1jw

is continuous on X �, so

1

N

PN
n¼1

DðnÞ ! kT as N ! y

where

kT ¼
Ð
X �

Q
jxjw¼1

jx� 1jw dmX � :

Thus

FðNÞ ¼
PN
n¼1

1

n
� 1

nþ 1

� �Pn
m¼1

DðmÞ þ 1

N þ 1

PN
m¼1

DðmÞ

@ kT logN;

giving Theorem 1.6 without error term.

5. Mertens’ Theorem with KFQ

Section 2 contains a proof of Theorem 1.4 for the case S ¼ f3g and x ¼ 2. In this sec-
tion we prove Theorem 1.4; the essential di¤erence between this and Theorem 1.6 is that
the assumption K ¼ Q does not permit x to induce an ergodic map (that is, x is not a unit
root) while exhibiting non-hyperbolicity in an infinite place. The argument in this section,
with simple modifications, would give Theorem 1.4 under the assumption that K does not
contain any Salem numbers (½K : Q�e 3 would su‰ce, for example).

Fix a finite set S of primes, a rational r A Q with r3G1 and
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jrjp < 1 ) p A S:

Consider the map T : X ! X dual to the map x 7! rx on the additive group of the ring

RS ¼ fr A Q : jrjp e 1 for all p B Sg:

By [3], Lemma 5.2, the number of points fixed by T n is

FTðnÞ ¼ jrn � 1j
Q
p AS

jrn � 1jp ¼ ðrn � 1Þjrn � 1jS;

where we write jxjS for
Q
p AS

jxjp, and so

OTðnÞ ¼
1

n

P
d j n

m
n

d

� �
jrd � 1j jrd � 1jS:

Just as in Section 4, it is su‰cient to work with the sum FðNÞ.

The analogue of Mertens’ Theorem in this setting is most easily proved by isolat-
ing the following arithmetic argument. A function f is called totally multiplicative if
f ðmnÞ ¼ f ðmÞ f ðnÞ for all m; n A N.

Lemma 5.1. Let f : N ! C be a totally multiplicative function with

P
neN

f ðnÞ ¼ kf logN þ cf þO
1

N

� �
;

for constants cf and kf . Let E be a finite set of natural numbers and, for DLE, let

nD ¼ lcmfn : n A Dg. Then there is a constant cf ;E for which

P
neN;kF n for k AE

f ðnÞ ¼ kf ;E logN þ cf ;E þO
1

N

� �
;

where

kf ;E ¼ kf
P
DLE

ð�1ÞjDj
f ðnEÞ:

Proof. Notice thatP
neN;nD j n

f ðnÞ ¼ f ðnDÞ
P

neN=nD

f ðnÞ

¼ f ðnDÞ
�
kf logðN=nDÞ þ cf þOð1=NÞ

�
¼ kf f ðnDÞ logN þ cf ;nD þOð1=NÞ;

for some constant cf ;nD . The result follows by an inclusion-exclusion argument. r

Notice that, if E is a set of pairwise coprime natural numbers, then

kf ;E ¼ kf
Q
n AE

�
1 � f ðnÞ

�
:
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Now let P be a finite set of (rational) primes. For r ¼ ðrpÞp AP A ZjPj, write

pr ¼
Q
p AP

prp

and abbreviate p ¼ pð1;...;1Þ ¼
Q
p AP

p. Define a partial order on jPj-tuples by

r ¼ ðrpÞp APe s ¼ ðspÞp AP , rp e sp Ep A P

and write 0 ¼ ð0Þp AP.

For t ¼ ðtpÞp AP A NjPj, write

fP; tðnÞ ¼
1

n

Q
p AP

jnjtpp ;

notice that this is a totally multiplicative function.

Proposition 5.2. There is a constant cP; t for which

P
n<N

fP; tðnÞ ¼ kP; t logN þ cP; t þO
1

N

� �
:

where kP; t is the product
Q
p AP

1 � 1

p

� �
1 � 1

ptpþ1

� ��1

.

Note that, since fP; t is totally multiplicative, Lemma 5.1 may be applied to this result
to get asymptotics for sums over subsets of N.

Proof. The proof is by induction on m ¼ jPj, the case m ¼ 0 being the familiar
statement

P
n<N

1

n
¼ logN þ cþOðN�1Þ:

Write pr k n if r ¼ ordpðnÞ is the exact order with which p divides n. Put P ¼ fp1; . . . ; pmg,
P1 ¼ fp2; . . . ; pmg, t1 ¼ tp1

and t1 ¼ ðtp2
; . . . ; tpmÞ. Then

P
neN

fP; tðnÞ ¼
PlogN=log p1

r1¼0

P
neN; p

r1
1
k n
fP; tðnÞ

¼
PlogN=log p1

r1¼0

1

p
ðt1þ1Þr1

1

P
neN=p

r1
1
; p1 F n

fP1; t1
ðnÞ

¼
PlogN=log p1

r1¼0

1

p
ðt1þ1Þr1

1

1 � 1

p1

� �
kP1; t1

� logN � r1 log p1 þ c 0 þO
pr1

1

N

� �� 	
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using the inductive hypothesis and Lemma 5.1 (applied to f ¼ fP1; t1
and E ¼ fp1g). Note

that the implied constants in the Oðpr1

1 =NÞ terms are independent of r1. The computation
of each term involves summing some geometric series, and in each case the sum di¤ers from
the full series with an error term that is Oð1=NÞ. r

The next argument will be needed again in Section 6 in a more general setting, so we
now allow K to be a number field. Theorem 1.4 will follow at once, since the sum con-
sidered here is the FðNÞ from Section 4.

Proposition 5.3. Let K be a number field, x A K and S a finite set of non-Archimedean

places of K such that jxjv ¼ 1 for all v A S. Write jxjS ¼
Q
v AS

jxjv for x A K. Then there are

constants kS A Q and cS A R such that

P
n<N

jxn � 1jS
n

¼ kS logN þ cS þO
1

N

� �
:

Proof. For v A S, let ov denote the order of x in the residue field at v, that is, the least
positive integer o such that jxo � 1jv < 1. Then

jxn � 1jv ¼ 1 , ov F n:

Let p be the rational prime such that v j p. It is sometimes more convenient to use the ex-
tension of the p-adic absolute value j � jp, which is related to j � jv by

j � jv ¼ j � j½Kv:Qp�
p ;

where Kv is the completion of K at v.

Let mv be the least positive integer m such that

jxm � 1jp <
1

p1=p�1
:

Then mv ¼ prvov, for some rv f 0. Moreover, if mv j n then

jxn � 1jv ¼ jnjvjlog xjv;

where log is here the p-adic logarithm.

Finally, if n ¼ kprov, with ðk; pÞ ¼ 1, then

jxn � 1jv ¼ jxprov � 1jv:

For T a subset of S, put oT ¼ lcmfov : v A Tg. Split up the sum according to the sub-
sets of S, giving

P
n<N

jxn � 1jS
n

¼
P
THS

P
n<N;oT j n;ov F n Ev BT

jxn � 1jT
n

:
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We show that each internal sum has the required form and, since there are only a finite
number of subsets of S, we will be done.

So let T be a subset of S and let P be the set of rational primes divisible by some
v A T . Putting mT ¼ lcmfmv : v A Tg, there exists r ¼ ðrpÞf 0 such that mT ¼ proT . Then
we have

P
n<N;oT j n
ov F n Ev BT

jxn � 1jT
n

¼
P

0eser

jxpsoT � 1jT
psoT

P
n<N=psoT
ðn; pÞ¼1

ov F npsoT Ev BT

1

n

þ jxmT � 1jT
mT

P
n<N=mT

ov F nmT Ev BT

jnjT
n

:

Now jnjT ¼
Q
p AP

jnj tpp , where tp ¼
P

v AT ; v j p
½Kv : Qp�, so

jnjT
n

¼ fP; tðnÞ. So this again gives a

finite number of sums, each of which has the required form, by applying Lemma 5.1 to
Proposition 5.2. r

This completes the proof of Theorem 1.4. The constants appearing in Theorem 1.4
may be found explicitly for any given set S, by following the recipe in the proof of Propo-
sition 5.3 and using Proposition 5.2, leading to Example 1.5.

6. Allowing infinite places

The estimate in (7) requires several improvements to the argument above. From now
on S denotes a finite set of non-Archimedean valuations on the number field K and x A K�

is an element of infinite multiplicative order with jxjv ¼ 1 for all v A S.

Lemma 6.1. Let M A N denote any integral S-unit. The solutions of the equation

jxn � 1jS ¼ 1

M

consist of OðM 1�1=dÞ cosets modM 0 where M 0 ¼ rM for some fixed integer r and some

d > 0, both independent of M.

Proof. For each v A S, the set Uk ¼ fn A Z : ordvðxn � 1Þf kg is a subgroup of Z.
For su‰ciently large k, the cosets of Ukþ1 in Uk are defined by either 1 or p congruence
classes modulo spkþ1 for a uniform constant s. Now for n A UknUkþ1, jnjv ¼ sp�kd for
d ¼ ½K : Q�, so n lies in Oðpkd�kÞ ¼ OðM 1�1=dÞ classes. Choose r ¼ mv in the notation of
the proof of Proposition 5.3. The Chinese Remainder Theorem then gives the same bound
for the product of the finitely many valuations in S. r

Write
P 0 for a sum taken only over integral S-units.
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Lemma 6.2. For any c > 0, the series

P
M

0 logM

Mc
ð22Þ

converges. The tail of the series satisfies

P
M>X

0 logM

Mc
¼ Oð1=X eÞ;

for any e < c.

Proof. Let p1; . . . ; pr be the distinct rational primes dividing the elements of S.
Write each integral S-unit M in the form pe1

1 . . . per
r with 0e ei for i ¼ 1; . . . ; r. The sum

in (22) is then a finite sum of terms, each of which may be written as a finite product of
convergent geometric progressions and their squares, showing the convergence. To estimate
the error notice that if M > X then at least one term ei > k logX for some uniform con-
stant k, depending on S only. Hence the error is bounded above by

Pr
i¼1

Ki

P
t>k logX

t

pct
i

;

for some constants Ki, and this sum is OðlogX=X cÞ by Euler Summation. r

Theorem 6.3. Let a denote a complex algebraic number with jaj ¼ 1 and a not a root

of unity. Then for some d > 0 and constant l,

P
n<N

anjxn � 1jS
n

¼ lþOðN�dÞ:

Proof. Decompose the sum according to the integral S-units M with

jxn � 1jS ¼ 1

M
:

Consider the sum

FNðX Þ ¼
P

M<X

0 1

M

P
n<N:jxn�1jS¼ 1

M

an

n
:

We claim that there is a constant l for which

FNðXÞ ¼ lþO max
X B

N
;

1

X e


 �� �
;ð23Þ

where e > 0 is a constant depending on S and x only and B is a constant depending on x
only. To see this, we use Lemma 6.1: Let faig be representatives for the OðM 1�1=dÞ cosets
modulo M 0 ¼ rM which are solutions to jxn � 1jS ¼ 1=M. Then each of the sums

P
n<N:n1ai ðmodM 0Þ

an

n
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can be written using Dirichlet characters in the form

P
n<N

PM 0

j¼1

cij
znj a

n

n
;

where jcijj ¼ 1=M 0 and each zj is an M 0th root of unity (see Apostol [1], Chap. 6 for exam-
ple). We can rearrange this double sum to get

PM 0

j¼1

cij
P
n<N

znj a
n

n
:

The inner sum is a partial sum of a convergent power series for the logarithm since zja3 1
(convergence to the logarithm is an instance of Abel’s Theorem; see [7], Th. 2.6.4). Thus

P
n<N:n1ai ðmodM 0Þ

an

n
¼ �

PM 0

j¼1

cij logð1 � zjaÞ þ
PM 0

j¼1

cij
P
n>N

znj a
n

n
:

Applying Abel Summation to the last sum gives

P
n<N:n1ai ðmodM 0Þ

an

n
¼ �

PM 0

j¼1

cij logð1 � zjaÞ þO
1

N minjj1 � zjaj

� �
;

using the bound jcijje 1=M 0. Thus the sum sought is

FNðX Þ ¼ �
P

M<X

1

M

P
ai

PM 0

j¼1

cij logð1 � zjaÞð24Þ

þ
P

M<X

P
ai

1

M
O

1

N minjj1 � zjaj

� �

in which there are OðM 1�1=dÞ terms ai.

Both sums in (24) require a lower bound for j1 � zaj for z an M 0th root of unity. A
bound of the form j1 � zaj > A=M 0B for constants A;B > 0 when z is an M 0th root of
unity follows from Baker’s Theorem [2]: writing a ¼ e2piy and z ¼ e2pij=M 0

, the quantity

j1 � e2pij=M 0
e2piyj is small if and only if

j

M 0 þ y is close to some integer K, in which case

e2pið j=M 0þyÞ � 1 is close to 2pi
j

M 0 þ y� K

� �
; by Baker’s Theorem there are constants

A;C > 0 with

jM 0 logðe2pij=M 0 Þ �M 0 log e2piyj ¼ j2piR�M 0 log ajf A

M 0C

for any choice of branches of the logarithm (here R� j A M 0Z). It follows that there are
constants A;B > 0 with j1 � zaj > A=M 0B.
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The first sum in (24) is bounded in absolute value by

P
M<X

1

M

P
ai

PM 0

j¼1

jcijj jlogð1 � zjaÞj ¼ O

� P
M<X

1

M 1=d
max

j¼1;...;M 0
jlogð1 � zjaÞj

�
;

using the existence of an absolute bound on the number of the ai from Lemma 6.1 as well

as the bound jcijje 1=M 0. Thus this term is O

� P
M<X

logM 0=M 1=d

�
and we obtain conver-

gence by comparison with the series

P
M

0 logM

M 1=d

since M 0 and M are commensurate. Thus at this point, in relation to (23), any e < 1=d will
do.

To estimate the second sum in (24) use Baker’s Theorem in the same way to get an
estimate

O

�P
ai

P
M<X

1

M
:
M 0B

N

�
¼ O

X B

N

� �
:

This concludes the proof of claim (23). To complete the proof of Theorem 6.3, note that the
sum over those n with

jxn � 1jS e
1

N�

is OðN�dÞ since

P
jxn�1jSeN��

anjxn � 1jS
n

����
����eN�� P

n<N

1

n
¼ OðN�dÞ for any d < �:

Thus in estimating the error term, we are allowed to assume that

1

M
¼ jxn � 1jS >

1

N�
:

In other words, we may write X ¼ N� in claim (23), where � ¼ 1

Bþ 1=d
. This finally gives

an error term Oð1=N�=dÞ ¼ Oð1=N 1=dBþ1Þ. r

As we saw in Proposition 5.3, a similar result holds for the case a ¼ 1. We have as-
sembled the material needed to prove Theorem 1.6. By the arguments of Section 4 above, it
is enough to show that

FðNÞ ¼ kT logN þ CT þOðN�dÞ

for some d > 0, where FðNÞ ¼
P
n<N

1

n
DðnÞ and
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DðnÞ ¼
Q

jxjw¼1

jxn � 1jw

¼
Q

jxjw¼1;w jy
jxn � 1jw �

Q
jxjw¼1;w<y

jxn � 1jw

¼ f ðan
1 ; . . . ; a

n
r Þ �

Q
jxjw¼1;w<y

jxn � 1jw

where f is an integral polynomial in r variables, and ai A S1 for i ¼ 1; . . . ; r are multiplica-
tively independent.

This reduces the problem to expressions of the form

P
n<N

1

n
anjxn � 1jS

with a an algebraic number of modulus one that is not a root of unity, to which Theorem
6.3 can be applied, or of the same form with a ¼ 1, to which Proposition 5.3 may be ap-
plied. Notice in particular that the coe‰cient of the leading term comes entirely from the
case a ¼ 1 covered by Proposition 5.3, and is therefore rational.

Remark 6.4. The leading coe‰cient in Theorem 1.6 can also be described as

lim
N!y

1

N

P
n<N

jxn � 1jS, which is redolent of an integral. There is a sophisticated theory

showing that many p-adic integrals must be rational (see Denef [4] for example); is it pos-
sible to identify the limit with an S-adic integral, and is it possible to extend that theory to
handle finitely many valuations?
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